Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (S1): 1-7.DOI: 10.16085/j.issn.1000-6613.2025-1012
• Chemical processes and equipment •
YE Herong1,2(
), TAO Zhineng2,3, QIU Tong2,3(
)
Received:2025-07-19
Online:2025-11-24
Published:2025-10-25
Contact:
QIU Tong
通讯作者:
邱彤
作者简介:叶鹤荣(1979—),男,工程博士。E-mail:yeherong@sinochem.com。
CLC Number:
YE Herong, TAO Zhineng, QIU Tong. Research status of battery-swapping scheduling optimization for new-energy heavy-duty trucks[J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 1-7.
叶鹤荣, 陶智能, 邱彤. 新能源重型卡车换电调度优化研究现状[J]. 化工进展, 2025, 44(S1): 1-7.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2025-1012
| 项目 | 燃油重卡 | 新能源重卡 | 优势 |
|---|---|---|---|
| 能量来源 | 依赖石油资源 | 风光发电/传统火电等 | 减少石油依赖,提高能源供应稳定性 |
| 环境保护 | 排放多种污染物 | 几乎不产生尾气污染物 | 降低空气污染水平,改善生态环境 |
| 噪声控制 | 噪声污染较严重 | 相对安静 | 降低对驾驶人员及周边居民生活的影响 |
| 运营成本 | 购置成本更低 | 电能消耗、维护成本低 | 长远视角下具有更大的经济优势 |
| 项目 | 燃油重卡 | 新能源重卡 | 优势 |
|---|---|---|---|
| 能量来源 | 依赖石油资源 | 风光发电/传统火电等 | 减少石油依赖,提高能源供应稳定性 |
| 环境保护 | 排放多种污染物 | 几乎不产生尾气污染物 | 降低空气污染水平,改善生态环境 |
| 噪声控制 | 噪声污染较严重 | 相对安静 | 降低对驾驶人员及周边居民生活的影响 |
| 运营成本 | 购置成本更低 | 电能消耗、维护成本低 | 长远视角下具有更大的经济优势 |
| [1] | Global Energy Review 2025[EB/OL]. (2025). . |
| [2] | 冯莉, 朱云尧. 换电重卡及换电站经济性测算和发展判断[J]. 商用汽车, 2023(4): 64-68. |
| FENG Li, ZHU Yunyao. Economic calculation and development judgment of battery swapping heavy truck and battery swapping station[J]. Commercial Vehicle, 2023(4): 64-68. | |
| [3] | 房永强. 电动重卡换电模式现状与发展趋势[J]. 机电技术, 2023, 46(5): 72-75. |
| FANG Yongqiang. Present situation and development trend of power exchange mode of electric heavy truck[J]. Mechanical & Electrical Technology, 2023, 46(5): 72-75. | |
| [4] | 刘柯君, 李家毅, 付英杰, 等. 新能源汽车换电模式发展政策建议研究[J]. 四川冶金, 2025, 47(2): 7-12. |
| LIU Kejun, LI Jiayi, FU Yingjie, et al. Research on policy suggestions for the development of new energy vehicle swapping mode[J]. Sichuan Metallurgy, 2025, 47(2): 7-12. | |
| [5] | 周俊, 郑美芳, 李传学, 等. 新能源电池化及换电标准化电池管理系统研究[J]. 成都工业学院学报, 2024, 27(6): 11-16. |
| ZHOU Jun, ZHENG Meifang, LI Chuanxue, et al. Research on new energy battery and battery management system for battery replacement standardization[J]. Journal of Chengdu Technological University, 2024, 27(6): 11-16. | |
| [6] | 贾术艳, 宋雨童. 2024年全年换电重卡的市场回顾及发展前景分析[J]. 专用汽车, 2025(3): 17-19. |
| JIA Shuyan, SONG Yutong. Market review and development prospect analysis of heavy trucks for power replacement in 2024[J]. Special Purpose Vehicle, 2025(3): 17-19. | |
| [7] | 王利军, 梁承东, 李貌, 等. 电动重卡换电技术研究现状与发展[J]. 中国汽车, 2024, 34(4): 8-12. |
| WANG Lijun, LIANG Chengdong, LI Mao, et al. Research status and development of electric heavy truck changing technology[J]. China Auto, 2024, 34(4): 8-12. | |
| [8] | 陈浩, 熊萌, 杨洋. 电动重卡换电模式现状与发展趋势[J]. 时代汽车, 2024(7): 100-102. |
| CHEN Hao, XIONG Meng, YANG Yang. The status quo and development trend of electric heavy truck battery swap mode[J]. Auto Time, 2024(7): 100-102. | |
| [9] | REVANKAR Swapnil R, KALKHAMBKAR Vaiju N. Grid integration of battery swapping station: A review[J]. Journal of Energy Storage, 2021, 41: 102937. |
| [10] | 向征艰, 赵珉, 周萌, 等. 充换电业务盈利模式分析及应对建议[J]. 车用能源储运销技术, 2025(1): 17-24. |
| XIANG Zhengjian, ZHAO Min, ZHOU Meng, et al. Analysis of profit models for charging and battery swap services and strategic recommendation[J]. Vehicle Energy Storage,Transportation and Marketing Technology, 2025(1): 17-24. | |
| [11] | WU Xiaoyuan, LIU Pengyu, LU Xinbao. Study on operating cost economy of battery-swapping heavy-duty truck in China[J]. World Electric Vehicle Journal, 2021, 12(3): 144. |
| [12] | WANG Zhichao, LIU Yang, LIN Zhenhong, et al. Techno-economic comparison on charging modes of battery heavy-duty vehicles in short-haul delivery: A case study of China[J]. Journal of Cleaner Production, 2023, 425: 138920. |
| [13] | 姜运哲, 宋承斌, 周怡博, 等. 典型场景下换电重卡的技术经济性分析[J]. 工业技术经济, 2022, 41(2): 154-160. |
| JIANG Yunzhe, SONG Chengbin, ZHOU Yibo, et al. Technical and economic analysis of battery replacement heavy truck in typical scenarios[J]. Journal of Industrial Technological Economics, 2022, 41(2): 154-160. | |
| [14] | LIU Bin, CHEN Jie, ZHANG Nan, et al. Optimized scheduling of an integrated energy system with an electric truck battery swapping station[J]. Processes, 2024, 12(1): 84. |
| [15] | 王博, 杨克南, 杨迎春, 等. 基于遗传算法的电动重卡充换电站充电策略优化[J]. 电气技术, 2025(3): 36-41, 48. |
| WANG Bo, YANG Kenan, YANG Yingchun, et al. Optimization of charging strategy for electric heavy truck charging and swapping stations based on genetic algorithm[J]. Electrical Engineering, 2025(3): 36-41, 48. | |
| [16] | ZHAO Zilong, TIAN Daxin, DUAN Xuting, et al. Joint optimization of battery swapping scheduling for electric taxis[J]. Sustainability, 2023, 15(18): 13722. |
| [17] | SHAKER Mohamad Hasan, FARZIN Hossein, MASHHOUR Elaheh. Joint planning of electric vehicle battery swapping stations and distribution grid with centralized charging[J]. Journal of Energy Storage, 2023, 58: 106455. |
| [18] | SUN Bo, SUN Xu, TSANG Danny H K, et al. Optimal battery purchasing and charging strategy at electric vehicle battery swap stations[J]. European Journal of Operational Research, 2019, 279(2): 524-539. |
| [19] | ARORA Astha, MURARKA Mohit, RAKSHIT Dibakar, et al. Multiobjective optimal operation strategy for electric vehicle battery swapping station considering battery degradation[J]. Cleaner Energy Systems, 2023, 4: 100048. |
| [20] | RAO Rao, ZHANG Xingping, XIE Jian, et al. Optimizing electric vehicle users’ charging behavior in battery swapping mode[J]. Applied Energy, 2015, 155: 547-559. |
| [21] | DAI Qian, CAI Tao, DUAN Shanxu, et al. Stochastic modeling and forecasting of load demand for electric bus battery-swap station[J]. IEEE Transactions on Power Delivery, 2014, 29(4): 1909-1917. |
| [22] | 程飞, 郭春林, 高泽阳, 等. 参与电网削峰调节的电动重卡换电站调度策略[J]. 电力系统自动化, 2024, 48(9): 120-128. |
| CHENG Fei, GUO Chunlin, GAO Zeyang, et al. Scheduling strategy of battery swapping stations for electric heavy-duty trucks participating in power grid peak-shaving regulation[J]. Automation of Electric Power Systems, 2024, 48(9): 120-128. | |
| [23] | 黄正伟, 鲍奕辰, 刘璐. 基于非合作博弈的EV换电站容量优化配置与削峰方法研究[J/OL]. 现代电力, 2024[2025-05-19]. . DOI:10.19725/j.cnki.1007-2322.2023.0083 . |
| [24] | SUI Quan, LI Feiyu, WU Chuantao, et al. Optimal scheduling of battery charging-swapping systems for distribution network resilience enhancement[J]. Energy Reports, 2022, 8: 6161-6170. |
| [25] | BAN Mingfei, ZHANG Zhanpeng, LI Chengyu, et al. Optimal scheduling for electric vehicle battery swapping-charging system based on nanogrids[J]. International Journal of Electrical Power & Energy Systems, 2021, 130: 106967. |
| [26] | SUN Yuxin, LI Yiqun, BOROZAN Stefan, et al. Battery swapping dispatch for self-sustained highway energy system based on spatiotemporal deep-learning traffic flow prediction[J]. IEEE Transactions on Industry Applications, 2024, 60(1): 1058-1070. |
| [27] | 冯昱. 基于电动出租车需求的换电站资源配置和服务优化[D]. 北京: 北京交通大学, 2024. |
| [28] | LI Haoran, ZHANG Shuyuan, QIU Tong. Receding horizon optimization of ethylene cracking operation and scheduling under supply chain fluctuations[J]. Industrial & Engineering Chemistry Research, 2023, 62(12): 5125-5140. |
| [29] | SHALABY Ahmed A, SHAABAN Mostafa F, MOKHTAR Mohamed, et al. A dynamic optimal battery swapping mechanism for electric vehicles using an LSTM-based rolling horizon approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 15218-15232. |
| [30] | WANG Ziqi, HOU Sizu. Optimal scheduling for hybrid battery swapping system of electric vehicles[J]. Processes, 2023, 11(6): 1604. |
| [31] | CHOI Doo Il, Dae-Eun LIM. Analysis of the state-dependent queueing model and its application to battery swapping and charging stations[J]. Sustainability, 2020, 12(6): 2343. |
| [32] | WANG Frank Yifan, CHEN Zhuoxu, HU Zechun. Comprehensive optimization of electrical heavy-duty truck battery swap stations with a SOC-dependent charge scheduling method[J]. Energy, 2024, 308: 132773. |
| [33] | LIN Hao, LIU Shilin, LIAO Shiwu, et al. A two-stage robust optimal capacity configuration method for charging station integrated with photovoltaic and energy storage system considering vehicle-to-grid and uncertainty[J]. Energy, 2025, 319: 135057. |
| [34] | 陈远东, 丁进良. 炼油生产调度研究现状与挑战[J]. 控制与决策, 2022, 37(9): 2177-2188. |
| CHEN Yuandong, DING Jinliang. State-of-arts and challenges on production scheduling of refinery[J]. Control and Decision, 2022, 37(9): 2177-2188. | |
| [35] | TAN Xiaoqi, QU Guannan, SUN Bo, et al. Optimal scheduling of battery charging station serving electric vehicles based on battery swapping[J]. IEEE Transactions on Smart Grid, 2019, 10(2): 1372-1384. |
| [36] | LI Congbo, WANG Ningbo, LI Wei, et al. A battery centralized scheduling strategy for battery swapping of electric vehicles[J]. Journal of Energy Storage, 2022, 51: 104327. |
| [37] | LIU Hong, ZHANG Yuhan, GE Shaoyun, et al. Day-ahead scheduling for an electric vehicle PV-based battery swapping station considering the dual uncertainties[J]. IEEE Access, 2019, 7: 115625-115636. |
| [38] | YANG Jie, WANG Weiqiang, MA Kai, et al. Optimal dispatching strategy for shared battery station of electric vehicle by divisional battery control[J]. IEEE Access, 2019, 7: 38224-38235. |
| [39] | Van-Hai BUI, HUSSAIN Akhtar, KIM Hak-Man. Double deep Q- learning-based distributed operation of battery energy storage system considering uncertainties[J]. IEEE Transactions on Smart Grid, 2020, 11(1): 457-469. |
| [40] | 尹昊. 基于深度强化学习算法的V2G充换电供需两侧调度策略优化[J]. 电气应用, 2024, 43(6): 8-15. |
| YIN Hao. Optimization of V2G charging and swapping power supply and demand sides scheduling strategy based on deep reinforcement learning algorithm[J]. Electrotechnical Application, 2024, 43(6): 8-15. | |
| [41] | ASADI Amin, NURRE PINKLEY Sarah. A stochastic scheduling, allocation, and inventory replenishment problem for battery swap stations[J]. Transportation Research Part E: Logistics and Transportation Review, 2021, 146: 102212. |
| [42] | YU Fancheng, LAO Penghui. Optimal scheduling of electric vehicle aggregators based on sac reinforcement learning[J]. Journal of Physics: Conference Series, 2022, 2216(1): 012021. |
| [43] | GAO Yuan, YANG Jiajun, YANG Ming, et al. Deep reinforcement learning based optimal schedule for a battery swapping station considering uncertainties[J]. IEEE Transactions on Industry Applications, 2020, 56(5): 5775-5784. |
| [44] | LI Hepeng, WAN Zhiqiang, HE Haibo. Constrained EV charging scheduling based on safe deep reinforcement learning[J]. IEEE Transactions on Smart Grid, 2020, 11(3): 2427-2439. |
| [45] | ACHIAM Joshua, HELD David, TAMAR Aviv, et al. Constrained policy optimization[EB/OL]. 2017: arXiv: 1705.10528. . |
| [46] | ALTMAN E. Constrained Markov decision processes: Stochastic modeling[M/OL]. Boca Raton:Routledge, 2021[2024-12-01]. . DOI:10.1201/9781315140223 . |
| [47] | SUN Bo, TAN Xiaoqi, TSANG Danny H K. Optimal charging operation of battery swapping and charging stations with QoS guarantee[J]. IEEE Transactions on Smart Grid, 2018, 9(5): 4689-4701. |
| [1] | QIN Muxuan, ZHANG Wei, WANG Yingjin, LI Ziliang. Construction of Aspen model for large gas-liquid ratio in microreactors based on transfer learning [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4908-4916. |
| [2] | ZHAO Xiangyu, XU Dongyu, CHEN Zhengyu, XU Chunming, ZHANG Linzhou. Development and optimization of a molecular-level model for methanol-to-olefins (MTO) reaction-regeneration process [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4785-4794. |
| [3] | WU Bo, MA Linxuan, ZHANG Mingfeng, CAO Lijuan, ZHOU Lei, WANG Xuezhong. Prediction of hydrotalcite particle size distribution based on machine learning ultrasonic attenuation [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4365-4374. |
| [4] | ZHAO Yongming, BU Yifeng, WANG Tao, DU Bing, MEN Zhuowu. Integrated optimization of catalyst dynamic replacement and steady-state Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4536-4544. |
| [5] | YANG Ao, DENG Wei, LI Yong, LUO Jing, WANG Zilin, ZHANG Jun, SHEN Weifeng. Multi-objective optimization design of triple-column pressure-swing distillation for separating ternary azeotropic mixture tetrahydrofuran/methanol/ethanol by thermodynamic topology theory [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4582-4593. |
| [6] | DONG Fenglian, LI Peng, WEI Zhiwei, SUN Xin, XU Hekai, HE Chang. Optimization of mixing processing considering crude oil procurement selection [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4648-4656. |
| [7] | HUANG Xukun, GE Jijun, XU Pan, BI Rongshan, LI Guoxuan. Simulation and optimization of polyarylester multi-stage countercurrent washing process [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4680-4687. |
| [8] | HUANG Lingjun, ZHU Qingyu, ZHANG Yu, SUN Weiqi, DOU Dongyang, WANG Qili. Simultaneous optimization of hydrogen network with CO₂ hydrogenation to methanol process based on evolutionary response surface method [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4688-4700. |
| [9] | YE Xiaosheng, YUAN Ting, JIA Xin, REN Qingxia. Research progress on the removal of microcystin-LR by multicomponent composite nanomaterials [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4144-4157. |
| [10] | YU Ning, WANG Qiuyue, WANG Zhicai, GAO Ziyi, CHAI Yongming, DONG Bin. Double-sites synergistic regulation for boosting water oxidation of La1-x Ni1-y Fe y O3‑δ [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3976-3984. |
| [11] | WANG Ying, TANG Mengfei, WANG Ying, ZHANG Chuanfang, ZHANG Guojie, LIU Jun, ZHAO Yuqiong. Preparation of CNT composites from coal pyrolysis catalyzed by different alkali metals for adsorption of Rhodamine B [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3985-3996. |
| [12] | LI Ming, ZHOU Yi, NAN Lan, YE Xiaosheng. Advances in automatic optimization of continuous synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3190-3198. |
| [13] | ZHOU Penghui, ZENG Lin, DAI Li, FENG Xiaobo, NI Di. Numerical calculation of multi-objective performance optimization of a centrifugal fan based on response surface methodology and entropy weighting method [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3271-3279. |
| [14] | SHAN Linghai, DUAN Huanhuan, ZHENG Xuming, HUANG Xiaohuang, CUI Guomin. A new competitive enhancement strategy for heat exchange units and optimization of heat exchange networks [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3393-3404. |
| [15] | REN Shipeng, AN Yuan, LOU Chun, MEI Shengdong, LIU Kai, CHEN Xinjian. Online reconstruction of combustion temperature field distribution in furnace by integrating deep learning algorithm [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1923-1933. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |