Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (8): 4688-4700.DOI: 10.16085/j.issn.1000-6613.2024-1926
• Process systems modeling and simulation • Previous Articles
HUANG Lingjun(
), ZHU Qingyu, ZHANG Yu, SUN Weiqi, DOU Dongyang(
), WANG Qili(
)
Received:2024-11-22
Revised:2024-12-24
Online:2025-09-08
Published:2025-08-25
Contact:
DOU Dongyang, WANG Qili
黄灵军(
), 朱卿宇, 张宇, 孙维祺, 窦东阳(
), 王启立(
)
通讯作者:
窦东阳,王启立
作者简介:黄灵军(1992—),男,博士,讲师,研究方向为过程系统工程。E-mail:hlj@cumt.edu.cn。
基金资助:CLC Number:
HUANG Lingjun, ZHU Qingyu, ZHANG Yu, SUN Weiqi, DOU Dongyang, WANG Qili. Simultaneous optimization of hydrogen network with CO₂ hydrogenation to methanol process based on evolutionary response surface method[J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4688-4700.
黄灵军, 朱卿宇, 张宇, 孙维祺, 窦东阳, 王启立. 进化响应面驱动的CO2加氢制甲醇工艺与氢网络同步优化[J]. 化工进展, 2025, 44(8): 4688-4700.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1926
| 反应 | M1的表达式 | M1值 | M2表达式 | M2值 |
|---|---|---|---|---|
| 式(1) | KCO | 2.16×10-5exp(46800/RT) | KCO/K1 | 9.11×107exp(-51638/RT) |
| 式(2) | 7.05×10-7exp(61700/RT) | 6.59×10-9exp(101384.87/RT) | ||
| 式(3) | 7.05×10-7exp(61700/RT) | 2.78×104exp(2946.87/RT) |
| 反应 | M1的表达式 | M1值 | M2表达式 | M2值 |
|---|---|---|---|---|
| 式(1) | KCO | 2.16×10-5exp(46800/RT) | KCO/K1 | 9.11×107exp(-51638/RT) |
| 式(2) | 7.05×10-7exp(61700/RT) | 6.59×10-9exp(101384.87/RT) | ||
| 式(3) | 7.05×10-7exp(61700/RT) | 2.78×104exp(2946.87/RT) |
| 反应 | ln M1 | ln M2 | |||
|---|---|---|---|---|---|
| A | B | A | B | ||
| 式(1) | -10.7428 | 5629.06 | 18.3272 | -6210.97 | |
| 式(2) | -14.1651 | 7421.22 | -18.8370 | 12194.48 | |
| 式(3) | -14.1651 | 7421.22 | 10.2330 | 354.45 | |
| 反应 | ln M1 | ln M2 | |||
|---|---|---|---|---|---|
| A | B | A | B | ||
| 式(1) | -10.7428 | 5629.06 | 18.3272 | -6210.97 | |
| 式(2) | -14.1651 | 7421.22 | -18.8370 | 12194.48 | |
| 式(3) | -14.1651 | 7421.22 | 10.2330 | 354.45 | |
| 项 | 常数 | A | B | |
|---|---|---|---|---|
| 1 | 1 | 0 | 0 | p |
| 2 | -18.8717 | 10103.44 | ||
| 3 | KCO | -10.7428 | 5629.06 | |
| 4 | -29.6144 | 15732.50 | ||
| 5 | -14.165 | 7421.22 | ||
| 6 | -33.037 | 17524.66 |
| 项 | 常数 | A | B | |
|---|---|---|---|---|
| 1 | 1 | 0 | 0 | p |
| 2 | -18.8717 | 10103.44 | ||
| 3 | KCO | -10.7428 | 5629.06 | |
| 4 | -29.6144 | 15732.50 | ||
| 5 | -14.165 | 7421.22 | ||
| 6 | -33.037 | 17524.66 |
| 装置 | 氢源 | 装置 | 氢阱 | ||
|---|---|---|---|---|---|
| 摩尔分数 | 流量/kmol·h-1 | 摩尔分数 | 流量/kmol·h-1 | ||
| SRU | 0.9300 | 623.80 | HCU | 0.8061 | 2495.00 |
| CRU | 0.8000 | 415.80 | NHT | 0.7885 | 180.20 |
| HCU | 0.7500 | 1801.90 | DHT | 0.7757 | 554.40 |
| NHT | 0.7500 | 138.60 | CNHT | 0.7514 | 720.70 |
| DHT | 0.7300 | 346.50 | MS | 0.9000 | 8582.41 |
| CNHT | 0.7000 | 457.40 | |||
| MS | 0.6253 | 2232.74 | |||
| HP | 0.9500 | 7782.42 | |||
| 装置 | 氢源 | 装置 | 氢阱 | ||
|---|---|---|---|---|---|
| 摩尔分数 | 流量/kmol·h-1 | 摩尔分数 | 流量/kmol·h-1 | ||
| SRU | 0.9300 | 623.80 | HCU | 0.8061 | 2495.00 |
| CRU | 0.8000 | 415.80 | NHT | 0.7885 | 180.20 |
| HCU | 0.7500 | 1801.90 | DHT | 0.7757 | 554.40 |
| NHT | 0.7500 | 138.60 | CNHT | 0.7514 | 720.70 |
| DHT | 0.7300 | 346.50 | MS | 0.9000 | 8582.41 |
| CNHT | 0.7000 | 457.40 | |||
| MS | 0.6253 | 2232.74 | |||
| HP | 0.9500 | 7782.42 | |||
| 取值 | 反应器温度/℃ | 反应器压力/bar | 闪蒸罐1温度/℃ | 闪蒸罐1压力/bar | 闪蒸罐2温度/℃ | 闪蒸罐2压力/bar |
|---|---|---|---|---|---|---|
| 上限 | 280 | 120 | 45 | 119 | 45 | 3 |
| 下限 | 220 | 80 | 35 | 79 | 35 | 1 |
| 取值 | 反应器温度/℃ | 反应器压力/bar | 闪蒸罐1温度/℃ | 闪蒸罐1压力/bar | 闪蒸罐2温度/℃ | 闪蒸罐2压力/bar |
|---|---|---|---|---|---|---|
| 上限 | 280 | 120 | 45 | 119 | 45 | 3 |
| 下限 | 220 | 80 | 35 | 79 | 35 | 1 |
| 实验次数 | 反应体积空速(GHSV)/m3·kg-1·h-1 | P/bar | T/℃ | 组分分压/bar | 转换率(实验)/% | 选择性(实验)/% | 转换率(模拟)/% | 选择性(模拟)/% | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| H2 | CO2 | N2 | Ar | CO2 | H2 | CH3OH | CO | CO2 | H2 | CH3OH | CO | ||||||||
| 1 | 7800 | 50 | 200 | 34.9 | 8.9 | 6.2 | 0 | 4 .6 | 2.4 | 56 | 44 | 4.6 | 2.5 | 57 | 43 | ||||
| 2 | 7800 | 50 | 210 | 34.9 | 8.9 | 6.2 | 0 | 7.7 | 3.4 | 45 | 55 | 7.2 | 3.5 | 46 | 54 | ||||
| 3 | 7800 | 50 | 220 | 34.9 | 8.9 | 6.2 | 0 | 11.1 | 4.8 | 43 | 57 | 11.1 | 5.0 | 38 | 62 | ||||
| 4 | 7800 | 50 | 230 | 34.9 | 8.9 | 6.2 | 0 | 15.8 | 6.3 | 38 | 62 | 15.8 | 6.7 | 33 | 67 | ||||
| 5 | 7800 | 50 | 210 | 12.7 | 6.2 | 6.2 | 24.8 | 5.1 | 2.9 | 20 | 80 | 5.2 | 4.3 | 34 | 66 | ||||
| 6 | 7800 | 50 | 210 | 18.8 | 6.2 | 6.2 | 18.7 | 5.9 | 3.1 | 33 | 67 | 6.7 | 3.9 | 39 | 61 | ||||
| 7 | 7800 | 50 | 210 | 24.4 | 6.2 | 6.2 | 13.1 | 7.2 | 3.1 | 39 | 61 | 8.0 | 3.7 | 42 | 58 | ||||
| 8 | 7800 | 50 | 210 | 31.3 | 6.2 | 6.2 | 6.3 | 9.3 | 3.2 | 42 | 58 | 9.4 | 3.5 | 45 | 55 | ||||
| 9 | 7800 | 50 | 210 | 37.5 | 6.2 | 6.2 | 0 | 9.9 | 3.4 | 48 | 52 | 10.6 | 3.4 | 48 | 52 | ||||
| 10 | 7800 | 50 | 210 | 24.4 | 12 | 6.2 | 7.4 | 4.8 | 3.9 | 37 | 63 | 4.3 | 3.9 | 41 | 59 | ||||
| 11 | 7800 | 50 | 210 | 24.4 | 8.1 | 6.2 | 11.3 | 6.1 | 3.3 | 38 | 62 | 6.2 | 3.8 | 42 | 58 | ||||
| 12 | 7800 | 50 | 210 | 24.4 | 4.9 | 6.2 | 14.5 | 8.8 | 2.9 | 38 | 62 | 9.8 | 3.7 | 43 | 57 | ||||
| 13 | 7800 | 50 | 210 | 24.4 | 4.1 | 6.2 | 15.3 | 9.8 | 2.7 | 40 | 60 | 11.5 | 3.6 | 43 | 57 | ||||
| 14 | 7800 | 65 | 210 | 31.7 | 8.1 | 8.1 | 17.1 | 8.6 | 4.4 | 48 | 52 | 8.8 | 4.3 | 46 | 54 | ||||
| 15 | 7800 | 80 | 210 | 39 | 10 | 10 | 21 | 9.9 | 5.3 | 51 | 49 | 9.6 | 4.8 | 49 | 51 | ||||
| 16 | 11700 | 50 | 210 | 24.4 | 6.3 | 6.3 | 13.1 | 5.6 | 2.6 | 39 | 61 | 5.8 | 2.8 | 41 | 59 | ||||
| 17 | 23400 | 50 | 210 | 24.4 | 6.3 | 6.3 | 13.1 | 2.8 | 1.4 | 46 | 54 | 3.3 | 1.6 | 41 | 59 | ||||
| 实验次数 | 反应体积空速(GHSV)/m3·kg-1·h-1 | P/bar | T/℃ | 组分分压/bar | 转换率(实验)/% | 选择性(实验)/% | 转换率(模拟)/% | 选择性(模拟)/% | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| H2 | CO2 | N2 | Ar | CO2 | H2 | CH3OH | CO | CO2 | H2 | CH3OH | CO | ||||||||
| 1 | 7800 | 50 | 200 | 34.9 | 8.9 | 6.2 | 0 | 4 .6 | 2.4 | 56 | 44 | 4.6 | 2.5 | 57 | 43 | ||||
| 2 | 7800 | 50 | 210 | 34.9 | 8.9 | 6.2 | 0 | 7.7 | 3.4 | 45 | 55 | 7.2 | 3.5 | 46 | 54 | ||||
| 3 | 7800 | 50 | 220 | 34.9 | 8.9 | 6.2 | 0 | 11.1 | 4.8 | 43 | 57 | 11.1 | 5.0 | 38 | 62 | ||||
| 4 | 7800 | 50 | 230 | 34.9 | 8.9 | 6.2 | 0 | 15.8 | 6.3 | 38 | 62 | 15.8 | 6.7 | 33 | 67 | ||||
| 5 | 7800 | 50 | 210 | 12.7 | 6.2 | 6.2 | 24.8 | 5.1 | 2.9 | 20 | 80 | 5.2 | 4.3 | 34 | 66 | ||||
| 6 | 7800 | 50 | 210 | 18.8 | 6.2 | 6.2 | 18.7 | 5.9 | 3.1 | 33 | 67 | 6.7 | 3.9 | 39 | 61 | ||||
| 7 | 7800 | 50 | 210 | 24.4 | 6.2 | 6.2 | 13.1 | 7.2 | 3.1 | 39 | 61 | 8.0 | 3.7 | 42 | 58 | ||||
| 8 | 7800 | 50 | 210 | 31.3 | 6.2 | 6.2 | 6.3 | 9.3 | 3.2 | 42 | 58 | 9.4 | 3.5 | 45 | 55 | ||||
| 9 | 7800 | 50 | 210 | 37.5 | 6.2 | 6.2 | 0 | 9.9 | 3.4 | 48 | 52 | 10.6 | 3.4 | 48 | 52 | ||||
| 10 | 7800 | 50 | 210 | 24.4 | 12 | 6.2 | 7.4 | 4.8 | 3.9 | 37 | 63 | 4.3 | 3.9 | 41 | 59 | ||||
| 11 | 7800 | 50 | 210 | 24.4 | 8.1 | 6.2 | 11.3 | 6.1 | 3.3 | 38 | 62 | 6.2 | 3.8 | 42 | 58 | ||||
| 12 | 7800 | 50 | 210 | 24.4 | 4.9 | 6.2 | 14.5 | 8.8 | 2.9 | 38 | 62 | 9.8 | 3.7 | 43 | 57 | ||||
| 13 | 7800 | 50 | 210 | 24.4 | 4.1 | 6.2 | 15.3 | 9.8 | 2.7 | 40 | 60 | 11.5 | 3.6 | 43 | 57 | ||||
| 14 | 7800 | 65 | 210 | 31.7 | 8.1 | 8.1 | 17.1 | 8.6 | 4.4 | 48 | 52 | 8.8 | 4.3 | 46 | 54 | ||||
| 15 | 7800 | 80 | 210 | 39 | 10 | 10 | 21 | 9.9 | 5.3 | 51 | 49 | 9.6 | 4.8 | 49 | 51 | ||||
| 16 | 11700 | 50 | 210 | 24.4 | 6.3 | 6.3 | 13.1 | 5.6 | 2.6 | 39 | 61 | 5.8 | 2.8 | 41 | 59 | ||||
| 17 | 23400 | 50 | 210 | 24.4 | 6.3 | 6.3 | 13.1 | 2.8 | 1.4 | 46 | 54 | 3.3 | 1.6 | 41 | 59 | ||||
| 项目 | 贝叶斯算法 | 进化响应面法 |
|---|---|---|
| 反应器温度/℃ | 247.19 | 237.9 |
| 反应器压力/bar | 112.42 | 120 |
| 闪蒸罐1温度/℃ | 35 | 35 |
| 闪蒸罐1压力/bar | 111.42 | 119 |
| 闪蒸罐2温度/℃ | 39.9 | 35 |
| 闪蒸罐2压力/bar | 1.76 | 1.4 |
| 氢气公用工程用量/kmol·h-1 | 7829.81 | 8034.51 |
| 甲醇产量/kmol·h-1 | 3291.56 | 3295.32 |
| 闪蒸罐1材料成本/CNY | 482114.57 | 494919.77 |
| 年度总效益增量/CNY | 5722022.60 | 7163708.71 |
| 最优点迭代次数 | 272 | 100 |
| 计算时间/s | 5333 | 4507 |
| 项目 | 贝叶斯算法 | 进化响应面法 |
|---|---|---|
| 反应器温度/℃ | 247.19 | 237.9 |
| 反应器压力/bar | 112.42 | 120 |
| 闪蒸罐1温度/℃ | 35 | 35 |
| 闪蒸罐1压力/bar | 111.42 | 119 |
| 闪蒸罐2温度/℃ | 39.9 | 35 |
| 闪蒸罐2压力/bar | 1.76 | 1.4 |
| 氢气公用工程用量/kmol·h-1 | 7829.81 | 8034.51 |
| 甲醇产量/kmol·h-1 | 3291.56 | 3295.32 |
| 闪蒸罐1材料成本/CNY | 482114.57 | 494919.77 |
| 年度总效益增量/CNY | 5722022.60 | 7163708.71 |
| 最优点迭代次数 | 272 | 100 |
| 计算时间/s | 5333 | 4507 |
| [1] | International Energy Agency. Global hydrogen review 2024[R/OL]. (2024-10-02)[2024-11-22].. |
| [2] | International Energy Agency. CO2 emissions in 2022[R/OL]. (2023-03-02)[2024-11-22].. |
| [3] | 杨学萍. 碳中和背景下现代煤化工技术路径探索[J].化工进展, 2022, 41(7): 3402-3412. |
| YANG Xueping. Exploration on technical path of modern coal chemical industry under the background of carbon neutralization[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3402-3412. | |
| [4] | 王江涛, 鹿晓斌. CO2促进“甲醇经济”与“氢经济”共同发展[J]. 现代化工, 2021, 41(7): 14-18, 25. |
| WANG Jiangtao, LU Xiaobin. Together development of “methanol economy” and “hydrogen economy” driven by CO2 utilization[J]. Modern Chemical Industry, 2021, 41(7): 14-18, 25. | |
| [5] | AN Xin, ZUO Yizan, ZHANG Qiang, et al. Methanol synthesis from CO2 hydrogenation with a Cu/Zn/Al/Zr fibrous catalyst[J]. Chinese Journal of Chemical Engineering, 2009, 17(1): 88-94. |
| [6] | PORTHA Jean-François, PARKHOMENKO Ksenia, KOBL Kilian, et al. Kinetics of methanol synthesis from carbon dioxide hydrogenation over copper-zinc oxide catalysts[J]. Industrial & Engineering Chemistry Research, 2017, 56(45): 13133-13145. |
| [7] | KISS Anton A, PRAGT J J, VOS H J, et al. Novel efficient process for methanol synthesis by CO2 hydrogenation[J]. Chemical Engineering Journal, 2016, 284: 260-269. |
| [8] | YANG Minbo, ZENG Siying, FENG Xiao, et al. Simulation-based modeling and optimization for refinery hydrogen network integration with light hydrocarbon recovery[J]. International Journal of Hydrogen Energy, 2022, 47(7): 4662-4673. |
| [9] | HUANG Lingjun, HONG Xiaodong, LIAO Zuwei, et al. Efficient hybrid strategy for simultaneous design of refinery hydrogen networks and pressure swing adsorption unit[J]. Journal of Cleaner Production, 2024, 466: 142858. |
| [10] | CONN Andrew R, LE DIGABEL Sébastien. Use of quadratic models with mesh-adaptive direct search for constrained black box optimization[J]. Optimization Methods and Software, 2013, 28(1): 139-158. |
| [11] | BOUKOUVALA Fani, IERAPETRITOU Marianthi G. Surrogate-based optimization of expensive flowsheet modeling for continuous pharmaceutical manufacturing[J]. Journal of Pharmaceutical Innovation, 2013, 8(2): 131-145. |
| [12] | REGIS Rommel G. Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points[J]. Engineering Optimization, 2014, 46(2): 218-243. |
| [13] | FORRESTER Alexander, JONES Donald. Global optimization of deceptive functions with sparse sampling[C]//12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Victoria, British Columbia, Canada: AIAA, 2008. |
| [14] | REGIS Rommel G, SHOEMAKER Christine A. A quasi-multistart framework for global optimization of expensive functions using response surface models[J]. Journal of Global Optimization, 2013, 56(4): 1719-1753. |
| [15] | 吴依凡, 夏志鹏, 吉旭, 等. 基于代理模型的炼厂氢网络与脱硫系统同步优化[J]. 华东理工大学学报(自然科学版), 2023, 49(2): 176-187. |
| WU Yifan, XIA Zhipeng, JI Xu, et al. Surrogate-assisted refinery hydrogen network optimization with hydrogen sulfide removal[J]. Journal of East China University of Science and Technology, 2023, 49(2): 176-187. | |
| [16] | MARTELLI Emanuele, AMALDI Edoardo, CONSONNI Stefano. Numerical optimization of heat recovery steam cycles: Mathematical model, two-stage algorithm and applications[J]. Computers & Chemical Engineering, 2011, 35(12): 2799-2823. |
| [17] | ABRAMSON Mark A, AUDET Charles. Convergence of mesh adaptive direct search to second-order stationary points[J]. SIAM Journal on Optimization, 2006, 17(2): 606-619. |
| [18] | GRAAF G H, SCHOLTENS H, STAMHUIS E J, et al. Intra-particle diffusion limitations in low-pressure methanol synthesis[J]. Chemical Engineering Science, 1990, 45(4): 773-783. |
| [19] | GRAAF G H, SIJTSEMA P J J M, STAMHUIS E J, et al. Chemical equilibria in methanol synthesis[J]. Chemical Engineering Science, 1986, 41(11): 2883-2890. |
| [20] | LUYBEN William L. Design and control of a methanol reactor/column process[J]. Industrial & Engineering Chemistry Research, 2010, 49(13): 6150-6163. |
| [21] | ALVES Joao J, TOWLER Gavin P. Analysis of refinery hydrogen distribution systems[J]. Industrial & Engineering Chemistry Research, 2002, 41(23): 5759-5769. |
| [1] | WU Bo, MA Linxuan, ZHANG Mingfeng, CAO Lijuan, ZHOU Lei, WANG Xuezhong. Prediction of hydrotalcite particle size distribution based on machine learning ultrasonic attenuation [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4365-4374. |
| [2] | ZHAO Yongming, BU Yifeng, WANG Tao, DU Bing, MEN Zhuowu. Integrated optimization of catalyst dynamic replacement and steady-state Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4536-4544. |
| [3] | YANG Ao, DENG Wei, LI Yong, LUO Jing, WANG Zilin, ZHANG Jun, SHEN Weifeng. Multi-objective optimization design of triple-column pressure-swing distillation for separating ternary azeotropic mixture tetrahydrofuran/methanol/ethanol by thermodynamic topology theory [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4582-4593. |
| [4] | DONG Fenglian, LI Peng, WEI Zhiwei, SUN Xin, XU Hekai, HE Chang. Optimization of mixing processing considering crude oil procurement selection [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4648-4656. |
| [5] | YANG Jiacong, CHENG Guangxu, JIA Tonghua, JIANG Zhao. Simulation and techno-economic analysis of new efficient coupling processes between coal to methanol and green hydrogen [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4657-4668. |
| [6] | HUANG Xukun, GE Jijun, XU Pan, BI Rongshan, LI Guoxuan. Simulation and optimization of polyarylester multi-stage countercurrent washing process [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4680-4687. |
| [7] | YU Ning, WANG Qiuyue, WANG Zhicai, GAO Ziyi, CHAI Yongming, DONG Bin. Double-sites synergistic regulation for boosting water oxidation of La1-x Ni1-y Fe y O3‑δ [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3976-3984. |
| [8] | YE Xiaosheng, YUAN Ting, JIA Xin, REN Qingxia. Research progress on the removal of microcystin-LR by multicomponent composite nanomaterials [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4144-4157. |
| [9] | ZHENG Huizhe, WANG Haoze, JIANG Jie, ZHAO Ling, XI Zhenhao. Modeling and simulation of PCTG copolymer rotating disc reactor based on the coupling of reaction and mass transfer [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3372-3381. |
| [10] | SHAN Linghai, DUAN Huanhuan, ZHENG Xuming, HUANG Xiaohuang, CUI Guomin. A new competitive enhancement strategy for heat exchange units and optimization of heat exchange networks [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3393-3404. |
| [11] | LI Hongwei, XU Hanqiao, ZHAO Yan, LIU Yaozong, TENG Zhijun, JI Dong, LI Guixian. Research progress and prospect of platinum-based catalysts for electrocatalytic methanol oxidation [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3443-3456. |
| [12] | LI Ming, ZHOU Yi, NAN Lan, YE Xiaosheng. Advances in automatic optimization of continuous synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3190-3198. |
| [13] | ZHOU Penghui, ZENG Lin, DAI Li, FENG Xiaobo, NI Di. Numerical calculation of multi-objective performance optimization of a centrifugal fan based on response surface methodology and entropy weighting method [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3271-3279. |
| [14] | WU Mengqin, WANG Jiayao, XU Youqiang, WANG Yu. Progress in cascade conversion of CO2 to single cell protein through chemical and biological catalysis [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2429-2440. |
| [15] | WANG Yuanyuan, ZHANG Chong, HAN Shuangyan, XING Xinhui. Research progress on bioproduction of recombinant proteins by Pichia pastoris utilizing methanol [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2441-2450. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |