Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (4): 1583-1590.DOI: 10.16085/j.issn.1000-6613.2019-1223
• Resources and environmental engineering • Previous Articles Next Articles
Binchao ZHANG1,2(),Minjing ZENG1,2,Linan ZHANG1,2,Hongxin WANG1,2,Yu ZENG1,2,Sinong HUANG1,2,Junfeng WU3,Yuanyuan CHENG1,2,Bei LONG1,2()
Received:
2019-07-30
Online:
2020-04-28
Published:
2020-04-05
Contact:
Bei LONG
张斌超1,2(),曾敏静1,2,张立楠1,2,王洪欣1,2,曾玉1,2,黄思浓1,2,吴俊峰3,程媛媛1,2,龙焙1,2()
通讯作者:
龙焙
作者简介:
张斌超(1995—),男,硕士研究生,研究方向为高效废水生物处理技术研发。E-mail:基金资助:
CLC Number:
Binchao ZHANG,Minjing ZENG,Linan ZHANG,Hongxin WANG,Yu ZENG,Sinong HUANG,Junfeng WU,Yuanyuan CHENG,Bei LONG. Adsorption of Cu2+ by autotrophic nitrifying granular sludge and its adsorption isotherm[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1583-1590.
张斌超,曾敏静,张立楠,王洪欣,曾玉,黄思浓,吴俊峰,程媛媛,龙焙. 自养硝化颗粒污泥吸附铜离子性能及吸附等温线[J]. 化工进展, 2020, 39(4): 1583-1590.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-1223
序号 | 变量 | 吸附时间t/h | 搅拌速度v/r·min-1 | 污泥浓度c/mg·L-1 | mg·L-1 Cu2+浓度c/ | 温度T/℃ |
---|---|---|---|---|---|---|
1 | 初始Cu2+浓度 | 3.0 | 125 | 4500 | 20 | 25 |
2 | 初始Cu2+浓度 | 3.0 | 125 | 4500 | 50 | 25 |
3 | 初始Cu2+浓度 | 3.0 | 125 | 4500 | 100 | 25 |
4 | 初始Cu2+浓度 | 3.0 | 125 | 4500 | 150 | 25 |
5 | 初始Cu2+浓度 | 3.0 | 125 | 4500 | 200 | 25 |
6 | 吸附时间 | 1.5 | 125 | 4500 | 50 | 25 |
7 | 吸附时间 | 2.0 | 125 | 4500 | 50 | 25 |
8 | 吸附时间 | 2.5 | 125 | 4500 | 50 | 25 |
9 | 吸附时间 | 3.0 | 125 | 4500 | 50 | 25 |
10 | 吸附时间 | 3.5 | 125 | 4500 | 50 | 25 |
11 | 吸附时间 | 1.5 | 125 | 4500 | 100 | 25 |
12 | 吸附时间 | 2.0 | 125 | 4500 | 100 | 25 |
13 | 吸附时间 | 2.5 | 125 | 4500 | 100 | 25 |
14 | 吸附时间 | 3.0 | 125 | 4500 | 100 | 25 |
15 | 吸附时间 | 3.5 | 125 | 4500 | 100 | 25 |
16 | 污泥浓度 | 3.0 | 125 | 1500 | 50 | 25 |
17 | 污泥浓度 | 3.0 | 125 | 2250 | 50 | 25 |
18 | 污泥浓度 | 3.0 | 125 | 4500 | 50 | 25 |
19 | 污泥浓度 | 3.0 | 125 | 6750 | 50 | 25 |
20 | 污泥浓度 | 3.0 | 125 | 9000 | 50 | 25 |
21 | 污泥浓度 | 3.0 | 125 | 1500 | 100 | 25 |
22 | 污泥浓度 | 3.0 | 125 | 2250 | 100 | 25 |
23 | 污泥浓度 | 3.0 | 125 | 4500 | 100 | 25 |
24 | 污泥浓度 | 3.0 | 125 | 6750 | 100 | 25 |
25 | 污泥浓度 | 3.0 | 125 | 9000 | 100 | 25 |
26 | 搅拌速度 | 3.0 | 100 | 4500 | 50 | 25 |
27 | 搅拌速度 | 3.0 | 125 | 4500 | 50 | 25 |
28 | 搅拌速度 | 3.0 | 150 | 4500 | 50 | 25 |
29 | 搅拌速度 | 3.0 | 175 | 4500 | 50 | 25 |
30 | 搅拌速度 | 3.0 | 200 | 4500 | 50 | 25 |
31 | 搅拌速度 | 3.0 | 100 | 4500 | 100 | 25 |
32 | 搅拌速度 | 3.0 | 125 | 4500 | 100 | 25 |
33 | 搅拌速度 | 3.0 | 150 | 4500 | 100 | 25 |
34 | 搅拌速度 | 3.0 | 175 | 4500 | 100 | 25 |
35 | 搅拌速度 | 3.0 | 200 | 4500 | 100 | 25 |
36 | 温度 | 3.0 | 125 | 4500 | 50 | 15 |
37 | 温度 | 3.0 | 125 | 4500 | 50 | 20 |
38 | 温度 | 3.0 | 125 | 4500 | 50 | 25 |
39 | 温度 | 3.0 | 125 | 4500 | 50 | 30 |
40 | 温度 | 3.0 | 125 | 4500 | 50 | 35 |
41 | 温度 | 3.0 | 125 | 4500 | 100 | 15 |
42 | 温度 | 3.0 | 125 | 4500 | 100 | 20 |
43 | 温度 | 3.0 | 125 | 4500 | 100 | 25 |
44 | 温度 | 3.0 | 125 | 4500 | 100 | 30 |
45 | 温度 | 3.0 | 125 | 4500 | 100 | 35 |
序号 | 变量 | 吸附时间t/h | 搅拌速度v/r·min-1 | 污泥浓度c/mg·L-1 | mg·L-1 Cu2+浓度c/ | 温度T/℃ |
---|---|---|---|---|---|---|
1 | 初始Cu2+浓度 | 3.0 | 125 | 4500 | 20 | 25 |
2 | 初始Cu2+浓度 | 3.0 | 125 | 4500 | 50 | 25 |
3 | 初始Cu2+浓度 | 3.0 | 125 | 4500 | 100 | 25 |
4 | 初始Cu2+浓度 | 3.0 | 125 | 4500 | 150 | 25 |
5 | 初始Cu2+浓度 | 3.0 | 125 | 4500 | 200 | 25 |
6 | 吸附时间 | 1.5 | 125 | 4500 | 50 | 25 |
7 | 吸附时间 | 2.0 | 125 | 4500 | 50 | 25 |
8 | 吸附时间 | 2.5 | 125 | 4500 | 50 | 25 |
9 | 吸附时间 | 3.0 | 125 | 4500 | 50 | 25 |
10 | 吸附时间 | 3.5 | 125 | 4500 | 50 | 25 |
11 | 吸附时间 | 1.5 | 125 | 4500 | 100 | 25 |
12 | 吸附时间 | 2.0 | 125 | 4500 | 100 | 25 |
13 | 吸附时间 | 2.5 | 125 | 4500 | 100 | 25 |
14 | 吸附时间 | 3.0 | 125 | 4500 | 100 | 25 |
15 | 吸附时间 | 3.5 | 125 | 4500 | 100 | 25 |
16 | 污泥浓度 | 3.0 | 125 | 1500 | 50 | 25 |
17 | 污泥浓度 | 3.0 | 125 | 2250 | 50 | 25 |
18 | 污泥浓度 | 3.0 | 125 | 4500 | 50 | 25 |
19 | 污泥浓度 | 3.0 | 125 | 6750 | 50 | 25 |
20 | 污泥浓度 | 3.0 | 125 | 9000 | 50 | 25 |
21 | 污泥浓度 | 3.0 | 125 | 1500 | 100 | 25 |
22 | 污泥浓度 | 3.0 | 125 | 2250 | 100 | 25 |
23 | 污泥浓度 | 3.0 | 125 | 4500 | 100 | 25 |
24 | 污泥浓度 | 3.0 | 125 | 6750 | 100 | 25 |
25 | 污泥浓度 | 3.0 | 125 | 9000 | 100 | 25 |
26 | 搅拌速度 | 3.0 | 100 | 4500 | 50 | 25 |
27 | 搅拌速度 | 3.0 | 125 | 4500 | 50 | 25 |
28 | 搅拌速度 | 3.0 | 150 | 4500 | 50 | 25 |
29 | 搅拌速度 | 3.0 | 175 | 4500 | 50 | 25 |
30 | 搅拌速度 | 3.0 | 200 | 4500 | 50 | 25 |
31 | 搅拌速度 | 3.0 | 100 | 4500 | 100 | 25 |
32 | 搅拌速度 | 3.0 | 125 | 4500 | 100 | 25 |
33 | 搅拌速度 | 3.0 | 150 | 4500 | 100 | 25 |
34 | 搅拌速度 | 3.0 | 175 | 4500 | 100 | 25 |
35 | 搅拌速度 | 3.0 | 200 | 4500 | 100 | 25 |
36 | 温度 | 3.0 | 125 | 4500 | 50 | 15 |
37 | 温度 | 3.0 | 125 | 4500 | 50 | 20 |
38 | 温度 | 3.0 | 125 | 4500 | 50 | 25 |
39 | 温度 | 3.0 | 125 | 4500 | 50 | 30 |
40 | 温度 | 3.0 | 125 | 4500 | 50 | 35 |
41 | 温度 | 3.0 | 125 | 4500 | 100 | 15 |
42 | 温度 | 3.0 | 125 | 4500 | 100 | 20 |
43 | 温度 | 3.0 | 125 | 4500 | 100 | 25 |
44 | 温度 | 3.0 | 125 | 4500 | 100 | 30 |
45 | 温度 | 3.0 | 125 | 4500 | 100 | 35 |
序号 | A | B | C | Y |
---|---|---|---|---|
1 | 3.0 | 150 | 5250 | 93.55 |
2 | 2.5 | 100 | 9000 | 95.5 |
3 | 2.0 | 125 | 1500 | 50.8 |
4 | 2.5 | 125 | 5250 | 89.25 |
5 | 2.5 | 150 | 1500 | 30.8 |
6 | 2.0 | 150 | 5250 | 83.35 |
7 | 2.5 | 125 | 5250 | 79.75 |
8 | 2.0 | 100 | 5250 | 84 |
9 | 2.5 | 125 | 5250 | 98.45 |
10 | 3.0 | 125 | 9000 | 94.85 |
11 | 3.0 | 100 | 5250 | 82.05 |
12 | 3.0 | 125 | 1500 | 33.1 |
13 | 2.5 | 100 | 1500. | 51.8 |
14 | 2.0 | 125 | 9000 | 95.5 |
15 | 2.5 | 125 | 5250 | 87.95 |
16 | 2.5 | 150 | 9000 | 96.5 |
17 | 3.0 | 150 | 5250 | 84.35 |
序号 | A | B | C | Y |
---|---|---|---|---|
1 | 3.0 | 150 | 5250 | 93.55 |
2 | 2.5 | 100 | 9000 | 95.5 |
3 | 2.0 | 125 | 1500 | 50.8 |
4 | 2.5 | 125 | 5250 | 89.25 |
5 | 2.5 | 150 | 1500 | 30.8 |
6 | 2.0 | 150 | 5250 | 83.35 |
7 | 2.5 | 125 | 5250 | 79.75 |
8 | 2.0 | 100 | 5250 | 84 |
9 | 2.5 | 125 | 5250 | 98.45 |
10 | 3.0 | 125 | 9000 | 94.85 |
11 | 3.0 | 100 | 5250 | 82.05 |
12 | 3.0 | 125 | 1500 | 33.1 |
13 | 2.5 | 100 | 1500. | 51.8 |
14 | 2.0 | 125 | 9000 | 95.5 |
15 | 2.5 | 125 | 5250 | 87.95 |
16 | 2.5 | 150 | 9000 | 96.5 |
17 | 3.0 | 150 | 5250 | 84.35 |
实测值 | Langmuir | Freundlich | |||
---|---|---|---|---|---|
C0/mg·L-1 | Ce/mg·L-1 | Qe/mg·g-1 | Ce/Qe | lgCe | lgQe |
40 | 1.4 | 7.3524 | 0.1904 | 0.1461 | 0.8664 |
60 | 7.825 | 9.9381 | 0.7874 | 0.8935 | 0.9973 |
100 | 30.5 | 11.3333 | 2.6912 | 1.4843 | 1.0544 |
160 | 85.2 | 14.2476 | 5.9799 | 1.9304 | 1.1537 |
240 | 164.75 | 14.3333 | 11.4942 | 2.2168 | 1.1563 |
320 | 244 | 14.4762 | 16.8553 | 2.3874 | 1.1607 |
400 | 321.5 | 14.9524 | 21.5016 | 2.5072 | 1.1747 |
实测值 | Langmuir | Freundlich | |||
---|---|---|---|---|---|
C0/mg·L-1 | Ce/mg·L-1 | Qe/mg·g-1 | Ce/Qe | lgCe | lgQe |
40 | 1.4 | 7.3524 | 0.1904 | 0.1461 | 0.8664 |
60 | 7.825 | 9.9381 | 0.7874 | 0.8935 | 0.9973 |
100 | 30.5 | 11.3333 | 2.6912 | 1.4843 | 1.0544 |
160 | 85.2 | 14.2476 | 5.9799 | 1.9304 | 1.1537 |
240 | 164.75 | 14.3333 | 11.4942 | 2.2168 | 1.1563 |
320 | 244 | 14.4762 | 16.8553 | 2.3874 | 1.1607 |
400 | 321.5 | 14.9524 | 21.5016 | 2.5072 | 1.1747 |
吸附等温方程 | 经验公式 | 线性形式 | 线性拟合方程 |
---|---|---|---|
Langmuir | y=0.0666x+0.3638 | ||
Freundlich | y=0.1305x+0.8648 |
吸附等温方程 | 经验公式 | 线性形式 | 线性拟合方程 |
---|---|---|---|
Langmuir | y=0.0666x+0.3638 | ||
Freundlich | y=0.1305x+0.8648 |
1 | CAI Y LI C, WU D, et al. Highly active MgO nanoparticles for simultaneous bacterial inactivation and heavy metal removal from aqueous solution[J]. Chemical Engineering Journal, 2017, 312: 158-166. |
2 | WANG J, CHEN C. Biosorbents for heavy metals removal and their future[J]. Biotechnology Advances, 2009, 27(2): 195-226. |
3 | YU S, WANG X, PANG H, et al. Boron nitride-based materials for the removal of pollutants from aqueous solutions: a review[J]. Chemical Engineering Journal, 2018, 333: 343-360. |
4 | YAN G, VIRARAGHAVAN T. Heavy-metal removal from aqueous solution by fungus Mucorrouxii[J]. Water Research, 2003, 37(18): 4486-4496. |
5 | 王建龙, 陈灿. 生物吸附法去除重金属离子的研究进展[J]. 环境科学学报, 2010, 30(4): 673-701. |
WANG J L, CHEN C. Research advances in heavy metal removal by biosorption[J]. Acta Scientiae Circumstantiae, 2010, 30(4): 673-701. | |
6 | 蔡佳亮, 黄艺, 郑维爽. 生物吸附剂对废水重金属污染物的吸附过程和影响因子研究进展[J]. 农业环境科学学报, 2008, 27(4): 1297-1305. |
CAI J L, HUANG Y, ZHENG W S. Research development of biosorption process and impact factors on biosorbent for the treatment of wastewater containing heavy metals[J]. Journal of Agro-Environment Science, 2008, 27(4): 1297-1305. | |
7 | GAI L H, WANG S G, GONG W X, et al. Influence of pH and ionic strength on Cu(Ⅱ) biosorption by aerobic granular sludge and biosorption mechanism[J]. Journal of Chemical Technology and Biotechnology: International Research in Process, Environmental and Clean Technology, 2008, 83(6): 806-813. |
8 | WINKLER M K H, MEUNIER C, HENRIET O, et al. An integrative review of granular sludge for the biological removal of nutrients and recalcitrant organic matter from wastewater[J]. Chemical Engineering Journal, 2018, 336: 489-502. |
9 | SHOW K Y, LEE D J, TAY J H. Aerobic granulation: advances and challenges[J]. Applied Biochemistry and Biotechnology, 2012, 167(6): 1622-1640. |
10 | SARVAJITH M, REDDY G K K, NANCHARAIAH Y V. Textile dye biodecolourization and ammonium removal over nitrite in aerobic granular sludge sequencing batch reactors[J]. Journal of Hazardous Materials, 2018, 342: 536-543. |
11 | NANCHARAIAH Y V, REDDY G K K, MOHAN T V K, et al. Biodegradation of tributyl phosphate, an organosphatetriester, by aerobic granular biofilms[J]. Journal of Hazardous Materials, 2015, 283: 705-711. |
12 | RAMOS C, SUÁREZ-OJEDA M E, CARRERA J. Long-term impact of salinity on the performance and microbial population of an aerobic granular reactor treating a high-strength aromatic wastewater[J]. Bioresource Technology, 2015, 198: 844-851. |
13 | JIAN M, TANG C, LIU M. Adsorptive removal of Cu2+ from aqueous solution using aerobic granular sludge[J]. Desalination and Water Treatment, 2015, 54(7): 2005-2014. |
14 | 孙鑫, 李金城, 郑华燕, 等. 好氧颗粒污泥吸附Cu2+的研究[J]. 环境科学与技术, 2011, 34(9): 22-25. |
SUN X, LI J C, ZHENG H Y, et al. Cu2+ biosorption with aerobic granules[J]. Environmental Science and Technology, 2011, 34(9): 22- 25. | |
15 | SUN X F, LIU C, MA Y, et al. Enhanced Cu(Ⅱ) and Cr(Ⅵ) biosorption capacity on poly(ethylenimine) grafted aerobic granular sludge[J]. Colloids and Surfaces B: Biointerfaces, 2011, 82(2): 456-462. |
16 | WANG X H, SONG R H, TENG S X, et al. Characteristics and mechanisms of Cu(Ⅱ) biosorption by disintegrated aerobic granules[J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 431-437. |
17 | NI B J, FANG F, XIE W M, et al. Growth, maintenance and product formation of autotrophs in activated sludge: taking the nitrite-oxidizing bacteria as an example[J]. Water Research, 2008, 42(16): 4261-4270. |
18 | ZHANG B C, LONG B, CHENG Y Y, et al. Rapid domestication of autotrophic nitrifying granular sludge and its stability during long-term operation[J]. Environmental Technology. DOI.org/10.1080/09593330. 2019.1707881. |
19 | 宣鑫鹏, 张立楠, 赵珏, 等. 膨胀颗粒污泥的恢复及其基质降解动力学[J]. 化工进展, 2018, 37(8): 3245-3251. |
XUAN X P, ZHANG L N, ZHAO J, et al. Remediation of filamentous bulking granule and its substrate degradation kinetics[J]. Chemical Industry and Engineering Progress, 2018, 37(8): 3245-3251. | |
20 | 江孟, 胡学伟, 李静园, 等. 好氧颗粒污泥对 Pb2+, Cu2+, Cd2+的吸附[J]. 水处理技术, 2013, 39(2): 53-56. |
JIANG Meng, HU Xuewei, LI Jingyuan, et al. Adsorption of Pb2+, Cu2+, Cd2+ by aerobic granular sludge and the influencing factors[J]. Technology of Water Treatment, 2013, 39(2): 53-56. | |
21 | YANG C, WANG J, LEI M, et al. Biosorption of zinc(II) from aqueous solution by dried activated sludge[J]. Journal of Environmental Sciences, 2010, 22(5): 675-680. |
22 | ZYKOVA I V, PANOV V P, MAKASHOVA T G, et al. Fundamental aspects of heavy metal absorption by activated-sludge microorganisms[J]. Russian Journal of Applied Chemistry, 2002, 75(10): 1650-1652. |
23 | 唐虹, 康得军, 谢丹瑜. 活性污泥吸附重金属离子的影响因素[J]. 工业用水与废水, 2015, 46(6): 1-5. |
TANG H, KANG D J, XIE D Y. Influencing factors of heavy metal ions adsorption by activated sludge[J]. Industrial Water and Wastewater, 2015, 46(6): 1-5. | |
24 | YAN L, HU H, ZHANG S, et al. Arsenic tolerance and bioleaching from realgar based on response surface methodology by Acidithiobacillusferrooxidans isolated from Wudalianchi volcanic lake, northeast China[J]. Electronic Journal of Biotechnology, 2017, 25: 50-57. |
25 | MALAKOOTIAN M, MANSOORIAN H J, YARI A R. Removal of reactive dyes from aqueous solutions by a non-conventional and low cost agricultural waste: adsorption on ash of Aloe Vera plant[J]. Iranian Journal of Health, Safety and Environment, 2014, 1(3): 117-125. |
26 | 李志华, 张婷, 吴杰, 等. 异养菌与自养菌对好氧颗粒污泥稳定性的影响[J]. 土木建筑与环境工程, 2010, 32(5): 76-81. |
LI Z H, LI T, WU J, et al. Effects of heterotrophic and autotrophic bacteria on the stability of aerobic granular sludge[J]. Journal of Civil, Architectural and Environmental Engineering, 2010, 32(5): 76-81. | |
27 | HUANG L, LI M, SI G, et al. Assessment of microbial products in the biosorption process of Cu(Ⅱ) onto aerobic granular sludge: Extracellular polymeric substances contribution and soluble microbial products release[J]. Journal of Colloid and Interface Science, 2018, 527: 87-94. |
28 | LOAEC M, OLIER R, GUEZENNEC J. Uptake of lead, cadmiumand zinc by a novel bacterial exopolysaccharide[J]. Water Research, 1997, 31: 1171-1179. |
29 | WANG J L, CHEN C. Biosorption of heavy metals by Saccharomyces cerevisiae: a review[J]. Biotechnology Advances, 2006, 24: 427- 451. |
30 | DAVIS C W, DI TORO D M. Modeling nonlinear adsorption to carbon with a single chemical parameter: a lognormal Langmuir isotherm[J]. Environmental Science and Technology, 2015, 49(13): 7810-7817. |
31 | 梁龄予, 王耀晶, 闫颖, 等. 玉米芯吸附水中Cr(Ⅵ)的特性及SEM-EDS表征分析[J]. 生态环境学报, 2015, 24(2): 305-309. |
LIANG L Y, WANG Y J, YAN Y, et al. Adsorption property of Cr(Ⅵ) from aqueous solution by corncob and the SEM-EDS analysis on its characters[J]. Ecology and Environmental Sciences, 2015, 24(2): 305-309. | |
32 | 康铸慧, 王磊, 郑广宏, 等. 恶臭假单胞菌Pseudomonas putida 5-x细胞壁膜系统的Cu2+吸附性能[J]. 环境科学, 2006, 27(5): 965-971 |
KANG Z H, WANG L, ZHENG G H, et al. Capability of Cu2+ adsorption on cell surface of Pseudomonas putida 5-x[J]. Environmental Science, 2006, 27(5): 965-971 | |
33 | VIJVER M G, GESTEL C A M VAN, LANNO R P, et al. Internal metal sequestration and its ecotoxicological relevance: a review[J]. Environmental Science and Technology, 2004, 38: 4705-4712. |
[1] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[2] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[3] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[4] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[5] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[6] | WANG Peng, ZHANG Yang, FAN Bingqiang, HE Dengbo, SHEN Changshuai, ZHANG Hedong, ZHENG Shili, ZOU Xing. Process and kinetics of hydrochloric acid leaching of high-carbon ferrochromium [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 510-517. |
[7] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[8] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[9] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[10] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
[11] | WANG Xin, WANG Bingbing, YANG Wei, XU Zhiming. Anti-scale and anti-corrosion properties of PDA/PTFE superhydrophobic coating on metal surface [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4315-4321. |
[12] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
[13] | YU Jingwen, SONG Luna, LIU Yanchao, LYU Ruidong, WU Mengmeng, FENG Yu, LI Zhong, MI Jie. An indole-bearing hypercrosslinked polymer In-HCP for iodine adsorption from water [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3674-3683. |
[14] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[15] | BAI Yadi, DENG Shuai, ZHAO Ruikai, ZHAO Li, YANG Yingxia. Exploration on standardized test scheme and experimental performance of temperature swing adsorption carbon capture unit [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3834-3846. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |