| 1 |
王树东, 吕为智. 深度调峰形势下燃煤机组的价值量化评估[J]. 动力工程学报, 2020, 40(9): 701-706.
|
|
WANG Shudong, Weizhi LYU. Quantitative valuation of coal-fired units under deep peak regulation conditions[J]. Journal of Chinese Society of Power Engineering, 2020, 40(9): 701-706.
|
| 2 |
刘辉, 周科, 解冰, 等. 基于火焰温度场在线测量的燃煤锅炉深度调峰试验[J]. 热力发电, 2019, 48(8): 49-54.
|
|
LIU Hui, ZHOU Ke, XIE Bing, et al. Experimental investigation on deep peak load regulation of coal-fired boiler based on on-line measurement of flame temperature field[J]. Thermal Power Generation, 2019, 48(8): 49-54.
|
| 3 |
娄春, 张鲁栋, 蒲旸, 等. 基于自发辐射分析的被动式燃烧诊断技术研究进展[J]. 实验流体力学, 2021, 35(1): 1-17.
|
|
LOU Chun, ZHANG Ludong, PU Yang, et al. Research advances in passive techniques for combustion diagnostics based on analysis of spontaneous emission radiation[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 1-17.
|
| 4 |
张杰, 程勇, 黄志锋. 三维燃烧火焰辐射成像模型及其构建算法[J]. 燃烧科学与技术, 2022, 28(3): 347-354.
|
|
ZHANG Jie, CHENG Yong, HUANG Zhifeng. Radiative imaging model of three-dimensional flame and its construction method[J]. Journal of Combustion Science and Technology, 2022, 28(3): 347-354.
|
| 5 |
闫慧博, 唐广通, 李路江, 等. 热辐射成像法测量大型炉膛内三维温度场的算法新进展[J]. 洁净煤技术, 2022, 28(5): 97-108.
|
|
YAN Huibo, TANG Guangtong, LI Lujiang, et al. New progress of algorithm for three-dimensional temperature field in large scale furnace measured by thermal radiative imaging[J]. Clean Coal Technology, 2022, 28(5): 97-108.
|
| 6 |
周怀春, 李框宇, 安元, 等. 燃煤电站锅炉及工业窑炉三维燃烧温度分布监测研究进展[J]. 洁净煤技术, 2022, 28(10): 1-15.
|
|
ZHOU Huaichun, LI Kuangyu, AN Yuan, et al. Research progress of measuring three-dimensional temperature distributions in coal-fired boilers and industrial furnaces[J]. Clean Coal Technology, 2022, 28(10): 1-15.
|
| 7 |
HOLSTEIN Peter, RAABE Armin, Roland MÜLLER, et al. Acoustic tomography on the basis of travel-time measurement[J]. Measurement Science Technology, 2004, 15(7): 1420-1428.
|
| 8 |
张雅琪, 王飞, 崔海滨. 基于固定波长法吸收光谱技术的CO2温度测量[J]. 激光与光电子学进展, 2019, 56(19): 278-283.
|
|
ZHANG Yaqi, WANG Fei, CUI Haibin. Application of TDLAS to the measurement of temperature and concentration of gas components in a power station boiler furnace temperature measurement of carbon dioxide using fixed-wavelength absorption spectroscopy technique[J]. Laser & Optoelectronics Progress, 2019, 56(19): 278-283.
|
| 9 |
Manli LYU, ZHAO Jianping, CAO Shengxian, et al. Prediction of temperature distribution in a furnace using the incremental deep extreme learning machine[J]. PeerJ Computer Science, 2023, 9: 1218.
|
| 10 |
高正阳, 郭振, 胡佳琪, 等. 基于支持向量机与数值法的W火焰锅炉多目标燃烧优化及火焰重建[J]. 中国电机工程学报, 2011, 31(5): 13-19.
|
|
GAO Zhengyang, GUO Zhen, HU Jiaqi, et al. Multi-objective combustion optimization and flame reconstruction for W shaped boiler based on support vector regression and numerical simulation[J]. Proceedings of the CSEE, 2011, 31(5): 13-19.
|
| 11 |
郭子申, 董美蓉, 叶托, 等. 基于k近邻和数值模拟的锅炉炉膛温度场在线重建[J]. 工业炉, 2021, 43(6): 1-5.
|
|
GUO Zishen, DONG Meirong, YE Tuo, et al. Reconstruction of furnace temperature field based on k-nearest neighbor and numerical simulation[J]. Industrial Furnace, 2021, 43(6): 1-5.
|
| 12 |
ZHOU Lei, SONG Yuntong, JI Weiqi, et al. Machine learning for combustion[J]. Energy and AI, 2022, 7: 100128.
|
| 13 |
贾永会, 杜建桥, 汪潮洋, 等. 基于BP神经网络的燃煤锅炉温度分布预测[J]. 热能动力工程, 2020, 35(7): 130-138.
|
|
JIA Yonghui, DU Jianqiao, WANG Chaoyang, et al. Prediction model of temperature distribution in combustion zone of coal-fired boiler based on BP neural network[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(7): 130-138.
|
| 14 |
XUE Wenyuan, TANG Zhenhao, CAO Shengxian, et al. A novel online method incorporating computational fluid dynamics simulations and neural networks for reconstructing temperature field distributions in coal-fired boilers[J]. Energy, 2024, 286: 129568.
|
| 15 |
唐广通, 许烨烽, 闫慧博, 等. 基于深度学习与热辐射成像耦合的炉内温度场在线测量[J]. 动力工程学报, 2022, 42(10): 960-966.
|
|
TANG Guangtong, XU Yefeng, YAN Huibo, et al. Research of on-line measurement of temperature field in furnaces based on deep learning coupled thermal radiative imaging[J]. Journal of Chinese Society of Power Engineering, 2022, 42(10): 960-966.
|
| 16 |
HOCHREITER Sepp, Jürgen SCHMIDHUBER. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
|
| 17 |
马双忱, 林宸雨, 周权, 等. 基于深度神经网络的脱硫系统预测模型及应用[J]. 化工进展, 2021, 40(3): 1689-1698.
|
|
MA Shuangchen, LIN Chenyu, ZHOU Quan, et al. Prediction model of FGD system based on deep neural network and its application[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1689-1698.
|
| 18 |
张杰, 齐琪, 韩哲哲, 等. 基于深度学习和光场成像的火焰三维温度场重建算法[J]. 东南大学学报(自然科学版), 2021, 51(6): 1060-1067.
|
|
ZHANG Jie, QI Qi, HAN Zhezhe, et al. Reconstruction algorithm of flame 3D temperature distribution based on deep learning and light field imaging[J]. Journal of Southeast University (Natural Science Edition), 2021, 51(6): 1060-1067.
|
| 19 |
CAI Weiwei, HUANG Jianqing, DENG Andong, et al. Volumetric reconstruction for combustion diagnostics via transfer learning and semi-supervised learning with limited labels[J]. Aerospace Science and Technology, 2021, 110: 106487.
|
| 20 |
GOWDA Vishruth B, GOPALAKRISHNA M T, MEGHA J, et al. Foreground segmentation network using transposed convolutional neural networks and up sampling for multiscale feature encoding[J]. Neural Networks, 2024, 170: 167-175.
|
| 21 |
曹永杰. 基于CFD和机器学习的煤粉燃烧过程重建[D]. 北京: 华北电力大学, 2023.
|
|
CAO Yongjie. Reconstruction of pulverized coal combustion process based on CFD and machine learning[D]. Beijing: North China Electric Power University, 2023.
|
| 22 |
LOU Chun, ZHOU Huaichun. Deduction of the two-dimensional distribution of temperature in a cross section of a boiler furnace from images of flame radiation[J]. Combustion and Flame, 2005, 143(1/2): 97-105.
|
| 23 |
李天宇. 基于CFD与POD的煤粉锅炉燃烧动力场快速预测及防超温优化研究[D]. 南京: 东南大学, 2022.
|
|
LI Tianyu. Rapid prediction of combustion dynamic field and optimization of anti-overtemperature in coal-fired boiler based on CFD and POD[D]. Nanjing: Southeast University, 2022.
|