Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (7): 3923-3933.DOI: 10.16085/j.issn.1000-6613.2023-1010
• Materials science and technology • Previous Articles Next Articles
TANG Anqi(
), WEI Xin, DING Liming, WANG Yujie, XU Yixiao, LIU Yiqun(
)
Received:2023-06-20
Revised:2023-09-08
Online:2024-08-14
Published:2024-07-25
Contact:
LIU Yiqun
唐安琪(
), 魏昕, 丁黎明, 王玉杰, 徐一潇, 刘轶群(
)
通讯作者:
刘轶群
作者简介:唐安琪(1994—),女,工程师,博士,研究方向为分离膜材料与技术。E-mail:tangaq.bjhy@sinopec.com。
CLC Number:
TANG Anqi, WEI Xin, DING Liming, WANG Yujie, XU Yixiao, LIU Yiqun. Discussing physical aging phenomenon of polyimide gas separation membranes[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3923-3933.
唐安琪, 魏昕, 丁黎明, 王玉杰, 徐一潇, 刘轶群. 聚酰亚胺气体分离膜的物理老化现象浅析[J]. 化工进展, 2024, 43(7): 3923-3933.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1010
| 1 | KOROS W J, FLEMING G K. Membrane-based gas separation[J]. Journal of Membrane Science, 1993, 83(1): 1-80. |
| 2 | BAKER R W, Bee Ting LOW. Gas separation membrane materials: A perspective[J]. Macromolecules, 2014, 47(20): 6999-7013. |
| 3 | SANAEEPUR H, EBADI AMOOGHIN A, BANDEHALI S, et al. Polyimides in membrane gas separation: Monomer’s molecular design and structural engineering[J]. Progress in Polymer Science, 2019, 91: 80-125. |
| 4 | QIU Wulin, XU Liren, CHEN Chien-Chiang, et al. Gas separation performance of 6FDA-based polyimides with different chemical structures[J]. Polymer, 2013, 54(22): 6226-6235. |
| 5 | XU Zhen, CROFT Z L, GUO Dong, et al. Recent development of polyimides: Synthesis, processing, and application in gas separation[J]. Journal of Polymer Science, 2021, 59(11): 943-962. |
| 6 | WOOCK T, BJORGAARD S, TANDE Brian, et al. Purification of natural gas using thermally rearranged polybenzoxazole and polyimide membranes-A review: Part 1[J]. Membrane Technology, 2016, 2016(9): 7-12. |
| 7 | Ze-Xian LOW, BUDD P M, MCKEOWN N B, et al. Gas permeation properties, physical aging, and its mitigation in high free volume glassy polymers[J]. Chemical Reviews, 2018, 118(12): 5871-5911. |
| 8 | HUTCHINSON J M. Physical aging of polymers[J]. Progress in Polymer Science, 1995, 20(4): 703-760. |
| 9 | REZAC M E, PFROMM P H, COSTELLO L M, et al. Aging of thin polyimide-ceramic and polycarbonate-ceramic composite membranes[J]. Industrial & Engineering Chemistry Research, 1993, 32(9): 1921-1926. |
| 10 | LIN Wenhui, CHUNG Tai-Shung. Gas permeability, diffusivity, solubility, and aging characteristics of 6FDA-durene polyimide membranes[J]. Journal of Membrane Science, 2001, 186(2): 183-193. |
| 11 | KIM J H, KOROS W J, PAUL D R. Physical aging of thin 6FDA-based polyimide membranes containing carboxyl acid groups. Part II. Optical properties[J]. Polymer, 2006, 47(9): 3104-3111. |
| 12 | FU Ywu-Jang, HSIAO Sheng-Wen, HU Chien-Chieh, et al. Effect of physical aging on sorption and permeation of small molecules in polyimide membranes[J]. Desalination, 2008, 234(1/2/3): 58-65. |
| 13 | STRUIK L C E. Physical aging in plastics and other glassy materials[J]. Polymer Engineering & Science, 1977, 17(3): 165-173. |
| 14 | KIM J H, KOROS W J, PAUL D R. Physical aging of thin 6FDA-based polyimide membranes containing carboxyl acid groups. Part Ⅰ. Transport properties[J]. Polymer, 2006, 47(9): 3094-3103. |
| 15 | MCCAIG M S, PAUL D R. Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical aging. Part Ⅰ. Experimental observations[J]. Polymer, 2000, 41(2): 629-637. |
| 16 | MCCAIG M S, PAUL D R, BARLOW J W. Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical aging Part Ⅱ. Mathematical model[J]. Polymer, 2000, 41(2): 639-648. |
| 17 | XIAO Youchang, Bee Ting LOW, HOSSEINI S S, et al. The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas—A review[J]. Progress in Polymer Science, 2009, 34(6): 561-580. |
| 18 | CURRO J G, LAGASSE R R, SIMHA Robert. Diffusion model for volume recovery in glasses[J]. Macromolecules, 1982, 15(6): 1621-1626. |
| 19 | 丁晓莉, 曹义鸣, 赵红永, 等. 聚酰亚胺中空纤维气体分离膜的物理老化现象[J]. 高校化学工程学报, 2010, 24(3): 382-387. |
| DING Xiaoli, CAO Yiming, ZHAO Hongyong, et al. The physical aging phenomenon of polyimide hollow fiber membranes for gas separation[J]. Journal of Chemical Engineering of Chinese Universities, 2010, 24(3): 382-387. | |
| 20 | KAWAKAMI H, MIKAWA M, NAGAOKA S. Gas transport properties in thermally cured aromatic polyimide membranes[J]. Journal of Membrane Science, 1996, 118(2): 223-230. |
| 21 | KOROS W. Elevated temperature application of polymer hollow-fiber membranes[J]. Journal of Membrane Science, 2001, 181(2): 157-166. |
| 22 | WIENEKE J U, STAUDT C. Thermal stability of 6 F D A - ( c o - ) polyimides containing carboxylic acid groups[J]. Polymer Degradation and Stability, 2010, 95(4): 684-693. |
| 23 | ZHOU Chun, CHUNG Tai-Shung, WANG Rong, et al. A governing equation for physical aging of thick and thin fluoropolyimide films[J]. Journal of Applied Polymer Science, 2004, 92(3): 1758-1764. |
| 24 | CUI Lili, QIU Wulin, PAUL D R, et al. Physical aging of 6FDA-based polyimide membranes monitored by gas permeability[J]. Polymer, 2011, 52(15): 3374-3380. |
| 25 | LIN Wenhui, CHUNG Tai-Shung. The physical aging phenomenon of 6FDA-durene polyimide hollow fiber membranes[J]. Journal of Polymer Science Part B: Polymer Physics, 2000, 38(5): 765-775. |
| 26 | PFROMM P H, PINNAU I, KOROS W J. Gas transport through integral-asymmetric membranes: A comparison to isotropic film transport properties[J]. Journal of Applied Polymer Science, 1993, 48(12): 2161-2171. |
| 27 | CHUNG Tai-Shung, LIN Wenhui, VORA R H. The effect of shear rates on gas separation performance of 6FDA-durene polyimide hollow fibers[J]. Journal of Membrane Science, 2000, 167(1): 55-66. |
| 28 | CHUNG Tai-Shung, KAFCHINSKI E R. Aging phenomenon of 6FDA-polyimide/polyacrylonitrile composite hollow fibers[J]. Journal of Applied Polymer Science, 1996, 59(1): 77-82. |
| 29 | YOSHINO M, NAKAMURA S, KITA H, et al. Olefin/paraffin separation performance of asymmetric hollow fiber membrane of 6FDA/BPDA-DDBT copolyimide[J]. Journal of Membrane Science, 2003, 212(1/2): 13-27. |
| 30 | SWAIDAN R, GHANEM B, LITWILLER E, et al. Physical aging, plasticization and their effects on gas permeation in “rigid” polymers of intrinsic microporosity[J]. Macromolecules, 2015, 48(18): 6553-6561. |
| 31 | LUO Shuangjiang, WIEGAND J R, GAO Peiyuan, et al. Molecular origins of fast and selective gas transport in pentiptycene-containing polyimide membranes and their physical aging behavior[J]. Journal of Membrane Science, 2016, 518: 100-109. |
| 32 | ALGHUNAIMI F, GHANEM B, ALASLAI N, et al. Gas permeation and physical aging properties of iptycene diamine-based microporous polyimides[J]. Journal of Membrane Science, 2015, 490: 321-327. |
| 33 | WANG Yingge, GHANEM B S, HAN Yu, et al. Facile synthesis and gas transport properties of Hünlich’s base-derived intrinsically microporous polyimides[J]. Polymer, 2020, 201: 122619. |
| 34 | KANG Shuanyan, ZHANG Zhiguang, WU Lei, et al. Synthesis and gas separation properties of polyimide membranes derived from oxygencyclic pseudo-Tröger’s base[J]. Journal of Membrane Science, 2021, 637: 119604. |
| 35 | XIAO Yuyang, LEI Xingfeng, LIU Yang, et al. Double-decker-shaped phenyl-substituted silsesquioxane (DDSQ)-based nanocomposite polyimide membranes with tunable gas permeability and good aging resistance[J]. Separation and Purification Technology, 2023, 315: 123725. |
| 36 | WEIDMAN J R, LUO Shuangjiang, DOHERTY C M, et al. Analysis of governing factors controlling gas transport through fresh and aged triptycene-based polyimide films[J]. Journal of Membrane Science, 2017, 522: 12-22. |
| 37 | ZHANG Zhiguang, REN Xiaolong, HUO Guolong, et al. Tuning interchain cavity of fluorinated polyimide by DABA for improved gas separation performance[J]. Journal of Membrane Science, 2023, 675: 121485. |
| 38 | ZHOU Fangbin, KOROS W J. Study of thermal annealing on Matrimid® fiber performance in pervaporation of acetic acid and water mixtures[J]. Polymer, 2006, 47(1): 280-288. |
| 39 | VANHERCK K, KOECKELBERGHS G, VANKELECOM I F J. Crosslinking polyimides for membrane applications: A review[J]. Progress in Polymer Science, 2013, 38(6): 874-896. |
| 40 | KROL J J, BOERRIGTER M, KOOPS G H. Polyimide hollow fiber gas separation membranes: Preparation and the suppression of plasticization in propane/propylene environments[J]. Journal of Membrane Science, 2001, 184(2): 275-286. |
| 41 | CHEN Xiuling, ZHANG Zhiguang, WU Lei, et al. Hydrogen bonding-induced 6FDA-DABA/TB polymer blends for high performance gas separation membranes[J]. Journal of Membrane Science, 2022, 655: 120575. |
| 42 | ROBESON L M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400. |
| 43 | FUHRMAN C, NUTT M, VICHTOVONGA K, et al. Effect of thermal hysteresis on the gas permeation properties of 6FDA-based polyimides[J]. Journal of Applied Polymer Science, 2004, 91(2): 1174-1182. |
| 44 | MCCAIG M S, PAUL D R. Effect of UV crosslinking and physical aging on the gas permeability of thin glassy polyarylate films[J]. Polymer, 1999, 40(26): 7209-7225. |
| 45 | KIM J H, KOROS W J, PAUL D R. Effects of CO2 exposure and physical aging on the gas permeability of thin 6FDA-based polyimide membranes: Part 2. With crosslinking[J]. Journal of Membrane Science, 2006, 282(1): 32-43. |
| 46 | LIU Ye, WANG Rong, CHUNG Tai-Shung. Chemical cross-linking modification of polyimide membranes for gas separation[J]. Journal of Membrane Science, 2001, 189(2): 231-239. |
| 47 | ZHOU Chun, CHUNG Tai-Shung, WANG Rong, et al. The accelerated CO2 plasticization of ultra-thin polyimide films and the effect of surface chemical cross-linking on plasticization and physical aging[J]. Journal of Membrane Science, 2003, 225(1/2): 125-134. |
| 48 | POWELL C E, DUTHIE X J, KENTISH S E, et al. Reversible diamine cross-linking of polyimide membranes[J]. Journal of Membrane Science, 2007, 291(1/2): 199-209. |
| 49 | CUI Lili, QIU Wulin, PAUL D R, et al. Responses of 6FDA-based polyimide thin membranes to CO2 exposure and physical aging as monitored by gas permeability[J]. Polymer, 2011, 52(24): 5528-5537. |
| 50 | TIAN Zhikang, CAO Bing, LI Pei. Effects of sub-Tg cross-linking of triptycene-based polyimides on gas permeation, plasticization resistance and physical aging properties[J]. Journal of Membrane Science, 2018, 560: 87-96. |
| 51 | WARD J K, KOROS W J. Crosslinkable mixed matrix membranes with surface modified molecular sieves for natural gas purification: Ⅱ. Performance characterization under contaminated feed conditions[J]. Journal of Membrane Science, 2011, 377(1/2): 82-88. |
| 52 | TAN Xiaoyu, ROBIJNS S, THÜR R, et al. Truly combining the advantages of polymeric and zeolite membranes for gas separations[J]. Science, 2022, 378(6625): 1189-1194. |
| 53 | SONG Shuqing, ZHAO Mingang, GUO Zheyuan, et al. Mixed matrix composite membranes with MOF-protruding structure for efficient CO2 separation[J]. Journal of Membrane Science, 2023, 669: 121340. |
| 54 | YANG Yanqin, Kunli GOH, WEERACHANCHAI P, et al. 3D covalent organic framework for morphologically induced high-performance membranes with strong resistance toward physical aging[J]. Journal of Membrane Science, 2019, 574: 235-242. |
| 55 | LIU Tongxin, ZHANG Ruili, SI Guangrui, et al. Molecularly homogenized composite membranes containing solvent-soluble metallocavitands for CO2/CH4 separation[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(40): 13534-13544. |
| [1] | YE Herong, TAO Zhineng, QIU Tong. Research status of battery-swapping scheduling optimization for new-energy heavy-duty trucks [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 1-7. |
| [2] | ZHANG Jida, YUAN Jun, QIAO Hongbin, WANG Jinhai, YANG Junhui, CAI Zhenyi, MA Zhongcheng. Research on the utilization technology of multi-source gas safe-mixing thermal storage oxidation waste heat [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 102-111. |
| [3] | YIN Xiaoyun, ZHU Jin, LIU Chunyan, ZHANG Jintao, XU Yuan, ZHU Yingru, SU Ming, SUN Yue, SUN Jie, YUAN Ying. Energy optimization of CPS sulfur recovery unit based on Plackett-Burman design and response surface methodology [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 124-133. |
| [4] | WU Jinyi, ZHAO Ruikai, DENG Shuai, ZHANG Jiaqi, GAO Chunxiao, LIU Weihua, ZHAO Li. Numerical simulation of temperature swing adsorption for SF6 recovery from mixed insulating gas [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 19-28. |
| [5] | ZHANG Yi, MA Lijiao, DING Yudong, WANG Hong, CHENG Min, ZHU Xun, LIAO Qiang. Impact of water on metal corrosion characteristics of MEA-DMF absorbent in flue gas CO2 capture [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 551-558. |
| [6] | GUO Xuhao, YE Yiming, QI Xin, HU Shilin, ZHANG Pingzhu. Simulation of enrichment of 10B by cryogenic distillation of boron trifluoride [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 74-83. |
| [7] | XU Haitian, XU Yanying, ZHAI Ming. Boiling heat transfer simulation using lattice Boltzmann model with flow velocity boundary conditions [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 84-91. |
| [8] | WANG Lu, HE Yangdong, LI Yaxin, FAN Rui, CHENG Shijin, ZHANG Jie. Structural design and performance optimization of high-performance polymeric membranes for He/CH4 and He/N2 separation [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 261-276. |
| [9] | GONG Chengcheng, ZHANG Libiao, HAN Weida. Analysis and optimization of refrigerant maldistribution in heat exchange tubes of dry evaporators for ultra-low temperature screw chiller units [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 38-50. |
| [10] | ZOU Xianzhi, LIAO Yalong, YANG Shuangyu. Research progress on purification and impurity removal in copper electrolyte [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 492-503. |
| [11] | QIN Muxuan, ZHANG Wei, WANG Yingjin, LI Ziliang. Construction of Aspen model for large gas-liquid ratio in microreactors based on transfer learning [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4908-4916. |
| [12] | XUE Zijie, WU Yan, CUI Ziyuan, XU Guanxin, TANG Shuo, WANG Yufei, MA Mingyan. Long cycle green ammonia synthesis model based on economic analysis: Considering the impact of continuous changes in grid carbon emission factors [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4917-4927. |
| [13] | JIANG Chunxi, LIN Dingbiao, BIAN Yao, ZHOU Wei, LU Haifeng, GUO Xiaolei, LIU Haifeng. Characteristics of rice husk as entrained-flow bed gasification feedstock and their impact on the process [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4937-4944. |
| [14] | FU Hongmei, LIU Dinghua, LIU Xiaoqin. Research progress on the separation of aromatic isomers using MOF materials [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5006-5017. |
| [15] | CHENG Jingwen, CHEN Qingcai, YU Bo, LIU Huan, XU Tengfei, HU Yukun, LIU Sitong. Detection performance and mechanism of VOCs by different metal-doped SnO2-based gas sensors [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5140-5149. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |