Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (6): 3031-3040.DOI: 10.16085/j.issn.1000-6613.2024-1144
• Special column: Frontiers of interdisciplinary technologies in chemical engineering and environmental sciences • Previous Articles
REN Pengkun1(
), ZHONG Zhaoping2(
), ZHANG Xiaoni1, YANG Yuxuan2, RAN Zhenzhen1
Received:2024-07-17
Revised:2024-10-14
Online:2025-07-08
Published:2025-06-25
Contact:
ZHONG Zhaoping
任鹏锟1(
), 仲兆平2(
), 张小霓1, 杨宇轩2, 冉真真1
通讯作者:
仲兆平
作者简介:任鹏锟(1999—),男,硕士,研究方向为固体废弃物处理。E-mail:renpengkun@crpower.com.cn。
基金资助:CLC Number:
REN Pengkun, ZHONG Zhaoping, ZHANG Xiaoni, YANG Yuxuan, RAN Zhenzhen. Preparation of sludge-sawdust-based activated carbon and its adsorption performance for benzene series VOCs[J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3031-3040.
任鹏锟, 仲兆平, 张小霓, 杨宇轩, 冉真真. 污泥-木屑基活性炭的制备及其对苯系VOCs的吸附性能[J]. 化工进展, 2025, 44(6): 3031-3040.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1144
| 样品 | 工业分析/% | 元素分析/% | ||||||
|---|---|---|---|---|---|---|---|---|
| 灰分 | 挥发分 | 固定碳 | C | H | O | N | S | |
| 市政污泥 | 58.58 | 38.42 | 3.00 | 15.22 | 3.61 | 17.22 | 2.17 | 3.20 |
| 松木屑 | 0.58 | 85.28 | 14.14 | 46.43 | 5.53 | 44.81 | 0.66 | 1.99 |
| 样品 | 工业分析/% | 元素分析/% | ||||||
|---|---|---|---|---|---|---|---|---|
| 灰分 | 挥发分 | 固定碳 | C | H | O | N | S | |
| 市政污泥 | 58.58 | 38.42 | 3.00 | 15.22 | 3.61 | 17.22 | 2.17 | 3.20 |
| 松木屑 | 0.58 | 85.28 | 14.14 | 46.43 | 5.53 | 44.81 | 0.66 | 1.99 |
| 样品 | 比表面积/m2·g-1 | 微孔面积/m2·g-1 | 孔容/cm3·g-1 | 微孔孔容/cm3·g-1 | 微孔率/% | 平均孔径/nm |
|---|---|---|---|---|---|---|
| H-SBBC | 1640.21 | 1542.63 | 1.0384 | 0.6695 | 64.47 | 2.5325 |
| C-SBBC | 1514.95 | 1427.85 | 0.9082 | 0.6073 | 66.87 | 2.3981 |
| H-SBZC | 1496.59 | 1421.43 | 1.0258 | 0.6152 | 59.97 | 2.7419 |
| C-SBZC | 1403.50 | 1320.07 | 0.8637 | 0.5677 | 65.73 | 2.4614 |
| AC | 759.41 | 664.77 | 0.6035 | 0.3194 | 52.92 | 3.1786 |
| 样品 | 比表面积/m2·g-1 | 微孔面积/m2·g-1 | 孔容/cm3·g-1 | 微孔孔容/cm3·g-1 | 微孔率/% | 平均孔径/nm |
|---|---|---|---|---|---|---|
| H-SBBC | 1640.21 | 1542.63 | 1.0384 | 0.6695 | 64.47 | 2.5325 |
| C-SBBC | 1514.95 | 1427.85 | 0.9082 | 0.6073 | 66.87 | 2.3981 |
| H-SBZC | 1496.59 | 1421.43 | 1.0258 | 0.6152 | 59.97 | 2.7419 |
| C-SBZC | 1403.50 | 1320.07 | 0.8637 | 0.5677 | 65.73 | 2.4614 |
| AC | 759.41 | 664.77 | 0.6035 | 0.3194 | 52.92 | 3.1786 |
| 吸附质 | 吸附剂 | 比表面积/m2·g-1 | 孔容/cm3·g-1 | 吸附温度/K | 吸附容量/mg·g-1 | 参考文献 |
|---|---|---|---|---|---|---|
| 甲苯 | H-SBBC | 1640.21 | 1.04 | 293 | 270.80 | 本文 |
| 骨头生物炭 | 1405.06 | 0.97 | 298 | 288.12 | [ | |
| 富硅稻壳生物炭 | 1818.45 | 0.90 | 293 | 264.00 | [ | |
| 木屑生物炭 | 1606.70 | 1.13 | 298 | 308.00 | [ | |
| 开心果壳生物炭 | 1832.03 | 0.80 | 298 | 223.00 | [ | |
| 对二甲苯 | H-SBBC | 1640.21 | 1.04 | 293 | 312.86 | 本文 |
| 球磨秸秆生物炭 | 405.61 | 0.19 | 298 | 130.21 | [ | |
| 硬木活性炭 | 101.58 | 0.1802 | — | 131.24 | [ | |
| 花生壳活性炭 | 1025.00 | 1.07 | 293 | 296.80 | [ |
| 吸附质 | 吸附剂 | 比表面积/m2·g-1 | 孔容/cm3·g-1 | 吸附温度/K | 吸附容量/mg·g-1 | 参考文献 |
|---|---|---|---|---|---|---|
| 甲苯 | H-SBBC | 1640.21 | 1.04 | 293 | 270.80 | 本文 |
| 骨头生物炭 | 1405.06 | 0.97 | 298 | 288.12 | [ | |
| 富硅稻壳生物炭 | 1818.45 | 0.90 | 293 | 264.00 | [ | |
| 木屑生物炭 | 1606.70 | 1.13 | 298 | 308.00 | [ | |
| 开心果壳生物炭 | 1832.03 | 0.80 | 298 | 223.00 | [ | |
| 对二甲苯 | H-SBBC | 1640.21 | 1.04 | 293 | 312.86 | 本文 |
| 球磨秸秆生物炭 | 405.61 | 0.19 | 298 | 130.21 | [ | |
| 硬木活性炭 | 101.58 | 0.1802 | — | 131.24 | [ | |
| 花生壳活性炭 | 1025.00 | 1.07 | 293 | 296.80 | [ |
| 吸附剂 | 吸附质 | 温度 | Qm/mmol·g-1 | b/kPa-1/n | 1/n | R2 |
|---|---|---|---|---|---|---|
| H-SBBC | 甲苯 | 293K | 9.655 | 9.248 | 1.0820 | 0.9955 |
| 323K | 9.338 | 2.050 | 1.1087 | 0.9890 | ||
| 对二甲苯 | 293K | 10.509 | 24.723 | 0.6058 | 0.9895 | |
| 323K | 6.630 | 5.770 | 1.2504 | 0.9945 |
| 吸附剂 | 吸附质 | 温度 | Qm/mmol·g-1 | b/kPa-1/n | 1/n | R2 |
|---|---|---|---|---|---|---|
| H-SBBC | 甲苯 | 293K | 9.655 | 9.248 | 1.0820 | 0.9955 |
| 323K | 9.338 | 2.050 | 1.1087 | 0.9890 | ||
| 对二甲苯 | 293K | 10.509 | 24.723 | 0.6058 | 0.9895 | |
| 323K | 6.630 | 5.770 | 1.2504 | 0.9945 |
| 吸附剂 | 吸附质 | 吸附量/mmol·g-1 | 压力/kPa | -∆Hs/kJ·mol-1 | |
|---|---|---|---|---|---|
| 293K | 323K | ||||
| H-SBBC | 甲苯 | 2.0 | 0.017 | 0.045 | 25.862 |
| 3.5 | 0.040 | 0.076 | 16.690 | ||
| 5.0 | 0.179 | 0.332 | 16.225 | ||
| 6.5 | 0.438 | 0.765 | 14.629 | ||
| 8.0 | 0.663 | 1.069 | 12.537 | ||
| 对二甲苯 | 2.0 | 0.002 | 0.094 | 108.122 | |
| 3.0 | 0.003 | 0.098 | 93.506 | ||
| 4.0 | 0.006 | 0.213 | 91.615 | ||
| 5.0 | 0.040 | 0.538 | 68.140 | ||
| 6.0 | 0.135 | 1.526 | 63.624 | ||
| 吸附剂 | 吸附质 | 吸附量/mmol·g-1 | 压力/kPa | -∆Hs/kJ·mol-1 | |
|---|---|---|---|---|---|
| 293K | 323K | ||||
| H-SBBC | 甲苯 | 2.0 | 0.017 | 0.045 | 25.862 |
| 3.5 | 0.040 | 0.076 | 16.690 | ||
| 5.0 | 0.179 | 0.332 | 16.225 | ||
| 6.5 | 0.438 | 0.765 | 14.629 | ||
| 8.0 | 0.663 | 1.069 | 12.537 | ||
| 对二甲苯 | 2.0 | 0.002 | 0.094 | 108.122 | |
| 3.0 | 0.003 | 0.098 | 93.506 | ||
| 4.0 | 0.006 | 0.213 | 91.615 | ||
| 5.0 | 0.040 | 0.538 | 68.140 | ||
| 6.0 | 0.135 | 1.526 | 63.624 | ||
| [1] | CHAMBERS D M, REESE C M, THORNBURG L G, et al. Distinguishing petroleum (crude oil and fuel) from smoke exposure within populations based on the relative blood levels of benzene, toluene, ethylbenzene, and xylenes (BTEX), styrene and 2,5-dimethylfuran by pattern recognition using artificial neural networks[J]. Environmental Science & Technology, 2018, 52(1): 308-316. |
| [2] | HE Jiakai, ZHAO Yuanyuan, ZHOU Yun, et al. Preparation of high-performance activated carbons from hemicellulose pre-extracted residues of poplar and their application in VOCs removal[J]. BioResources, 2023, 18(2): 2874-2896. |
| [3] | LIU Shuang, WU Shubin, CHENG Hao, et al. Sodium lignosulfonate derived hierarchical porous carbon spheres for VOC removal and supercapacitors[J]. Industrial Crops and Products, 2022, 179: 114657. |
| [4] | ZHANG Xueyang, MIAO Xudong, XIANG Wei, et al. Ball milling biochar with ammonia hydroxide or hydrogen peroxide enhances its adsorption of phenyl volatile organic compounds (VOCs)[J]. Journal of Hazardous Materials, 2021, 403: 123540. |
| [5] | QI Guangdou, PAN Zhifei, ZHANG Xueyang, et al. Effect of ball milling with hydrogen peroxide or ammonia hydroxide on sorption performance of volatile organic compounds by biochar from different pyrolysis temperatures[J]. Chemical Engineering Journal, 2022, 450: 138027. |
| [6] | Karin BJÖRKLUND, LI Loretta Y. Adsorption of organic stormwater pollutants onto activated carbon from sewage sludge[J]. Journal of Environmental Management, 2017, 197: 490-497. |
| [7] | ZHAO Lei, SUN Zhongfang, PAN Xiaowen, et al. Sewage sludge derived biochar for environmental improvement: Advances, challenges, and solutions[J]. Water Research X, 2023, 18: 100167. |
| [8] | HAN Lei, LI Jinling, QU Chengtun, et al. Recent progress in sludge co-pyrolysis technology[J]. Sustainability, 2022, 14(13): 7574. |
| [9] | FENG Dongdong, GUO Dawei, ZHANG Yu, et al. Functionalized construction of biochar with hierarchical pore structures and surface O-/N-containing groups for phenol adsorption[J]. Chemical Engineering Journal, 2021, 410: 127707. |
| [10] | OUZZINE M, ROMERO-ANAYA A J, LILLO-RÓDENAS M A, et al. Spherical activated carbons for the adsorption of a real multicomponent VOC mixture[J]. Carbon, 2019, 148: 214-223. |
| [11] | GUO Qianqian, JING Wen, HOU Yaqin, et al. On the nature of oxygen groups for NH3-SCR of NO over carbon at low temperatures[J]. Chemical Engineering Journal, 2015, 270: 41-49. |
| [12] | HUANG Weihao, LEE Duu-Jong, HUANG Chihpin. Modification on biochars for applications: A research update[J]. Bioresource Technology, 2021, 319: 124100. |
| [13] | ZHOU Ke, MA Weiwu, ZENG Zheng, et al. Waste biomass-derived oxygen and nitrogen co-doped porous carbon/MgO composites as superior acetone adsorbent: Experimental and DFT study on the adsorption behavior[J]. Chemical Engineering Journal, 2020, 387: 124173. |
| [14] | XIAO Xin, CHEN Baoliang, ZHU Lizhong. Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures[J]. Environmental Science & Technology, 2014, 48(6): 3411-3419. |
| [15] | JIN Baichuan, LI Jie, WANG Yuhui, et al. Nitrogen doping and porous tuning carbon derived from waste biomass boosting for toluene capture: Experimental study and density functional theory simulation[J]. Chemical Engineering Journal Advances, 2022, 10: 100276. |
| [16] | WANG Xingdong, CHI Qiaoqiao, LIU Xuejiao, et al. Influence of pyrolysis temperature on characteristics and environmental risk of heavy metals in pyrolyzed biochar made from hydrothermally treated sewage sludge[J]. Chemosphere, 2019, 216: 698-706. |
| [17] | CHEN Baoliang, ZHOU Dandan, ZHU Lizhong. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures[J]. Environmental Science & Technology, 2008, 42(14): 5137-5143. |
| [18] | WANG Fei, REN Xinhao, SUN Hongwen, et al. Sorption of polychlorinated biphenyls onto biochars derived from corn straw and the effect of propranolol[J]. Bioresource Technology, 2016, 219: 458-465. |
| [19] | LIU Huijuan, YU Yansong, SHAO Qi, et al. Porous polymeric resin for adsorbing low concentration of VOCs: Unveiling adsorption mechanism and effect of VOCs’ molecular properties[J]. Separation and Purification Technology, 2019, 228: 115755. |
| [20] | LU Shengyong, HUANG Xinlei, TANG Minghui, et al. Synthesis of N-doped hierarchical porous carbon with excellent toluene adsorption properties and its activation mechanism[J]. Environmental Pollution, 2021, 284: 117113. |
| [21] | 张智, 马修卫, 李津津, 等. 中高温环境下VOCs在活性炭上的吸附性能研究 [J]. 化工学报, 2019, 70(12): 4811-4820. |
| ZHANG Zhi, MA Xiuwei, Li Jinjin, et al. Study on adsorption capacity of VOCs on activated carbon at medium-high temperature [J]. CIESC Journal, 2019, 70(12): 4811-4820. | |
| [22] | YANG Yuxuan, SUN Chen, HUANG Qunxing, et al. Hierarchical porous structure formation mechanism in food waste component derived N-doped biochar: Application in VOCs removal[J]. Chemosphere, 2022, 291: 132702. |
| [23] | SHEN Yafei, ZHANG Niyu. Facile synthesis of porous carbons from silica-rich rice husk char for volatile organic compounds (VOCs) sorption[J]. Bioresource Technology, 2019, 282: 294-300. |
| [24] | PI Xinxin, QU Zhibin, SUN Fei, et al. Catalytic activation preparation of nitrogen-doped hierarchical porous bio-char for efficient adsorption of dichloromethane and toluene[J]. Journal of Analytical and Applied Pyrolysis, 2021, 156: 105150. |
| [25] | CHENG Tangying, BIAN Ye, LI Jinjin, et al. Nitrogen-doped porous biochar for selective adsorption of toluene under humid conditions[J]. Fuel, 2023, 334: 126452. |
| [26] | MOSLEH Mojgan Hadi, RAJABI Hamid. NaOH-benzoic acid modified biochar for enhanced removal of aromatic VOCs[J]. Separation and Purification Technology, 2024, 330: 125453. |
| [27] | BEDANE Alemayehu H, GUO Tianxiang, Mladen EIĆ, et al. Adsorption of volatile organic compounds on peanut shell activated carbon[J]. The Canadian Journal of Chemical Engineering, 2019, 97(1): 238-246. |
| [28] | MA Xiuwei, Hao LYU, YANG Linjun, et al. Removal characteristics of organic pollutants by the adsorbent injection coupled with bag filtering system[J]. Journal of Hazardous Materials, 2021, 405: 124193. |
| [29] | CHENG Tangying, LI Jinjin, MA Xiuwei, et al. Alkylation modified pistachio shell-based biochar to promote the adsorption of VOCs in high humidity environment[J]. Environmental Pollution, 2022, 295: 118714. |
| [30] | LI Jinjin, YIN Yin, CHENG Tangying, et al. Superior pore size for enhancing the competitive adsorption of VOCs under high humid conditions: An experiment and molecular simulation study[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 111091. |
| [31] | 岳旭, 王胜, 高杨, 等. VOCs在吸附剂上吸附性能的热力学研究[J]. 燃料化学学报, 2020, 48: 752-760. |
| YUE Xu, WANG Sheng, GAO Yang, et al. Thermodynamics analysis on the adsorption behaviors of VOCs on various adsorbents [J]. Journal of Fuel Chemistry and Technology, 2020, 48: 752-760. | |
| [32] | LUO Junying, LIU Baogen, SHI Rui, et al. The effects of nitrogen functional groups and narrow micropore sizes on CO2 adsorption onto N-doped biomass-based porous carbon under different pressure[J]. Microporous and Mesoporous Materials, 2021, 327: 111404. |
| [1] | LUO Yiwen, ZHAO Liang, ZHANG Yuhao, LIU Dongyang, GAO Jinsen, XU Chunming. Progress on separation materials and mechanisms of light hydrocarbons [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2938-2954. |
| [2] | WANG Peigan, LI Leli, XIE Songzhuan, SONG Bingbing, KONG Qiaoping, LIU Gaige, MA Weiwei, SHI Xueqing. Phosphate adsorption mechanism of sludge-based FeCa-ALE composite material [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2365-2373. |
| [3] | ZHAO Kaiqiang, LIU Hao, DAI Zhenhua, SUN Zhenfeng, YANG Chao, MA Cheng. Research progress in preparation of high sulfur polymers from vegetable oils [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1454-1465. |
| [4] | ZHANG Qi, WANG Tao, ZHANG Xuebing, LI Weizhen, CHENG Meng, ZHANG Kui, LYU Yijun, MEN Zhuowu. Advances in Fe-based catalysts for conversion of syngas/CO2 to higher alcohols [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1323-1337. |
| [5] | CHEN Yuhang, LI Qiaoyan, LIANG Meisheng, SONG Tianyuan, WANG Yue, LI Simeng, ZHOU Yuxuan. Role of the Sn dopant on Cu/CeZrO2/γ-Al2O3 three-way catalyst: Enhancement of low-temperature activity and sulfur resistance [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1368-1377. |
| [6] | ZHANG Yi, YAO Qiuxiang, SUN Ming. Adsorption performance of natural clinoptilolite based analcime and its modifications on Pb2+ [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1726-1738. |
| [7] | ZHANG Qi, WANG Tao, ZHANG Xuebing, LI Weizhen, FENG Bo, JIANG Zhihui, LYU Yijun, MEN Zhuowu. Advances in Co-based catalysts for syngas to higher alcohol [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 773-787. |
| [8] | JIA Yijing, TAO Jinquan, HUANG Wenbin, LIU Haoran, LI Rongrong, YAO Rongpeng, BAI Tianyu, WEI Qiang, ZHOU Yasong. Research progress on iron-based catalysts for CO2 hydrogenation to low carbon olefins [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 820-833. |
| [9] | ZHANG Aijing, WANG Zhenyu, XIAO Ningning, SONG Yanna, LI Jun, FENG Jiangtao, YAN Wei. Research progress on novel adsorption materials for mercury ion [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 899-913. |
| [10] | ZHAO Yu, SHI Ling, ZHANG Dongqiang, LI Ning. Synthesis of magnesium oxide adsorbent through the precipitation method and its adsorption mechanism for fluoride [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 971-981. |
| [11] | LI Zhuoyu, YU Meiqi, CHEN Xiaoyan, HU Ruohui, WANG Qinghong, CHEN Chunmao, ZHAN Yali. Effects and mechanism on the removal of nitrobenzene from water by adsorption of refining waste catalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1076-1087. |
| [12] | JIANG Peng, LIU Shugen, TIAN Senlin, NING Ping. Biological drying characteristics and water removal mechanism of dewatered sludge derived from sewage treatment plants [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1110-1119. |
| [13] | YANG Qun, LI Hongyan, ZHANG Feng, MAO Libo, CUI Jiali, DONG Yinghong, GUO Zirui. Removal of gatifloxacin from water by cobalt-nitrogen co-doped mushroom stick biological carbon activated PMS [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1088-1099. |
| [14] | ZHAO Jiaqi, HUANG Yaji, LI Zhiyuan, ZHU Zhicheng, QI Shuaijie, GAO Jiawei, LIU Jun, ZHANG Yuyao. Characteristics of heavy metal migration and transformation during co-pyrolysis of sludge with agroforestry wastes [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1064-1075. |
| [15] | SU Liangjian, XIAO Junyan, ZHANG Chunguang, ZHAO Yuansheng, YANG Xu. Deep regeneration of fixed-bed HDCCR catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 728-734. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |