Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (2): 1064-1075.DOI: 10.16085/j.issn.1000-6613.2024-0121
• Resources and environmental engineering • Previous Articles
ZHAO Jiaqi(), HUANG Yaji(
), LI Zhiyuan, ZHU Zhicheng, QI Shuaijie, GAO Jiawei, LIU Jun, ZHANG Yuyao
Received:
2024-01-16
Revised:
2024-05-25
Online:
2025-03-10
Published:
2025-02-25
Contact:
HUANG Yaji
赵佳琪(), 黄亚继(
), 李志远, 朱志成, 祁帅杰, 高嘉炜, 刘俊, 张煜尧
通讯作者:
黄亚继
作者简介:
赵佳琪(1998—),男,硕士,研究方向为固体废弃物处理。E-mail:220210442@seu.edu.cn。
基金资助:
CLC Number:
ZHAO Jiaqi, HUANG Yaji, LI Zhiyuan, ZHU Zhicheng, QI Shuaijie, GAO Jiawei, LIU Jun, ZHANG Yuyao. Characteristics of heavy metal migration and transformation during co-pyrolysis of sludge with agroforestry wastes[J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1064-1075.
赵佳琪, 黄亚继, 李志远, 朱志成, 祁帅杰, 高嘉炜, 刘俊, 张煜尧. 污泥同农林废弃物共热解重金属迁移转化特性[J]. 化工进展, 2025, 44(2): 1064-1075.
样品 | 挥发分/% | 固定碳/% | 灰分/% |
---|---|---|---|
SS | 48.71 | 5.56 | 45.73 |
RH | 67.18 | 19.57 | 13.25 |
WC | 72.83 | 15.59 | 11.58 |
CS | 82.26 | 13.28 | 4.46 |
样品 | 挥发分/% | 固定碳/% | 灰分/% |
---|---|---|---|
SS | 48.71 | 5.56 | 45.73 |
RH | 67.18 | 19.57 | 13.25 |
WC | 72.83 | 15.59 | 11.58 |
CS | 82.26 | 13.28 | 4.46 |
样品 | C/% | H/% | O①/% | N/% | S/% |
---|---|---|---|---|---|
SS | 19.23 | 3.57 | 27.65 | 2.92 | 0.81 |
RH | 37.68 | 5.23 | 43.61 | 0.23 | 0 |
WC | 40.11 | 5.46 | 41.93 | 0.92 | 0 |
CS | 45.77 | 6.06 | 43.50 | 0.21 | 0 |
样品 | C/% | H/% | O①/% | N/% | S/% |
---|---|---|---|---|---|
SS | 19.23 | 3.57 | 27.65 | 2.92 | 0.81 |
RH | 37.68 | 5.23 | 43.61 | 0.23 | 0 |
WC | 40.11 | 5.46 | 41.93 | 0.92 | 0 |
CS | 45.77 | 6.06 | 43.50 | 0.21 | 0 |
样品 | Co /mg∙kg-1 | Cr /mg∙kg-1 | Cu /mg∙kg-1 | Mn /mg∙kg-1 | Ni /mg∙kg-1 | Pb /mg∙kg-1 | Zn /mg∙kg-1 |
---|---|---|---|---|---|---|---|
SS | 43 | 195 | 245 | 1951 | 96 | 102 | 1452 |
RH | 未检出 | 未检出 | 未检出 | 3.7 | 未检出 | 未检出 | 3.5 |
WC | 未检出 | 未检出 | 未检出 | 4.5 | 未检出 | 未检出 | 5.5 |
CS | 未检出 | 未检出 | 未检出 | 2.3 | 未检出 | 未检出 | 1.7 |
样品 | Co /mg∙kg-1 | Cr /mg∙kg-1 | Cu /mg∙kg-1 | Mn /mg∙kg-1 | Ni /mg∙kg-1 | Pb /mg∙kg-1 | Zn /mg∙kg-1 |
---|---|---|---|---|---|---|---|
SS | 43 | 195 | 245 | 1951 | 96 | 102 | 1452 |
RH | 未检出 | 未检出 | 未检出 | 3.7 | 未检出 | 未检出 | 3.5 |
WC | 未检出 | 未检出 | 未检出 | 4.5 | 未检出 | 未检出 | 5.5 |
CS | 未检出 | 未检出 | 未检出 | 2.3 | 未检出 | 未检出 | 1.7 |
提取形态 | 样品 | 提取试剂及条件 |
---|---|---|
F1:酸溶态和可交换态 | 0.5g | 20mL、0.1mol/L冰醋酸,振荡16h后离心,取上清液 |
F2:可还原态 | F1固态残渣 | 20mL、0.1mol/L盐酸羟胺,振荡16h后离心,取上清液 |
F3:可氧化态 | F2固态残渣 | 先加入30%(体积分数)过氧化氢溶液5mL,室温放置1h;随后加入30%(体积分数)过氧化氢溶液5mL,85℃水浴1h;最后加入25mL、1.0mol/L乙酸铵,振荡16h后离心,取上清液 |
F4:残渣态 | F3固态残渣 | 消解方法如1.4.1节中所述 |
提取形态 | 样品 | 提取试剂及条件 |
---|---|---|
F1:酸溶态和可交换态 | 0.5g | 20mL、0.1mol/L冰醋酸,振荡16h后离心,取上清液 |
F2:可还原态 | F1固态残渣 | 20mL、0.1mol/L盐酸羟胺,振荡16h后离心,取上清液 |
F3:可氧化态 | F2固态残渣 | 先加入30%(体积分数)过氧化氢溶液5mL,室温放置1h;随后加入30%(体积分数)过氧化氢溶液5mL,85℃水浴1h;最后加入25mL、1.0mol/L乙酸铵,振荡16h后离心,取上清液 |
F4:残渣态 | F3固态残渣 | 消解方法如1.4.1节中所述 |
样品 | 产率/% | Co/mg∙kg-1 | Cr/mg∙kg-1 | Cu/mg∙kg-1 | Mn/mg∙kg-1 | Ni/mg∙kg-1 | Pb/mg∙kg-1 | Zn/mg∙kg-1 |
---|---|---|---|---|---|---|---|---|
SS | — | 43±1.5 | 195±2.3 | 245±1.3 | 1951±13.3 | 96±2.1 | 102±1.9 | 1452±17.5 |
500SS | 68.3±0.1 | 55.3±0.9 | 255.5±2.7 | 338.4±3.3 | 2561.1±37.5 | 129.1±2.4 | 147±7.2 | 2015.1±27.1 |
500SR1 | 61.7±0.1 | 46.6±1.1 | 216.1±9.8 | 279.5±1.3 | 2202±38.5 | 103.3±0.3 | 119.3±3.5 | 1658±33.5 |
500SW1 | 60.1±0 | 48.5±2.2 | 220.8±8.5 | 285.9±14.6 | 2362.8±42 | 107.3±5.3 | 119.5±5 | 1692±32 |
500SC1 | 59.1±0 | 48.8±0.7 | 225±11.5 | 290.5±2.2 | 2279±43.3 | 107.8±0.2 | 121.3±3.8 | 1728±31.5 |
500SR2 | 55.5±0.1 | 34.9±0.4 | 170±2 | 205±4 | 1664.5±12.5 | 76±3 | 88±3.5 | 1202±6 |
500SW2 | 52.4±0 | 37.4±1.5 | 173.5±15 | 216±14 | 1795±35.7 | 81±3.3 | 88±8 | 1260±72 |
500SC2 | 48.4±0 | 39.9±0.7 | 189±0.5 | 234±7.5 | 1861.5±58 | 86.7±0.9 | 93.5±1.5 | 1372±32 |
700SS | 62.7±0 | 57.1±2.1 | 261.8±5.2 | 365.4±8 | 2619.5±60 | 138.3±4 | 156.6±6.4 | 2157.4±72 |
700SR1 | 56.8±0 | 48.1±0.9 | 223.8±1.3 | 299±2.2 | 2352±21.5 | 110±1 | 126.9±0.1 | 1769±25 |
700SW1 | 54.6±0 | 50.4±1.1 | 228±5 | 309.4±4.5 | 2549±22 | 115.5±2 | 128.3±2 | 1801.5±31 |
700SC1 | 53.3±0 | 51.5±0.5 | 236±0.5 | 318±0.3 | 2408±30 | 117±3 | 132.5±2.5 | 1864±5 |
700SR2 | 50.8±0.1 | 37.8±1.1 | 180.5±3 | 220.5±1.5 | 1781±15 | 77±2.5 | 91.5±1.5 | 1285±25 |
700SW2 | 47.6±0 | 40.9±1 | 185.5±11 | 232.5±4.2 | 1962±63 | 84.5±4 | 93±0.5 | 1362±1.5 |
700SC2 | 44.6±0.1 | 40.5±1.9 | 203.8±8.8 | 249.5±13.5 | 1946±103 | 88.5±6 | 103±6.5 | 1461±76 |
样品 | 产率/% | Co/mg∙kg-1 | Cr/mg∙kg-1 | Cu/mg∙kg-1 | Mn/mg∙kg-1 | Ni/mg∙kg-1 | Pb/mg∙kg-1 | Zn/mg∙kg-1 |
---|---|---|---|---|---|---|---|---|
SS | — | 43±1.5 | 195±2.3 | 245±1.3 | 1951±13.3 | 96±2.1 | 102±1.9 | 1452±17.5 |
500SS | 68.3±0.1 | 55.3±0.9 | 255.5±2.7 | 338.4±3.3 | 2561.1±37.5 | 129.1±2.4 | 147±7.2 | 2015.1±27.1 |
500SR1 | 61.7±0.1 | 46.6±1.1 | 216.1±9.8 | 279.5±1.3 | 2202±38.5 | 103.3±0.3 | 119.3±3.5 | 1658±33.5 |
500SW1 | 60.1±0 | 48.5±2.2 | 220.8±8.5 | 285.9±14.6 | 2362.8±42 | 107.3±5.3 | 119.5±5 | 1692±32 |
500SC1 | 59.1±0 | 48.8±0.7 | 225±11.5 | 290.5±2.2 | 2279±43.3 | 107.8±0.2 | 121.3±3.8 | 1728±31.5 |
500SR2 | 55.5±0.1 | 34.9±0.4 | 170±2 | 205±4 | 1664.5±12.5 | 76±3 | 88±3.5 | 1202±6 |
500SW2 | 52.4±0 | 37.4±1.5 | 173.5±15 | 216±14 | 1795±35.7 | 81±3.3 | 88±8 | 1260±72 |
500SC2 | 48.4±0 | 39.9±0.7 | 189±0.5 | 234±7.5 | 1861.5±58 | 86.7±0.9 | 93.5±1.5 | 1372±32 |
700SS | 62.7±0 | 57.1±2.1 | 261.8±5.2 | 365.4±8 | 2619.5±60 | 138.3±4 | 156.6±6.4 | 2157.4±72 |
700SR1 | 56.8±0 | 48.1±0.9 | 223.8±1.3 | 299±2.2 | 2352±21.5 | 110±1 | 126.9±0.1 | 1769±25 |
700SW1 | 54.6±0 | 50.4±1.1 | 228±5 | 309.4±4.5 | 2549±22 | 115.5±2 | 128.3±2 | 1801.5±31 |
700SC1 | 53.3±0 | 51.5±0.5 | 236±0.5 | 318±0.3 | 2408±30 | 117±3 | 132.5±2.5 | 1864±5 |
700SR2 | 50.8±0.1 | 37.8±1.1 | 180.5±3 | 220.5±1.5 | 1781±15 | 77±2.5 | 91.5±1.5 | 1285±25 |
700SW2 | 47.6±0 | 40.9±1 | 185.5±11 | 232.5±4.2 | 1962±63 | 84.5±4 | 93±0.5 | 1362±1.5 |
700SC2 | 44.6±0.1 | 40.5±1.9 | 203.8±8.8 | 249.5±13.5 | 1946±103 | 88.5±6 | 103±6.5 | 1461±76 |
样品 | Cf | Er | RI | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Co | Cr | Cu | Mn | Ni | Pb | Zn | Co | Cr | Cu | Mn | Ni | Pb | Zn | ||
SS | 10.49 | 1.40 | 6.46 | 11.50 | 5.41 | 0.52 | 5.76 | 52.47 | 2.81 | 32.31 | 11.50 | 32.46 | 2.60 | 5.76 | 139.91 |
500SS | 3.33 | 1.08 | 3.61 | 8.09 | 3.67 | 0.12 | 6.81 | 16.65 | 2.17 | 18.04 | 8.09 | 22.04 | 0.61 | 6.81 | 74.41 |
500SR1 | 2.17 | 1.15 | 1.90 | 5.58 | 3.00 | 0.13 | 6.09 | 10.87 | 2.30 | 9.48 | 5.58 | 18.00 | 0.63 | 6.09 | 52.96 |
500SW1 | 2.13 | 1.20 | 1.72 | 6.30 | 2.92 | 0.10 | 6.14 | 10.67 | 2.40 | 8.62 | 6.30 | 17.53 | 0.51 | 6.14 | 52.18 |
500SC1 | 2.28 | 1.26 | 2.47 | 4.92 | 3.02 | 0.14 | 6.52 | 11.39 | 2.52 | 12.36 | 4.92 | 18.10 | 0.68 | 6.52 | 56.48 |
500SR2 | 1.99 | 1.28 | 1.06 | 4.59 | 1.28 | 0.22 | 5.41 | 9.97 | 2.57 | 5.31 | 4.59 | 7.67 | 1.08 | 5.41 | 36.59 |
500SW2 | 2.08 | 1.26 | 1.27 | 5.02 | 1.20 | 0.15 | 5.41 | 10.38 | 2.52 | 6.34 | 5.02 | 7.19 | 0.73 | 5.41 | 37.60 |
500SC2 | 1.99 | 1.30 | 1.35 | 4.65 | 1.23 | 0.15 | 5.37 | 9.97 | 2.60 | 6.74 | 4.65 | 7.39 | 0.73 | 5.37 | 37.44 |
700SS | 1.88 | 0.45 | 0.57 | 3.50 | 2.09 | 0.09 | 2.64 | 9.41 | 0.89 | 2.84 | 3.50 | 12.52 | 0.46 | 2.64 | 32.26 |
700SR1 | 1.96 | 0.43 | 0.84 | 2.97 | 2.42 | 0.08 | 2.28 | 9.79 | 0.86 | 4.21 | 2.97 | 14.55 | 0.39 | 2.28 | 35.05 |
700SW1 | 1.87 | 0.37 | 0.67 | 3.78 | 2.41 | 0.04 | 2.16 | 9.33 | 0.73 | 3.33 | 3.78 | 14.48 | 0.18 | 2.16 | 34.00 |
700SC1 | 1.69 | 0.43 | 0.79 | 3.02 | 2.65 | 0.06 | 1.92 | 8.44 | 0.87 | 3.94 | 3.02 | 15.90 | 0.29 | 1.92 | 34.37 |
700SR2 | 1.63 | 0.42 | 0.91 | 2.97 | 3.12 | 0.09 | 2.03 | 8.16 | 0.84 | 4.54 | 2.97 | 18.69 | 0.45 | 2.03 | 37.68 |
700SW2 | 1.72 | 0.24 | 0.73 | 3.65 | 3.08 | 0.06 | 1.99 | 8.59 | 0.48 | 3.67 | 3.65 | 18.49 | 0.29 | 1.99 | 37.15 |
700SC2 | 1.60 | 0.41 | 0.94 | 3.39 | 3.41 | 0.04 | 1.94 | 7.99 | 0.82 | 4.71 | 3.39 | 20.43 | 0.20 | 1.94 | 39.48 |
样品 | Cf | Er | RI | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Co | Cr | Cu | Mn | Ni | Pb | Zn | Co | Cr | Cu | Mn | Ni | Pb | Zn | ||
SS | 10.49 | 1.40 | 6.46 | 11.50 | 5.41 | 0.52 | 5.76 | 52.47 | 2.81 | 32.31 | 11.50 | 32.46 | 2.60 | 5.76 | 139.91 |
500SS | 3.33 | 1.08 | 3.61 | 8.09 | 3.67 | 0.12 | 6.81 | 16.65 | 2.17 | 18.04 | 8.09 | 22.04 | 0.61 | 6.81 | 74.41 |
500SR1 | 2.17 | 1.15 | 1.90 | 5.58 | 3.00 | 0.13 | 6.09 | 10.87 | 2.30 | 9.48 | 5.58 | 18.00 | 0.63 | 6.09 | 52.96 |
500SW1 | 2.13 | 1.20 | 1.72 | 6.30 | 2.92 | 0.10 | 6.14 | 10.67 | 2.40 | 8.62 | 6.30 | 17.53 | 0.51 | 6.14 | 52.18 |
500SC1 | 2.28 | 1.26 | 2.47 | 4.92 | 3.02 | 0.14 | 6.52 | 11.39 | 2.52 | 12.36 | 4.92 | 18.10 | 0.68 | 6.52 | 56.48 |
500SR2 | 1.99 | 1.28 | 1.06 | 4.59 | 1.28 | 0.22 | 5.41 | 9.97 | 2.57 | 5.31 | 4.59 | 7.67 | 1.08 | 5.41 | 36.59 |
500SW2 | 2.08 | 1.26 | 1.27 | 5.02 | 1.20 | 0.15 | 5.41 | 10.38 | 2.52 | 6.34 | 5.02 | 7.19 | 0.73 | 5.41 | 37.60 |
500SC2 | 1.99 | 1.30 | 1.35 | 4.65 | 1.23 | 0.15 | 5.37 | 9.97 | 2.60 | 6.74 | 4.65 | 7.39 | 0.73 | 5.37 | 37.44 |
700SS | 1.88 | 0.45 | 0.57 | 3.50 | 2.09 | 0.09 | 2.64 | 9.41 | 0.89 | 2.84 | 3.50 | 12.52 | 0.46 | 2.64 | 32.26 |
700SR1 | 1.96 | 0.43 | 0.84 | 2.97 | 2.42 | 0.08 | 2.28 | 9.79 | 0.86 | 4.21 | 2.97 | 14.55 | 0.39 | 2.28 | 35.05 |
700SW1 | 1.87 | 0.37 | 0.67 | 3.78 | 2.41 | 0.04 | 2.16 | 9.33 | 0.73 | 3.33 | 3.78 | 14.48 | 0.18 | 2.16 | 34.00 |
700SC1 | 1.69 | 0.43 | 0.79 | 3.02 | 2.65 | 0.06 | 1.92 | 8.44 | 0.87 | 3.94 | 3.02 | 15.90 | 0.29 | 1.92 | 34.37 |
700SR2 | 1.63 | 0.42 | 0.91 | 2.97 | 3.12 | 0.09 | 2.03 | 8.16 | 0.84 | 4.54 | 2.97 | 18.69 | 0.45 | 2.03 | 37.68 |
700SW2 | 1.72 | 0.24 | 0.73 | 3.65 | 3.08 | 0.06 | 1.99 | 8.59 | 0.48 | 3.67 | 3.65 | 18.49 | 0.29 | 1.99 | 37.15 |
700SC2 | 1.60 | 0.41 | 0.94 | 3.39 | 3.41 | 0.04 | 1.94 | 7.99 | 0.82 | 4.71 | 3.39 | 20.43 | 0.20 | 1.94 | 39.48 |
特征峰波长范围/cm-1 | 归属 |
---|---|
4000~3862 | C—H弯曲振动 |
3600~3200 | O—H伸缩振动 |
3200~3000 | 芳香族C—H伸缩振动 |
2970~2850 | 脂肪族C—H伸缩振动 |
1600~1400 | 多烯/芳香族C |
1490~1420,1390~1360 | 脂肪族C—H弯曲振动 |
1300~1020 | C—O—C弯曲振动 |
1280~1270 | C |
1142~1130 | C—H在平面上的变形振动 |
1100~1050 | C—O变形振动 |
1050~1046 | Si—O—C或Si—O—Si振动 |
880~850 | 芳香环平面外C—H振动 |
800~796 | SiO和硅酸盐 |
665 | C—H弯曲振动 |
特征峰波长范围/cm-1 | 归属 |
---|---|
4000~3862 | C—H弯曲振动 |
3600~3200 | O—H伸缩振动 |
3200~3000 | 芳香族C—H伸缩振动 |
2970~2850 | 脂肪族C—H伸缩振动 |
1600~1400 | 多烯/芳香族C |
1490~1420,1390~1360 | 脂肪族C—H弯曲振动 |
1300~1020 | C—O—C弯曲振动 |
1280~1270 | C |
1142~1130 | C—H在平面上的变形振动 |
1100~1050 | C—O变形振动 |
1050~1046 | Si—O—C或Si—O—Si振动 |
880~850 | 芳香环平面外C—H振动 |
800~796 | SiO和硅酸盐 |
665 | C—H弯曲振动 |
1 | WEI Liangliang, ZHU Fengyi, LI Qiaoyang, et al. Development, current state and future trends of sludge management in China: Based on exploratory data and CO2-equivaient emissions analysis[J]. Environment International, 2020, 144: 106093. |
2 | TAKDASTAN Afshin, RAHMANI Ali Reza, ALMASI Halime. A review of the effects of ozonation process on biological sludge reduction[J]. Desalination and Water Treatment, 2019, 162: 125-133. |
3 | Gokce KOR-BICAKCI, ESKICIOGLU Cigdem. Recent developments on thermal municipal sludge pretreatment technologies for enhanced anaerobic digestion[J]. Renewable and Sustainable Energy Reviews, 2019, 110: 423-443. |
4 | LI Yuanling, YU Han, LIU Lina, et al. Application of co-pyrolysis biochar for the adsorption and immobilization of heavy metals in contaminated environmental substrates[J]. Journal of Hazardous Materials, 2021, 420: 126655. |
5 | SHENTU Jiali, LI Xiaoxiao, HAN Ruifang, et al. Effect of site hydrological conditions and soil aggregate sizes on the stabilization of heavy metals (Cu, Ni, Pb, Zn) by biochar[J]. Science of the Total Environment, 2022, 802: 149949. |
6 | 李志远, 黄亚继, 赵佳琪, 等. 污泥与聚氯乙烯共热解重金属特性[J]. 化工进展, 2023, 42(9): 4947-4956. |
LI Zhiyuan, HUANG Yaji, ZHAO Jiaqi, et al. Characterization of heavy metals during co-pyrolysis of sludge with PVC[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4947-4956. | |
7 | WANG Xingdong, CHI Qiaoqiao, LIU Xuejiao, et al. Influence of pyrolysis temperature on characteristics and environmental risk of heavy metals in pyrolyzed biochar made from hydrothermally treated sewage sludge[J]. Chemosphere, 2019, 216: 698-706. |
8 | LI Chunxing, XIE Shengyu, YOU Futian, et al. Heavy metal stabilization and improved biochar generation via pyrolysis of hydrothermally treated sewage sludge with antibiotic mycelial residue[J]. Waste Management, 2021, 119: 152-161. |
9 | HAN Hengda, HU Song, SYED-HASSAN Syed Shatir A, et al. Effects of reaction conditions on the emission behaviors of arsenic, cadmium and lead during sewage sludge pyrolysis[J]. Bioresource Technology, 2017, 236: 138-145. |
10 | CHEN Xing, MA Rui, LUO Juan, et al. Co-microwave pyrolysis of electroplating sludge and municipal sewage sludge to synergistically improve the immobilization of high-concentration heavy metals and an analysis of the mechanism[J]. Journal of Hazardous Materials, 2021, 417: 126099. |
11 | WEN Yanjun, XIE Yingshen, JIANG Chi, et al. Products distribution and interaction mechanism during co-pyrolysis of rice husk and oily sludge by experiments and reaction force field simulation[J]. Bioresource Technology, 2021, 329: 124822. |
12 | HOU Jinyu, ZHONG Daoxu, LIU Wuxing. Catalytic co-pyrolysis of oil sludge and biomass over ZSM-5 for production of aromatic platform chemicals[J]. Chemosphere, 2022, 291: 132912. |
13 | GODLEWSKA Paulina, OLESZCZUK Patryk. Effect of biomass addition before sewage sludge pyrolysis on the persistence and bioavailability of polycyclic aromatic hydrocarbons in biochar-amended soil[J]. Chemical Engineering Journal, 2022, 429: 132143. |
14 | DONG Qing, ZHANG Shuping, WU Bo, et al. Co-pyrolysis of sewage sludge and rice straw: Thermal behavior and char characteristic evaluations[J]. Energy & Fuels, 2020, 34(1): 607-615. |
15 | LIU Tingting, LIU Zhengang, ZHENG Qingfu, et al. Effect of hydrothermal carbonization on migration and environmental risk of heavy metals in sewage sludge during pyrolysis[J]. Bioresource Technology, 2018, 247: 282-290. |
16 | 赵晓亮, 李响, 卢洪斌, 等. 东江湖表层沉积物重金属污染特征与潜在生态风险评价[J]. 环境科学, 2022, 43(6): 3048-3057. |
ZHAO Xiaoliang, LI Xiang, LU Hongbin, et al. Analysis of heavy metal pollution characteristics and potential ecological risks of surface sediments in Dongjiang Lake[J]. Environmental Science, 2022, 43(6): 3048-3057. | |
17 | 赵佳琪, 黄亚继, 李志远, 等. 污泥和聚氯乙烯共热解三相产物特性[J]. 化工进展, 2023, 42(4): 2122-2129. |
ZHAO Jiaqi, HUANG Yaji, LI Zhiyuan, et al. Characteristics of three-phase products from co-pyrolysis of sewage sludge and PVC[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2122-2129. | |
18 | JI Guozhao, YAO Joseph G, CLOUGH Peter T, et al. Enhanced hydrogen production from thermochemical processes[J]. Energy & Environmental Science, 2018, 11(10): 2647-2672. |
19 | 郑发, 李浩文, 林法伟, 等. 大庆罐底油泥热解特性及污染物释放特性[J]. 化工进展, 2022, 41(1): 476-484. |
ZHENG Fa, LI Haowen, LIN Fawei, et al. Pyrolysis characteristics and pollutant release characteristics of Daqing oil sludge[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 476-484. | |
20 | CHEN Yiwei, LIU Guijian, WANG Lei, et al. Occurrence and fate of some trace elements during pyrolysis of Yima coal, China[J]. Energy & Fuels, 2008, 22(6): 3877-3882. |
21 | WANG Xingdong, LI Chunxing, LI Zhiwei, et al. Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge[J]. Ecotoxicology and Environmental Safety, 2019, 168: 45-52. |
22 | LI Danni, SHAN Rui, JIANG Lixia, et al. A review on the migration and transformation of heavy metals in the process of sludge pyrolysis[J]. Resources, Conservation and Recycling, 2022, 185: 106452. |
23 | YUAN Xingzhong, LENG Lijian, HUANG Huajun, et al. Speciation and environmental risk assessment of heavy metal in bio-oil from liquefaction/pyrolysis of sewage sludge[J]. Chemosphere, 2015, 120: 645-652. |
24 | ZHANG Zhiyuan, JU Rui, ZHOU Hengtao, et al. Migration characteristics of heavy metals during sludge pyrolysis[J]. Waste Management, 2021, 120: 25-32. |
25 | CHANAKA UDAYANGA W D, VEKSHA Andrei, GIANNIS Apostolos, et al. Fate and distribution of heavy metals during thermal processing of sewage sludge[J]. Fuel, 2018, 226: 721-744. |
26 | 张双全, 武娜, 董明建, 等. 城市污泥与玉米秸秆共热解制备吸附剂的研究[J]. 中国矿业大学学报, 2011, 40(5): 799-803. |
ZHANG Shuangquan, WU Na, DONG Mingjian, et al. Research on preparation of adsorbents by co-pyrolysis of sewage sludge with corn straw[J]. Journal of China University of Mining & Technology, 2011, 40(5): 799-803. | |
27 | MENG Jun, TAO Mengming, WANG Lili, et al. Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure[J]. Science of the Total Environment, 2018, 633: 300-307. |
28 | ABANADES S, FLAMANT G, GAUTHIER D. Modelling of heavy metal vaporisation from a mineral matrix[J]. Journal of Hazardous Materials, 2001, 88(1): 75-94. |
29 | YUAN Xingzhong, HUANG Huajun, ZENG Guangming, et al. Total concentrations and chemical speciation of heavy metals in liquefaction residues of sewage sludge[J]. Bioresource Technology, 2011, 102(5): 4104-4110. |
30 | CHEN Ming, LI Xiaoming, YANG Qi, et al. Total concentrations and speciation of heavy metals in municipal sludge from Changsha, Zhuzhou and Xiangtan in middle-south region of China[J]. Journal of Hazardous Materials, 2008, 160(2/3): 324-329. |
31 | JIN Junwei, LI Yanan, ZHANG Jianyun, et al. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge[J]. Journal of Hazardous Materials, 2016, 320: 417-426. |
32 | HUANG Huajun, YANG Ting, LAI Faying, et al. Co-pyrolysis of sewage sludge and sawdust/rice straw for the production of biochar[J]. Journal of Analytical and Applied Pyrolysis, 2017, 125: 61-68. |
33 | 彭勃. 工业污泥与生物质共热解制炭及其重金属固化特性研究[D]. 南京: 东南大学, 2020. |
PENG Bo. Study on the characteristics of char production and heavy metals solidification during co-pyrolysis of industrial sludge and biomass[D]. Nanjing: Southeast University, 2020. | |
34 | PARIHAR Anurag, SRIPADA Pramod, BAMBERY Keith, et al. Investigation of functional group changes in biomass during slow pyrolysis using synchrotron based infra-red microspectroscopy and thermogravimetry-infra-red spectroscopy[J]. Journal of Analytical and Applied Pyrolysis, 2017, 127: 394-401. |
35 | 朱赫男, 王志朴, 邢文龙, 等. 污泥与生物质共热解制备生物质炭工艺优化及吸附性能[J]. 化工进展, 2018, 37(S1): 199-204. |
ZHU Henan, WANG Zhipu, XING Wenlong, et al. Process optimization and adsorption performance of co-pyrolysis of sludge and biomass to prepare biomass carbon[J]. Chemical Industry and Engineering Progress, 2018, 37(S1): 199-204. | |
36 | 任福民, 周玉松, 牛牧晨, 等. 污泥中的重金属特性分析和生态风险评价[J]. 北京交通大学学报, 2007, 31(1): 102-105. |
REN Fumin, ZHOU Yusong, NIU Muchen, et al. Characteristics analysis and environmental assessment on heavy metals in the sludge of sewage[J]. Journal of Beijing Jiaotong University, 2007, 31(1): 102-105. | |
37 | WANG Xingdong, CHANG Victor Wei-Chung, LI Zhiwei, et al. Co-pyrolysis of sewage sludge and organic fractions of municipal solid waste: Synergistic effects on biochar properties and the environmental risk of heavy metals[J]. Journal of Hazardous Materials, 2021, 412: 125200. |
38 | SHAO Shanshan, ZHANG Huiyan, XIAO Rui, et al. Evolution of coke in the catalytic conversion of biomass-derivates by combined in situ DRIFTS and ex-situ approach: Effect of functional structure[J]. Fuel Processing Technology, 2018, 178: 88-97. |
39 | ZHANG Huiyan, SHAO Shanshan, RYABOV Georgy, et al. Functional group in situ evolution principles of produced solid and product distribution in biomass torrefaction process[J]. Energy & Fuels, 2017, 31(12): 13639-13646. |
40 | 江茂生, 黄彪, 陈学榕, 等. 木材炭化机理的FT-IR光谱分析研究[J]. 林产化学与工业, 2005, 25(2): 16-20. |
JIANG Maosheng, HUANG Biao, CHEN Xuerong, et al. Ft-IR spectroscopic analysis on wood carbonization mechanism[J]. Chemistry & Industry of Forest Products, 2005, 25(2): 16-20. | |
41 | 简敏菲, 高凯芳, 余厚平. 不同裂解温度对水稻秸秆制备生物炭及其特性影响[J]. 环境科学学报, 2016, 36(5): 1757-1765. |
JIAN Minfei, GAO Kaifang, YU Houping. Effects of different pyrolysis temperatures on the preparation and characteristics of bio-char from rice straw[J]. Huanjing Kexue Xuebao/Acta Scientiae Circumstantiae, 2016, 36(5):1757-1765. |
[1] | ZHAO Liyang, LI Qian, HE Peixi, PAN Honghui, LIU Yan, LIU Xixiang. Tetracycline adsorption properties of sludge-based biochar ball-milled co-modified by phosphomolybdic acid-Fe3O4 [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 583-595. |
[2] | LI Songya, CHEN Binghua, LIU Biao, WANG Linpei, WANG Le, GU Deming, ZHOU Yiming, WANG Xiaoyan. Research progress on the regulation of signal molecule AI-2 during sludge granulation [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5217-5225. |
[3] | QUAN Cui, GAO Ningbo, ZHANG Guangtao, SUO Haojie. Leaching characteristics of heavy metals and polycyclic aromatic hydrocarbons from permeable bricks prepared by pyrolysis residue of oily sludge [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5226-5233. |
[4] | LIU Yucan, GAO Zhonglu, XU Xinyi, JI Xianguo, ZHANG Yan, SUN Hongwei, WANG Gang. Adsorption performance and mechanism of diuron from water by calcium-modified water hyacinth-based biochar [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4630-4641. |
[5] | MAO Huakai, YU Yang, ZHANG Yue, XIA Guangkun, WU Yuntao, LOU Leyao, NIU Wenjuan, LIU Nian. Synergistic biochar photocatalytic oxidation-adsorption for nitrite degradation [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4757-4765. |
[6] | HUANG Jun, ZHANG Yingjuan, LIN Yintong, WEI Xuechun, WU Yutong, WU Gaobo, MO Junlin, ZHAO Zhenxia, ZHAO Zhongxing. Preparation of silkworm excrement-based porous biocarbon and synergistic adsorption and slow-release performance for monosultap and dinotefuran [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3964-3971. |
[7] | YU Lishuang, LI Qingyun, LIU Zhaoming, ZHANG Shuru, LIU Youyan, TANG Aixing. Epoxidation of pinene catalyzed by lipase immobilized on rape pollen biochar [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3996-4004. |
[8] | KONG Xiangrui, DONG Yuecen, ZHANG Mengyu, WANG Biao, YIN Shui′e, CHEN Bing, LU Jiawei, ZHANG Yuan, FENG Lele, WANG Hongtao, XU Haiyun. Treatment technologies of fly ash from municipal solid waste incineration [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4102-4117. |
[9] | YAO Xue, WU Shuhui, YANG Yang, WANG Xiao, FENG Lei, FENG Xuedong, MA Yanfei. Treatment of oily wastewater by oily sludge-based biochar [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3398-3409. |
[10] | PAN Weiliang, ZHANG Xun, LI Jiaoni, GU Li, HE Qiang, AO Lianggen. Hypochlorite oxidation coupled with FeCl3 flocculation to improve sludge dewatering [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3450-3458. |
[11] | SHA Li, SU Yingjia, LING Zichen, YU Xiaoyan, LI Shupeng, GUO Lili, XIONG Jing, FANG Lianhu, ZHANG Ran, ZHANG Shuting. Effect of bituminous coal mixing on the electro-dewatering performance of sludge [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2144-2152. |
[12] | ZHAO Ruiqiang, ZHOU Xin, NIU Bingxin. Construction of a coupled process integrating dissimilatory nitrate reduction and anaerobic ammonia oxidation/denitrification for wastewater treatment [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1593-1605. |
[13] | GONG Zhiqiang, LIU Lei, WANG Shaohua, HAN Yue, GUO Junshan, SHANG Panfeng, ZHU Lingkai, ZHENG Wei. Migration and transformation characteristics of heavy metals during incineration of oily sludge [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1614-1620. |
[14] | ZHENG Yu, LI Jingjie, ZHANG Yufeng, ZHAO Mengqi, ZHANG Na, ZHOU Ao, YU Wei, TAN Houzhang, WANG Xuebin. Heavy metal leaching toxicity of typical grate furnace/fluidized bed furnace waste incineration fly ash and their chelated products [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1630-1636. |
[15] | PENG Cheng, XU Yilin, SHI Yujing, ZHANG Wen, LI Yutao, WANG Haoran, ZHANG Wei, ZHAN Xiuping. Research progress on the biochar modification and its remediation of herbicide-contaminated water and soil [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1069-1081. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 18
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 35
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |