Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (9): 5217-5225.DOI: 10.16085/j.issn.1000-6613.2023-1376
• Resources and environmental engineering • Previous Articles
LI Songya1,2(), CHEN Binghua1, LIU Biao1,2, WANG Linpei1,2, WANG Le1,2, GU Deming1,2, ZHOU Yiming1, WANG Xiaoyan1
Received:
2023-08-10
Revised:
2023-08-29
Online:
2024-09-30
Published:
2024-09-15
Contact:
LI Songya
李松亚1,2(), 陈炳桦1, 刘彪1,2, 王林裴1,2, 王乐1,2, 谷得明1,2, 周一鸣1, 王笑艳1
通讯作者:
李松亚
作者简介:
李松亚(1990—),男,博士,讲师,研究方向为水污染防治与修复。E-mail:20201013@huuc.edu.cn。
基金资助:
CLC Number:
LI Songya, CHEN Binghua, LIU Biao, WANG Linpei, WANG Le, GU Deming, ZHOU Yiming, WANG Xiaoyan. Research progress on the regulation of signal molecule AI-2 during sludge granulation[J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5217-5225.
李松亚, 陈炳桦, 刘彪, 王林裴, 王乐, 谷得明, 周一鸣, 王笑艳. 污泥颗粒化过程中信号分子AI-2调控作用研究进展[J]. 化工进展, 2024, 43(9): 5217-5225.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1376
菌属 | 作用 | 群体感应调控作用 |
---|---|---|
Aeromonas | 尚不明确 | 生物膜形成 |
Arcobacter | 尚不明确 | 尚不明确 |
Bacillus | 尚不明确 | 孢子形成 |
Corynebacterium | 尚不明确 | 尚不明确 |
Vibrio | 潜在病原体 | 生物膜形成,毒性 |
菌属 | 作用 | 群体感应调控作用 |
---|---|---|
Aeromonas | 尚不明确 | 生物膜形成 |
Arcobacter | 尚不明确 | 尚不明确 |
Bacillus | 尚不明确 | 孢子形成 |
Corynebacterium | 尚不明确 | 尚不明确 |
Vibrio | 潜在病原体 | 生物膜形成,毒性 |
1 | ZENG Xiangyong, ZOU Yunman, ZHENG Jia, et al. Quorum sensing-mediated microbial interactions: Mechanisms, applications, challenges and perspectives[J]. Microbiological Research, 2023, 273: 127414. |
2 | 李松亚, 费学宁, 焦秀梅, 等. 废水处理中群体感应调控行为研究进展[J]. 应用生态学报, 2018, 29(3): 1015-1022. |
LI Songya, FEI Xuening, JIAO Xiumei, et al. Progress on the regulation of quorum sensing in wastewater treatment[J]. Chinese Journal of Applied Ecology, 2018, 29(3): 1015-1022. | |
3 | LIU Lanlan, ZENG Xiangyong, ZHENG Jia, et al. AHL-mediated quorum sensing to regulate bacterial substance and energy metabolism: A review[J]. Microbiological Research, 2022, 262: 127102. |
4 | LIU Yirong, HU Huizhi, LUO Feng. Roles of autoinducer-2 mediated quorum sensing in wastewater treatment[J]. Water Science and Technology, 2021, 84(4): 793-809. |
5 | WANG Meizhen, LIAN Yulu, WANG Yujie, et al. The role and mechanism of quorum sensing on environmental antimicrobial resistance[J]. Environmental Pollution, 2023, 322: 121238. |
6 | LIU Qixin, FENG Xuan, SHENG Zhiya, et al. Enhanced wastewater treatment performance by understanding the interaction between algae and bacteria based on quorum sensing[J]. Bioresource Technology, 2022, 354: 127161. |
7 | 李松亚, 王林裴, 吴俊峰, 等. 城市污水处理厂微生物群落特征与群体感应调控[J]. 环境工程学报, 2022, 16(11): 3705-3715. |
LI Songya, WANG Linpei, WU Junfeng, et al. Characteristics of microbial community in urban sewage treatment plant and its quorum sensing regulation[J]. Chinese Journal of Environmental Engineering, 2022, 16(11): 3705-3715. | |
8 | HUANG Jinhui, YI Kaixin, ZENG Guangming, et al. The role of quorum sensing in granular sludge: Impact and future application: A review[J]. Chemosphere, 2019, 236: 124310. |
9 | BASSLER B L, WRIGHT M, SHOWALTER R E, et al. Intercellular signalling in Vibrio harveyi: Sequence and function of genes regulating expression of luminescence[J]. Molecular Microbiology, 1993, 9(4): 773-786. |
10 | BASSLER B L, GREENBERG E P, STEVENS A M. Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi [J]. Journal of Bacteriology, 1997, 179(12): 4043-4045. |
11 | SURETTE M G, MILLER M B, BASSLER B L. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: A new family of genes responsible for autoinducer production[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(4): 1639-1644. |
12 | XAVIER Karina B, BASSLER Bonnie L. LuxS quorum sensing: More than just a numbers game[J]. Current Opinion in Microbiology, 2003, 6(2): 191-197. |
13 | PEI Dehua, ZHU Jinge. Mechanism of action of S-ribosylhomocysteinase (LuxS)[J]. Current Opinion in Chemical Biology, 2004, 8(5): 492-497. |
14 | SCHAUDER S, SHOKAT K, SURETTE M G, et al. The LuxS family of bacterial autoinducers: Biosynthesis of a novel quorum-sensing signal molecule[J]. Molecular Microbiology, 2001, 41(2): 463-476. |
15 | ZHAO Jing, QUAN Chunshan, JIN Liming, et al. Production, detection and application perspectives of quorum sensing autoinducer-2 in bacteria[J]. Journal of Biotechnology, 2018, 268: 53-60. |
16 | CHEN Xin, SCHAUDER Stephan, POTIER Noelle, et al. Structural identification of a bacterial quorum-sensing signal containing boron[J]. Nature, 2002, 415(6871): 545-549. |
17 | MEIJLER Michael M, Louis G HOM, KAUFMANN Gunnar F, et al. Synthesis and biological validation of a ubiquitous quorum-sensing molecule[J]. Angewandte Chemie International Edition, 2004, 43(16): 2106-2108. |
18 | ROY Varnika, ADAMS Bryn L, BENTLEY William E. Developing next generation antimicrobials by intercepting AI-2 mediated quorum sensing[J]. Enzyme and Microbial Technology, 2011, 49(2): 113-123. |
19 | 魏光强, 王藤, 赵波, 等. 群体感应信号分子AI-2调控乳酸菌生物膜形成机制的研究进展[J]. 食品科学技术学报, 2023, 41(2): 141-153. |
WEI Guangqiang, WANG Teng, ZHAO Bo, et al. Research progress of formation mechanism of quorum sensing signal molecule AI-2 regulated lactic acid bacteria biofilm[J]. Journal of Food Science and Technology, 2023, 41(2): 141-153. | |
20 | MENG Fanqiang, ZHAO Mingwen, LU Zhaoxin. The LuxS/AI-2 system regulates the probiotic activities of lactic acid bacteria[J]. Trends in Food Science & Technology, 2022, 127: 272-279. |
21 | ARMBRUSTER Chelsie E, PANG Bing, Murrah Kyle, et al. RbsB (NTHI_0632) mediates quorum signal uptake in nontypeable Haemophilus influenzae strain 86-028NP[J]. Molecular Microbiology, 2011, 82(4): 836-850. |
22 | FAN Bolin, PAN Lixia, WANG Zhongliang, et al. The Streptococcus agalactiae ribose binding protein B (RbsB) mediates quorum sensing signal uptake via interaction with autoinducer-2 signals[J]. Journal of Ocean University of China, 2021, 20(5): 1285-1295. |
23 | ZHANG Lei, LI Shuyu, LIU Xiaozhen, et al. Sensing of autoinducer-2 by functionally distinct receptors in prokaryotes[J]. Nature Communications, 2020, 11(1): 5371. |
24 | SUN Supu, LIU Xiang, MA Buyun, et al. The role of autoinducer-2 in aerobic granulation using alternating feed loadings strategy[J]. Bioresource Technology, 2016, 201: 58-64. |
25 | BASSLER Bonnie L, WRIGHT Miriam, SILVERMAN Michael R. Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: Sequence and function of genes encoding a second sensory pathway[J]. Molecular Microbiology, 1994, 13(2): 273-286. |
26 | WINZER Klaus, HARDIE Kim R, BURGESS Nicola, et al. LuxS: Its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone[J]. Microbiology, 2002, 148(4): 909-922. |
27 | 燕彩玲, 李博, 顾悦, 等. 信号分子AI-2的检测方法研究进展[J]. 微生物学通报, 2016, 43(6): 1333-1338. |
YAN Cailing, LI Bo, GU Yue, et al. Methods for the determination of autoinducer-2—A review[J]. Microbiology China, 2016, 43(6): 1333-1338. | |
28 | JING Y, ZUO J, PHOUTHAPANE V, et al. An optimized method for detecting AI-2 signal molecule by a bioassay with Vibrio harveyi BB170[J]. Microbiology, 2021, 90(3): 383-391. |
29 | KEIZERS Marla, DOBRINDT Ulrich, BERGER Michael. A simple biosensor-based assay for quantitative autoinducer-2 analysis[J]. ACS Synthetic Biology, 2022, 11(2): 747-759. |
30 | RAJAMANI Sathish, ZHU Jinge, PEI Dehua, et al. A LuxP-FRET-based reporter for the detection and quantification of AI-2 bacterial quorum-sensing signal compounds[J]. Biochemistry, 2007, 46(13): 3990-3997. |
31 | RAUT Nilesh, JOEL Smita, PASINI Patrizia, et al. Bacterial autoinducer-2 detection via an engineered quorum sensing protein[J]. Analytical Chemistry, 2015, 87(5): 2608-2614. |
32 | CAMPAGNA Shawn R, GOODING Jessica R, Amanda L MAY. Direct quantitation of the quorum sensing signal, autoinducer-2, in clinically relevant samples by liquid chromatography-tandem mass spectrometry[J]. Analytical Chemistry, 2009, 81(15): 6374-6381. |
33 | XU Fang, SONG Xiangning, CAI Peijie, et al. Quantitative determination of AI-2 quorum-sensing signal of bacteria using high performance liquid chromatography-tandem mass spectrometry[J]. Journal of Environmental Sciences, 2017, 52: 204-209. |
34 | SONG Xiangning, QIU Haibin, XIAO Xiang, et al. Determination of autoinducer-2 in biological samples by high-performance liquid chromatography with fluorescence detection using pre-column derivatization[J]. Journal of Chromatography A, 2014, 1361: 162-168. |
35 | 黄晓遇, 谭炳琰, 李淳峰, 等. 柱前衍生-固相萃取-高效液相色谱荧光测定生物脱氮反应器中痕量信号分子AI-2[J]. 环境工程学报, 2019, 13(1): 109-115. |
HUANG Xiaoyu, TAN Bingyan, LI Chunfeng, et al. Detection of AI-2 signal molecules of quorum sensing in biological nitrogen removal processes by pre-column derivatization-solid phase extraction-high performance liquid chromatography with fluorescence detector[J]. Chinese Journal of Environmental Engineering, 2019, 13(1): 109-115. | |
36 | LEE Kibaek, LEE Chung-Hak, CHOO Kwang-Ho. A facile HPLC-UV-based method for determining the concentration of the bacterial universal signal autoinducer-2 in environmental samples[J]. Applied Sciences, 2021, 11(19): 9116. |
37 | DING Yangcheng, FENG Huajun, HUANG Wenkun, et al. The effect of quorum sensing on anaerobic granular sludge in different pH conditions[J]. Biochemical Engineering Journal, 2015, 103: 270-276. |
38 | ZHANG Shenghua, YU Xin, GUO Feng, et al. Effect of interspecies quorum sensing on the formation of aerobic granular sludge[J]. Water Science and Technology, 2011, 64(6): 1284-1290. |
39 | 陈国科, 黄钧, 毕京芳, 等. 好氧颗粒污泥耐受高碳氮负荷过程中的群体感应[J]. 应用与环境生物学报, 2014, 20(1): 73-79. |
CHEN Guoke, HUANG Jun, BI Jingfang, et al. Quorum sensing of aerobic granular sludge tolerating high carbon and nitrogen loads[J]. Chinese Journal of Applied and Environmental Biology, 2014, 20(1): 73-79. | |
40 | LIU Xiang, SUN Supu, MA Buyun, et al. Understanding of aerobic granulation enhanced by starvation in the perspective of quorum sensing[J]. Applied Microbiology and Biotechnology, 2016, 100(8): 3747-3755. |
41 | DING Yangcheng, FENG Huajun, ZHAO Zhiqing, et al. The effect of quorum sensing on mature anaerobic granular sludge in unbalanced nitrogen supply[J]. Water, Air, & Soil Pollution, 2016, 227(9): 334. |
42 | DING Yangcheng, FENG Huajun, SHEN Dongsheng, et al. The effect of organic shock loads on the stability of anaerobic granular sludge[J]. Environmental Technology, 2017, 38(23): 3026-3033. |
43 | FENG Huajun, DING Yangcheng, WANG Meizhen, et al. Where are signal molecules likely to be located in anaerobic granular sludge?[J]. Water Research, 2014, 50: 1-9. |
44 | XIONG Yanghui, LIU Yu. Essential roles of eDNA and AI-2 in aerobic granulation in sequencing batch reactors operated at different settling times[J]. Applied Microbiology and Biotechnology, 2012, 93(6): 2645-2651. |
45 | SHROUT Joshua D, NERENBERG Robert. Monitoring bacterial twitter: Does quorum sensing determine the behavior of water and wastewater treatment biofilms?[J]. Environmental Science & Technology, 2012, 46(4): 1995-2005. |
46 | DAVIES David G, PARSEK Matthew R, PEARSON James P, et al. The involvement of cell-to-cell signals in the development of a bacterial biofilm[J]. Science, 1998, 280(5361): 295-298. |
47 | LIU Shuli, ZHOU Miao, DAIGGER Glen T, et al. Granule formation mechanism, key influencing factors, and resource recycling in aerobic granular sludge (AGS) wastewater treatment: A review[J]. Journal of Environmental Management, 2023, 338: 117771. |
48 | WAN Chunli, FU Liya, LI Zhengwen, et al. Formation, application, and storage-reactivation of aerobic granular sludge: A review[J]. Journal of Environmental Management, 2022, 323: 116302. |
49 | JIANG Helong, Joo-Hwa TAY, MASZENAN Abdul Majid, et al. Enhanced phenol biodegradation and aerobic granulation by two coaggregating bacterial strains[J]. Environmental Science & Technology, 2006, 40(19): 6137-6142. |
50 | DING Yangcheng, FENG Huajun, HUANG Wenkun, et al. A sustainable method for effective regulation of anaerobic granular sludge: Artificially increasing the concentration of signal molecules by cultivating a secreting strain[J]. Bioresource Technology, 2015, 196: 273-278. |
51 | 吴桂荣. AI-2活化因子(硼)对厌氧氨氧化反应器污泥颗粒化及菌群结构的影响[D]. 广州: 广州大学, 2018. |
WU Guirong. Effect of AI-2 activating factor (boron) on sludge granulation and microbial community structure in anaerobic ammonium oxidation reactor[D].Guangzhou: Guangzhou University, 2018. | |
52 | XIONG Yanghui, LIU Yu. Involvement of ATP and autoinducer-2 in aerobic granulation[J]. Biotechnology and Bioengineering, 2010, 105(1): 51-58. |
53 | 陈重军, 曹茜斐, 邹馨怡, 等. 厌氧氨氧化颗粒污泥EPS的作用、成分及影响因素研究进展[J]. 环境工程学报, 2022, 16(2): 381-389. |
CHEN Chongjun, CAO Qianfei, ZOU Xinyi, et al. Review on function, composition and influencing factors of EPS in anammox granular sludge[J]. Chinese Journal of Environmental Engineering, 2022, 16(2): 381-389. | |
54 | XIONG Yanghui, LIU Yu. Importance of extracellular proteins in maintaining structural integrity of aerobic granules[J]. Colloids and Surfaces B: Biointerfaces, 2013, 112: 435-440. |
55 | LIU Xiaoying, LIU Jie, DENG Dongkun, et al. Investigation of extracellular polymeric substances (EPS) in four types of sludge: Factors influencing EPS properties and sludge granulation[J]. Journal of Water Process Engineering, 2021, 40: 101924. |
56 | 郑婧婧, 张智明, 徐向阳, 等. 污水处理好氧颗粒污泥生产运行中的结构与稳定性[J]. 应用与环境生物学报, 2021, 27(6): 1672-1685. |
ZHENG Jingjing, ZHANG Zhiming, XU Xiangyang, et al. Structure and stability of aerobic granular sludge during operation in wastewater treatment[J]. Chinese Journal of Applied and Environmental Biology, 2021, 27(6): 1672-1685. | |
57 | LEE Kibaek, KIM Yea-Won, LEE Seonki, et al. Stopping autoinducer-2 chatter by means of an indigenous bacterium (Acinetobacter sp. DKY-1): A new antibiofouling strategy in a membrane bioreactor for wastewater treatment[J]. Environmental Science & Technology, 2018, 52(11): 6237-6245. |
58 | ZHANG Quan, FAN Niansi, FU Jinjin, et al. Role and application of quorum sensing in anaerobic ammonium oxidation (anammox) process: A review[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(6): 626-648. |
[1] | ZHAO Ruiqiang, ZHOU Xin, NIU Bingxin. Construction of a coupled process integrating dissimilatory nitrate reduction and anaerobic ammonia oxidation/denitrification for wastewater treatment [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1593-1605. |
[2] | YANG Jieyuan, ZHU Yichun, LAI Yafen, ZHANG Chao, TIAN Shuai, XIE Ying. Effect of low intensity ultrasound on operation performance of high load Anammox-EGSB reactor [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1098-1108. |
[3] | SHI Tianxi, SHI Yonghui, WU Xinying, ZHANG Yihao, QIN Zhe, ZHAO Chunxia, LU Da. Effects of Fe2+ on the performance of Anammox EGSB reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5003-5010. |
[4] | CHEN Na, ZHANG Xiaojing, ZHANG Nan, MA Bingbing, ZHANG Han, YANG Haojie, ZHANG Hongzhong. Effect of quenching enzymes on partial nitrification-mixed autotrophic nitrogen removal system [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3816-3823. |
[5] | GUO Zhihan, XU Yunxiang, LI Tianhao, HUANG Zichuan, LIU Wenru, SHEN Yaoliang. Research progress on long-term stable operation of aerobic granular sludge [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2686-2697. |
[6] | LI Dong, GAO Feiyan, XIE Yibo, LI Zhu, ZHANG Jie. Effect of organic load fluctuation frequency on aerobic granular sludge [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6680-6688. |
[7] | Chao ZHANG, Xujun SHI, Guozhen ZHANG, Fuping WU, Wenwen YAN, Xingxing HUANG. Effect of elastic filler on heavy metals removal and granular sludge by ABR [J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2858-2866. |
[8] | Binchao ZHANG,Minjing ZENG,Linan ZHANG,Hongxin WANG,Yu ZENG,Sinong HUANG,Junfeng WU,Yuanyuan CHENG,Bei LONG. Adsorption of Cu2+ by autotrophic nitrifying granular sludge and its adsorption isotherm [J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1583-1590. |
[9] | Daling GE, Xin ZHOU, Rudy Koubode RONEL, Zeyang YIN, Wei ZHANG. Rapid start-up and microbial community characteristics of a micro-aerobic methane-producing EGSBBR system [J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5203-5210. |
[10] | Linan ZHANG, Binchao ZHANG, Zuwen LIU, Xinpeng XUAN, Yuanyuan CHENG, Bei LONG, Yu XING, Xin LAN, Minjing ZENG. Effect of particle size on storage stability of aerobic granular sludge [J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3450-3457. |
[11] | XUAN Xinpeng, ZHANG Linan, ZHAO Jue, WANG Zhiyong, CHENG Yuanyuan, LONG Bei. Remediation of filamentous bulking granule and its substrate degradation kinetics [J]. Chemical Industry and Engineering Progress, 2018, 37(08): 3245-3251. |
[12] | HAO Wei, LIU Yongjun, LIU Zhe, LU Jia. Effects of different carriers on the process of aerobic activated sludge granulation with low-strength wastewater [J]. Chemical Industry and Engineering Progress, 2018, 37(08): 3222-3230. |
[13] | ZHAO Jue, CHENG Yuanyuan, XUAN Xinpeng, ZHANG Linan, ZHENG Yangyang, LONG Bei. Influence of aeration depth on the stability of aerobic granular sludge [J]. Chemical Industry and Engineering Progress, 2018, 37(04): 1623-1630. |
[14] | ZHAO Jue, CHENG Yuanyuan, XUAN Xinpeng, LONG Bei, ZHENG Yangyang, LU Chenlu, WANG Zhiyong, WANG Huasheng. Room-temperature wet storage of aerobic granular sludge and its reactivation [J]. Chemical Industry and Engineering Progress, 2018, 37(01): 381-388. |
[15] | SU Haijia, WANG Luxi, DENG Shuang, DAI Yajie, WANG Chenxu. A review on the aerobic granular sludge technology [J]. Chemical Industry and Engineering Progree, 2016, 35(06): 1914-1922. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |