Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (7): 3985-3996.DOI: 10.16085/j.issn.1000-6613.2024-0906
• Materials science and technology • Previous Articles
WANG Ying1(
), TANG Mengfei1, WANG Ying2, ZHANG Chuanfang1, ZHANG Guojie1, LIU Jun1,3, ZHAO Yuqiong1
Received:2024-06-03
Revised:2024-08-19
Online:2025-08-04
Published:2025-07-25
Contact:
WANG Ying
王影1(
), 汤孟菲1, 王莹2, 张传芳1, 张国杰1, 刘俊1,3, 赵钰琼1
通讯作者:
王影
作者简介:王影(1987—),男,博士研究生,讲师,研究方向为煤基碳材料,E-mail: wangying04@tyut.edu.cn。
基金资助:CLC Number:
WANG Ying, TANG Mengfei, WANG Ying, ZHANG Chuanfang, ZHANG Guojie, LIU Jun, ZHAO Yuqiong. Preparation of CNT composites from coal pyrolysis catalyzed by different alkali metals for adsorption of Rhodamine B[J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3985-3996.
王影, 汤孟菲, 王莹, 张传芳, 张国杰, 刘俊, 赵钰琼. 碱金属催化煤热解制备CNT复合材料用于吸附罗丹明B[J]. 化工进展, 2025, 44(7): 3985-3996.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0906
| 工业分析Wad①/% | 元素分析Wd②/% | ||||||
|---|---|---|---|---|---|---|---|
| 灰分 | 水分 | 挥发分 | 固定碳③ | C | H | N | S |
| 5.53 | 3.25 | 30.91 | 60.33 | 73.75 | 4.42 | 1.45 | 0.22 |
| 工业分析Wad①/% | 元素分析Wd②/% | ||||||
|---|---|---|---|---|---|---|---|
| 灰分 | 水分 | 挥发分 | 固定碳③ | C | H | N | S |
| 5.53 | 3.25 | 30.91 | 60.33 | 73.75 | 4.42 | 1.45 | 0.22 |
| 复合材料 | 比表面积/m2·g-1 | 微孔比表面积/m2·g-1 | 孔容/cm3·g-1 | 微孔体积/cm3·g-1 | 微孔含量/% | 平均粒径/nm |
|---|---|---|---|---|---|---|
| CNT-K | 1128 | 1090 | 0.580 | 0.443 | 76.38 | 2.082 |
| NCNT-K | 1439 | 1384 | 0.669 | 0.584 | 87.29 | 1.932 |
| CNT-Na | 252 | 198 | 0.259 | 0.104 | 40.15 | 4.745 |
| NCNT-Na | 726 | 700 | 0.370 | 0.292 | 78.92 | 2.077 |
| CNT-Ba | 18 | 11 | 0.037 | 0.008 | 21.62 | 9.294 |
| NCNT-Ba | 15 | 6 | 0.034 | 0.007 | 20.59 | 16.037 |
| 复合材料 | 比表面积/m2·g-1 | 微孔比表面积/m2·g-1 | 孔容/cm3·g-1 | 微孔体积/cm3·g-1 | 微孔含量/% | 平均粒径/nm |
|---|---|---|---|---|---|---|
| CNT-K | 1128 | 1090 | 0.580 | 0.443 | 76.38 | 2.082 |
| NCNT-K | 1439 | 1384 | 0.669 | 0.584 | 87.29 | 1.932 |
| CNT-Na | 252 | 198 | 0.259 | 0.104 | 40.15 | 4.745 |
| NCNT-Na | 726 | 700 | 0.370 | 0.292 | 78.92 | 2.077 |
| CNT-Ba | 18 | 11 | 0.037 | 0.008 | 21.62 | 9.294 |
| NCNT-Ba | 15 | 6 | 0.034 | 0.007 | 20.59 | 16.037 |
| 复合材料 | C原子分数/% | N原子分数/% | N物种比例/% | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| N-6 | N-5 | —NH2 | N-Q | N—O | |||||||
| CNT-K | 84.41 | 1.47 | 29.17 | 15.38 | 22.33 | 14.25 | 18.88 | ||||
| NCNT-K | 90.47 | 0.91 | 42.21 | 16.92 | 16.63 | 11.32 | 12.92 | ||||
| CNT-Na | 80.06 | 1.52 | 29.89 | 30.14 | 27.35 | 9.60 | 3.02 | ||||
| NCNT-Na | 87.37 | 1.47 | 14.84 | 26.19 | 24.70 | 24.78 | 9.49 | ||||
| CNT-Ba | 87.64 | 1.79 | 25.11 | 27.80 | 13.86 | 26.58 | 6.64 | ||||
| NCNT-Ba | 86.10 | 1.75 | 19.83 | 31.40 | 9.64 | 17.18 | 21.95 | ||||
| 复合材料 | O原子分数/% | O物种比例/% | |||||||||
| C | C | C—O | COOH | H2O(ad) | |||||||
| CNT-K | 14.12 | 44.25 | 43.16 | 10.82 | 1.32 | 0.46 | |||||
| NCNT-K | 8.62 | 55.82 | 19.72 | 15.69 | 7.57 | 1.20 | |||||
| CNT-Na | 18.41 | 22.47 | 40.43 | 30.04 | 5.76 | 1.30 | |||||
| NCNT-Na | 11.16 | 13.59 | 32.24 | 42.03 | 8.16 | 3.97 | |||||
| CNT-Ba | 10.57 | 32.22 | 34.26 | 19.16 | 11.29 | 3.07 | |||||
| NCNT-Ba | 12.15 | 33.93 | 35.01 | 24.95 | 4.33 | 1.78 | |||||
| 复合材料 | C原子分数/% | N原子分数/% | N物种比例/% | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| N-6 | N-5 | —NH2 | N-Q | N—O | |||||||
| CNT-K | 84.41 | 1.47 | 29.17 | 15.38 | 22.33 | 14.25 | 18.88 | ||||
| NCNT-K | 90.47 | 0.91 | 42.21 | 16.92 | 16.63 | 11.32 | 12.92 | ||||
| CNT-Na | 80.06 | 1.52 | 29.89 | 30.14 | 27.35 | 9.60 | 3.02 | ||||
| NCNT-Na | 87.37 | 1.47 | 14.84 | 26.19 | 24.70 | 24.78 | 9.49 | ||||
| CNT-Ba | 87.64 | 1.79 | 25.11 | 27.80 | 13.86 | 26.58 | 6.64 | ||||
| NCNT-Ba | 86.10 | 1.75 | 19.83 | 31.40 | 9.64 | 17.18 | 21.95 | ||||
| 复合材料 | O原子分数/% | O物种比例/% | |||||||||
| C | C | C—O | COOH | H2O(ad) | |||||||
| CNT-K | 14.12 | 44.25 | 43.16 | 10.82 | 1.32 | 0.46 | |||||
| NCNT-K | 8.62 | 55.82 | 19.72 | 15.69 | 7.57 | 1.20 | |||||
| CNT-Na | 18.41 | 22.47 | 40.43 | 30.04 | 5.76 | 1.30 | |||||
| NCNT-Na | 11.16 | 13.59 | 32.24 | 42.03 | 8.16 | 3.97 | |||||
| CNT-Ba | 10.57 | 32.22 | 34.26 | 19.16 | 11.29 | 3.07 | |||||
| NCNT-Ba | 12.15 | 33.93 | 35.01 | 24.95 | 4.33 | 1.78 | |||||
| 参数 | 伪一阶 | 伪二阶 | 参数 | 第一步 | 第二步 | 第三步 |
|---|---|---|---|---|---|---|
| k/min-1 | 0.2531 | 0.0002 | K/mg·g-0.5∙t-0.5 | 49.63 | 8.04 | 4.76 |
| qe/mg·g-1 | 137.60 | 157.81 | C | 0.90 | 82.89 | 103.46 |
| R2 | 0.8708 | 0.9320 | R2 | 0.9942 | 0.9567 | 0.9041 |
| 参数 | 伪一阶 | 伪二阶 | 参数 | 第一步 | 第二步 | 第三步 |
|---|---|---|---|---|---|---|
| k/min-1 | 0.2531 | 0.0002 | K/mg·g-0.5∙t-0.5 | 49.63 | 8.04 | 4.76 |
| qe/mg·g-1 | 137.60 | 157.81 | C | 0.90 | 82.89 | 103.46 |
| R2 | 0.8708 | 0.9320 | R2 | 0.9942 | 0.9567 | 0.9041 |
| 温度 | Langmuir模型 | Freundlich模型 | qe/mg·g-1 | ||||
|---|---|---|---|---|---|---|---|
| qmax/mg·g-1 | KL/L·mg-1 | R2 | n | KF/mg·g-1·L1/n ·mg-1/n | R2 | ||
| 298K | 288.15 | 1.61 | 0.9675 | 1.64 | 17.92 | 0.9914 | 275.13 |
| 313K | 490.17 | 0.56 | 0.9707 | 7.74 | 269.41 | 0.9897 | 454.43 |
| 323K | 598.26 | 0.80 | 0.9723 | 8.31 | 364.81 | 0.9877 | 598.09 |
| 温度 | Langmuir模型 | Freundlich模型 | qe/mg·g-1 | ||||
|---|---|---|---|---|---|---|---|
| qmax/mg·g-1 | KL/L·mg-1 | R2 | n | KF/mg·g-1·L1/n ·mg-1/n | R2 | ||
| 298K | 288.15 | 1.61 | 0.9675 | 1.64 | 17.92 | 0.9914 | 275.13 |
| 313K | 490.17 | 0.56 | 0.9707 | 7.74 | 269.41 | 0.9897 | 454.43 |
| 323K | 598.26 | 0.80 | 0.9723 | 8.31 | 364.81 | 0.9877 | 598.09 |
| 温度 | ∆G⊖/kJ·mol-1 | ∆H⊖/kJ·mol-1 | ∆S⊖/kJ·mol-1·K-1 |
|---|---|---|---|
| 298K | -7.15 | +0.11 | +4.65 |
| 313K | -14.56 | ||
| 323K | -15.84 |
| 温度 | ∆G⊖/kJ·mol-1 | ∆H⊖/kJ·mol-1 | ∆S⊖/kJ·mol-1·K-1 |
|---|---|---|---|
| 298K | -7.15 | +0.11 | +4.65 |
| 313K | -14.56 | ||
| 323K | -15.84 |
| [1] | AMALINA Farah, RAZAK Abdul Syukor ABD, KRISHNAN Santhana, et al. A review of eco-sustainable techniques for the removal of Rhodamine B dye utilizing biomass residue adsorbents[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2022, 128: 103267. |
| [2] | BENI Ali Aghababai, ESMAEILI Akbar. Biosorption, an efficient method for removing heavy metals from industrial effluents: A review[J]. Environmental Technology & Innovation, 2020, 17: 100503. |
| [3] | Byung-Moon JUN, LEE Hyun-Kyu, PARK Sungbin, et al. Purification of uranium-contaminated radioactive water by adsorption: A review on adsorbent materials[J]. Separation and Purification Technology, 2021, 278: 119675. |
| [4] | LI Shuangjun, YUAN Xiangzhou, DENG Shuai, et al. A review on biomass-derived CO2 adsorption capture: Adsorbent, adsorber, adsorption, and advice[J]. Renewable and Sustainable Energy Reviews, 2021, 152: 111708. |
| [5] | 林少华, 武海霞, 高莉苹, 等. 改性碳纳米管及其复合材料在废水处理中的应用现状及展望[J]. 化工进展, 2021, 40(6): 3466-3479. |
| LIN Shaohua, WU Haixia, GAO Liping, et al. Current status and future prospects of modified carbon nanotube and its composite materials application for wastewater treatment[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3466-3479. | |
| [6] | 张德懿, 雷龙艳, 尚永花. 氮掺杂对碳材料性能的影响研究进展[J]. 化工进展, 2016, 35(3): 831-836. |
| ZHANG Deyi, LEI Longyan, SHANG Yonghua. Effect of the nitrogen doping on the performance of nano-structure carbon materials: A review[J]. Chemical Industry and Engineering Progress, 2016, 35(3): 831-836. | |
| [7] | KUMAR Sumeet, Jayanta DAS. Carbon nanotubes, nanochains and quantum dots synthesized through the chemical treatment of charcoal powder[J]. Journal of Molecular Structure, 2021, 1227: 129419. |
| [8] | OMAR Sarah, OMAR Mirna, ATTIA Nour F, et al. Rational engineering and fabrication of efficient nanophotocatalysts based on ZnO-SrO-CdS for pharmaceutical pollutants based wastewater degradation[J]. Surfaces and Interfaces, 2024, 45: 103817. |
| [9] | WANG Gen, GAO Ge, YANG Shengjiong, et al. Magnetic mesoporous carbon nanospheres from renewable plant phenol for efficient hexavalent chromium removal[J]. Microporous and Mesoporous Materials, 2021, 310: 110623. |
| [10] | ZHANG Xialan, WANG Xin, CHENG Ting, et al. A novel mesoporous carbon nanospheres-based adsorbent material with desirable performances for dyes removal[J]. Journal of Molecular Liquids, 2023, 390: 123091. |
| [11] | AI Lunhong, ZHANG Chunying, LIAO Fang, et al. Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: Kinetic, isotherm and mechanism analysis[J]. Journal of Hazardous Materials, 2011, 198: 282-290. |
| [12] | VARGUES F, BRION M A, ROSA DA COSTA A M, et al. Development of a magnetic activated carbon adsorbent for the removal of common pharmaceuticals in wastewater treatment[J]. International Journal of Environmental Science and Technology, 2021, 18(9): 2805-2818. |
| [13] | AUNG Myat Thandar, SHIMABUKU Kyle K, Natalia SOARES-QUINETE, et al. Leveraging DOM UV absorbance and fluorescence to accurately predict and monitor short-chain PFAS removal by fixed-bed carbon adsorbers[J]. Water Research, 2022, 213: 118146. |
| [14] | SHI Wen, WANG Hui, YAN Jinlong, et al. Wheat straw derived biochar with hierarchically porous structure for bisphenol A removal: Preparation, characterization, and adsorption properties[J]. Separation and Purification Technology, 2022, 289: 120796. |
| [15] | XIAO Ye, AZAIEZ Jalel, HILL Josephine M. Erroneous application of pseudo-second-order adsorption kinetics model: Ignored assumptions and spurious correlations[J]. Industrial & Engineering Chemistry Research, 2018, 57(7): 2705-2709. |
| [16] | MATOS Beatriz, BATISTA Mary, PIRES João. Efficient adsorption of carbon dioxide and methane on activated carbon prepared from glycerol with potassium acetate[J]. Environmental Chemistry Letters, 2023, 21(3): 1265-1270. |
| [17] | ELWADOOD Samar N ABD, K Suresh Kumar REDDY, WAHEDI Yasser AL, et al. Hybrid salt-enriched micro-sorbents for atmospheric water sorption[J]. Journal of Water Process Engineering, 2023, 52: 103560. |
| [18] | HE Zhiqin, LI Yun, QI Benkun. A new and low-cost surface-functionalized corn straw adsorbent for adsorptive removal of sodium dodecylbenzene sulfonate: Adsorbent preparation and adsorption performance[J]. Separation and Purification Technology, 2023, 309: 122999. |
| [19] | ZHI Fangke, ZHOU Wenjing, CHEN Jingru, et al. Adsorption properties of active biochar: Overlooked role of the structure of biomass[J]. Bioresource Technology, 2023, 387: 129695. |
| [20] | ZHANG Tiankai, ZHANG Yongfa, WANG Qi, et al. Mechanism of K-catalyzed transformation of solid carbon structure into carbon nanotubes in coal[J]. Fuel Processing Technology, 2020, 204: 106409. |
| [21] | 张天开. Fe/K催化煤热解直接制备碳纳米管机理研究[D]. 太原: 太原理工大学, 2020. |
| ZHANG Tiankai. Study on the mechanism of direct preparation of carbon nanotubes from coal pyrolysis catalyzed by Fe/K[D]. Taiyuan: Taiyuan University of Technology, 2020. | |
| [22] | EL-SEESY Ahmed I, WALY Mahmoud S, EL-BATSH Hesham M, et al. Enhancement of the diesel fuel characteristics by using nitrogen-doped multi-walled carbon nanotube additives[J]. Process Safety and Environmental Protection, 2023, 171: 561-577. |
| [23] | GUO Dawei, WU Jiabo, FENG Dongdong, et al. Mechanism of efficient magnetic biochar for typical aqueous organic contaminant combined-adsorption removal[J]. Fuel Processing Technology, 2023, 247: 107795. |
| [24] | DAULAY Amru, ASTUTI Widi, SUMARDI Slamet, et al. Synthesis and characteristics of Na-A zeolite from coal fly ash and application for adsorption of cerium(Ⅲ)[J]. Journal of Rare Earths, 2025, 43(1): 171-179. |
| [25] | CHEN Hsi-Chao, CHIU Hsuan-Yi, HUANG Kuoting. Raman spectroscopy on 3-D acid-functional single-walled carbon nanotubes for flexible transparent-conducting films deposited with vacuum-filtration and dip-coating[J]. Diamond and Related Materials, 2019, 92: 1-8. |
| [26] | ELLISON Candice, ABDELSAYED Victor, SMITH Mark W. Analysis of char structure and composition from microwave and conventional pyrolysis/gasification of low and middle rank coals[J]. Fuel, 2023, 354: 129301. |
| [27] | DENIS Pablo A. Heteroatom codoped graphene: The importance of nitrogen[J]. ACS Omega, 2022, 7(50): 45935-45961. |
| [28] | XU Xiangju, YANG Chen, YANG Zhi, et al. Carbon nanotube growth from alkali metal salt nanoparticles[J]. Carbon, 2014, 80: 490-495. |
| [29] | JIANG Qinyuan, WANG Fei, LI Run, et al. Synthesis of ultralong carbon nanotubes with ultrahigh yields[J]. Nano Letters, 2023, 23(2): 523-532. |
| [30] | KANG Jian, DUAN Xiaoguang, WANG Chen, et al. Nitrogen-doped bamboo-like carbon nanotubes with Ni encapsulation for persulfate activation to remove emerging contaminants with excellent catalytic stability[J]. Chemical Engineering Journal, 2018, 332: 398-408. |
| [31] | WEI Kexin, Tao LYU, WANG Ting, et al. High adsorption of methyl orange by nitrogen-doped activated carbon derived from kraft lignin via self-activation[J]. Surfaces and Interfaces, 2023, 42: 103484. |
| [32] | HE Haijie, CHAI Kuan, WU Tao, et al. Adsorption of rhodamine B from simulated waste water onto kaolin-bentonite composites[J]. Materials, 2022, 15(12): 4058. |
| [33] | FODIL M, MAANE S, AVALOS RAMIREZ A, et al. Adsorption of lead from wastewater using olive leaf powder as biosorbent[J]. International Journal of Environmental Science and Technology, 2024, 21(3): 2615-2626. |
| [34] | GHASEMZADEH Hasan, BABAEI Saeed, TESSON Stéphane, et al. From excess to absolute adsorption isotherm: The effect of the adsorbed density[J]. Chemical Engineering Journal, 2021, 425: 131495. |
| [1] | GAO Jiaojiao, YAN Shiyu, YANG Taishun, XIE Shangzhi, YANG Yanjuan, XU Jing. Effect of alumina support crystal structure of Ru-based catalysts on polyethylene hydrogenolysis performance [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3917-3927. |
| [2] | LIANG Shuwei, YU Jie, XIE Zhongyin, PEI Jianlu, LIN Zhongxin, CHEN Zexiang. Covalent organic frameworks for radioactive gaseous iodine adsorption [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3965-3975. |
| [3] | HAN Pei, LI Jinjian, KE Tian, ZHANG Zhiguo, BAO Zongbi, REN Qilong, YANG Qiwei. Advances in adsorption separation of sulfur hexafluoride/nitrogen by novel porous materials [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3592-3617. |
| [4] | REN Pengkun, ZHONG Zhaoping, ZHANG Xiaoni, YANG Yuxuan, RAN Zhenzhen. Preparation of sludge-sawdust-based activated carbon and its adsorption performance for benzene series VOCs [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3031-3040. |
| [5] | ZHOU Meimei, HE Jiahui, XIANG Wanting, SHANG Jiaxin, WEI Xinyu, SUN Mimi, ZOU Wei, LUO Pingping. Electrospun PVA/SiO2 nanofibers loaded with A-TiO2/BiOBr for enhanced visible light photocatalytic activity [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3084-3092. |
| [6] | CHEN Chongming, LI Dong, YU Jinxing, CHE Kai, HE Wei, CHEN Chuanmin. Adsorption performance of titanium based MXene aerogel for Hg(Ⅱ) in desulfurization wastewater [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3112-3120. |
| [7] | LUO Yiwen, ZHAO Liang, ZHANG Yuhao, LIU Dongyang, GAO Jinsen, XU Chunming. Progress on separation materials and mechanisms of light hydrocarbons [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2938-2954. |
| [8] | REN Shipeng, AN Yuan, LOU Chun, MEI Shengdong, LIU Kai, CHEN Xinjian. Online reconstruction of combustion temperature field distribution in furnace by integrating deep learning algorithm [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1923-1933. |
| [9] | WANG Guangya, DONG Meirong, ZHOU Jieheng, CHEN Xiang, LU Jidong. Boiler load monitoring method based on time series alignment of flame images [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1934-1944. |
| [10] | LI Ziliang, ZHANG Wei, HU Heng, WANG Yingjin, XU Na. mGAN-NN method for low-cost chemical process modeling based on generative adversarial networks [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1978-1986. |
| [11] | YUAN Mengli, SONG Yuncai, LI Wenying, FENG Jie. Heat and mass transfer law of photothermal-driven lignite fixed-bed gasification process [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2008-2019. |
| [12] | WANG Peigan, LI Leli, XIE Songzhuan, SONG Bingbing, KONG Qiaoping, LIU Gaige, MA Weiwei, SHI Xueqing. Phosphate adsorption mechanism of sludge-based FeCa-ALE composite material [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2365-2373. |
| [13] | CHEN Yuhang, LI Qiaoyan, LIANG Meisheng, SONG Tianyuan, WANG Yue, LI Simeng, ZHOU Yuxuan. Role of the Sn dopant on Cu/CeZrO2/γ-Al2O3 three-way catalyst: Enhancement of low-temperature activity and sulfur resistance [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1368-1377. |
| [14] | ZHU Shiyu, HE Yongjin, WANG Mingzi, CHEN Bilian. Research progress on microalgae to fix CO2 in flue gas from coal-fired power plants [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1666-1682. |
| [15] | ZHANG Yi, YAO Qiuxiang, SUN Ming. Adsorption performance of natural clinoptilolite based analcime and its modifications on Pb2+ [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1726-1738. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |