Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (4): 1934-1944.DOI: 10.16085/j.issn.1000-6613.2024-1743
• Special column:Measurement techniques for multiphase flow • Previous Articles Next Articles
WANG Guangya(
), DONG Meirong(
), ZHOU Jieheng, CHEN Xiang, LU Jidong
Received:2024-10-30
Revised:2024-12-04
Online:2025-05-07
Published:2025-04-25
Contact:
DONG Meirong
通讯作者:
董美蓉
作者简介:王光亚(2000—),男,硕士研究生,研究方向为锅炉状态诊断及系统优化。E-mail:202221014540@scut.edu.cn。
基金资助:CLC Number:
WANG Guangya, DONG Meirong, ZHOU Jieheng, CHEN Xiang, LU Jidong. Boiler load monitoring method based on time series alignment of flame images[J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1934-1944.
王光亚, 董美蓉, 周杰恒, 陈翔, 陆继东. 基于火焰图像时序规整的锅炉负荷监测方法[J]. 化工进展, 2025, 44(4): 1934-1944.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1743
| 锅炉参数 | 50%负荷工况 | 80%负荷工况 | 100%负荷工况 |
|---|---|---|---|
| 负荷范围/MW | 156.03~161.70 | 236.84~242.02 | 276.86~283.45 |
| 一次风量/t·h-1 | 228.70~236.44 | 244.32~255.77 | 274.07~284.11 |
| 二次风量/t·h-1 | 274.66~307.65 | 387.46~416.31 | 485.88~536.36 |
| 总给煤率/t·h-1 | 74.90~80.13 | 103.98~111.16 | 125.61~133.70 |
| 锅炉参数 | 50%负荷工况 | 80%负荷工况 | 100%负荷工况 |
|---|---|---|---|
| 负荷范围/MW | 156.03~161.70 | 236.84~242.02 | 276.86~283.45 |
| 一次风量/t·h-1 | 228.70~236.44 | 244.32~255.77 | 274.07~284.11 |
| 二次风量/t·h-1 | 274.66~307.65 | 387.46~416.31 | 485.88~536.36 |
| 总给煤率/t·h-1 | 74.90~80.13 | 103.98~111.16 | 125.61~133.70 |
| 1 | 黄晟, 王静宇, 郭沛, 等. 碳中和目标下能源结构优化的近期策略与远期展望[J]. 化工进展, 2022, 41(11): 5695-5708. |
| HUANG Sheng, WANG Jingyu, GUO Pei, et al. Near-term strategies and long-term outlook for energy structure optimization under carbon neutrality goals[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5695-5708. | |
| 2 | 苗青青, 石春艳, 张香平. 碳中和目标下的光伏发电技术[J]. 化工进展, 2022, 41(3): 1125-1131. |
| MIAO Qingqing, SHI Chunyan, ZHANG Xiangping. Photovoltaic power generation technology under carbon neutrality goals[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1125-1131. | |
| 3 | 李明扬, 蒋媛媛. 考虑煤耗率的火电机组灵活调峰对风电消纳的影响效果研究[J]. 热力发电, 2020, 49(2): 45-51. |
| LI Mingyang, JIANG Yuanyuan. Study on the impact of flexible peak load regulation of thermal power units considering coal consumption rate on wind power accommodation[J]. Thermal Power Generation, 2020, 49(2): 45-51. | |
| 4 | 周怀春, 胡志方, 郭建军, 等. 面向智能发电的电站燃煤锅炉在线运行优化[J]. 分布式能源, 2019, 4(3): 1-7. |
| ZHOU Huaichun, HU Zhifang, GUO Jianjun, et al. Online operation optimization of coal-fired boilers in power plants for intelligent power generation[J]. Distributed Energy, 2019, 4(3): 1-7. | |
| 5 | 王义松, 车帅, 宋延丽, 等. 燃煤锅炉火检系统应用中存在的问题及其优化方法综述[J]. 冶金能源, 2017, 36(S1): 105-107. |
| WANG Yisong, CHE Shuai, SONG Yanli, et al. Review of issues and optimization methods in the application of flame detection systems for coal-fired boilers[J]. Metallurgical Energy, 2017, 36(S1): 105-107. | |
| 6 | 李欣宇, 唐德东, 张淑敏, 等. 发电厂锅炉燃烧状态监测技术综述[J]. 中国特种设备安全, 2024, 40(1): 28-33. |
| LI Xinyu, TANG Dedong, ZHANG Shumin, et al. Review of monitoring technology for boiler combustion status in power plants[J]. China Special Equipment Safety, 2024, 40(1): 28-33. | |
| 7 | 周怀春, 韩曙东, 盛锋, 等. 炉膛燃烧温度场三维可视化监测方法模拟研究[J]. 动力工程, 2003, 23(1): 2154-2159. |
| ZHOU Huaichun, HAN Shudong, SHENG Feng, et al. Simulation study on 3D visualization monitoring method for furnace combustion temperature field[J]. Power Engineering, 2003, 23(1): 2154-2159. | |
| 8 | YAN Y, LU G, COLECHIN M. Monitoring and characterisation of pulverised coal flames using digital imaging techniques[J]. Fuel, 2002, 81(5): 647-655. |
| 9 | 韩璞, 张欣, 王兵, 等. 基于神经网络的交互式炉膛火焰图像识别[J]. 中国电机工程学报, 2008, 28(20): 22-26. |
| HAN Pu, ZHANG Xin, WANG Bing, et al. Interactive furnace flame image recognition based on neural networks[J]. Proceedings of the CSEE, 2008, 28(20): 22-26. | |
| 10 | 刘禾. 基于火焰图像和模糊神经网络的锅炉燃烧稳定性判别[J]. 仪器仪表学报, 2008, 29(6): 1280-1284. |
| LIU He. Boiler combustion stability discrimination based on flame images and fuzzy neural networks[J]. Journal of Instruments, 2008, 29(6): 1280-1284. | |
| 11 | CHEN Junghui, HSU Tong-Yang, CHEN Chih-chien, et al. Monitoring combustion systems using HMM probabilistic reasoning in dynamic flame images[J]. Applied Energy, 2010, 87(7): 2169-2179. |
| 12 | SUJATHA K, VENMATHI M, PAPPA N. Flame monitoring in power station boilers using image processing[J]. ICTACT Journal on Image and Video Processing, 2012, 2(4): 427-434. |
| 13 | QIU Tian, LIU Minjian, ZHOU Guiping, et al. An unsupervised classification method for flame image of pulverized coal combustion based on convolutional auto-encoder and hidden Markov model[J]. Energies, 2019, 12(13): 2585. |
| 14 | 艾徐华. 基于炉膛火焰图像的锅炉燃烧稳定性判别[D]. 北京: 华北电力大学, 2019. |
| AI Xuhua. Discrimination of boiler combustion stability based on furnace flame images[D]. Beijing: North China Electric Power University, 2019. | |
| 15 | 黄琪. 基于火焰图像的炉膛燃烧稳定性定量分析[D]. 北京: 华北电力大学, 2022. |
| HUANG Qi. Quantitative analysis of furnace combustion stability based on flame images[D]. Beijing: North China Electric Power University, 2022. | |
| 16 | 黄埔, 楼波, 李森浩, 等. 锅炉燃烧火焰的脉动频率特征[J]. 锅炉技术, 2023, 54(6): 42-46. |
| HUANG Pu, LOU Bo, LI Senhao, et al. Pulsation frequency characteristics of boiler combustion flames[J]. Boiler Technology, 2023, 54(6): 42-46. | |
| 17 | 王印松, 雷玉. 基于DCS数据和燃烧图像的垃圾焚烧炉主蒸汽温度预测[J]. 中国电机工程学报, 2023, 43(22): 8790-8801. |
| WANG Yinsong, LEI Yu. Prediction of main steam temperature in waste incineration furnace based on DCS data and combustion images[J]. Proceedings of the CSEE, 2023, 43(22): 8790-8801. | |
| 18 | 唐振浩, 柴向颖, 曹生现, 等. 考虑时延特征的燃煤锅炉NO x 排放深度学习建模[J]. 中国电机工程学报, 2020, 40(20): 6633-6643. |
| TANG Zhenhao, CHAI Xiangying, CAO Shengxian, et al. Deep learning modeling of NO x emissions from coal-fired boilers considering time delay characteristics[J]. Proceedings of the CSEE, 2020, 40(20): 6633-6643. | |
| 19 | 王文广, 王朔, 赵文杰. 基于最大信息系数变量选择的电站锅炉NO x 排放量在线预估[J]. 华北电力大学学报(自然科学版), 2019, 46(6): 66-72. |
| WANG Wenguang, WANG Shuo, ZHAO Wenjie. Online prediction of NO x emissions from power plant boilers based on maximum information coefficient variable selection[J]. Journal of North China Electric Power University (Natural Science Edition), 2019, 46(6): 66-72. | |
| 20 | 张慧敏. 基于动态时间规整算法的语音识别技术研究[J]. 科技资讯, 2017, 15(26): 28-31. |
| ZHANG Huimin. Research on speech recognition technology based on dynamic time warping algorithm[J]. Science and Technology Information, 2017, 15(26): 28-31. | |
| 21 | 刘洋, 于海东, 刘文彬, 等. 基于DTW-两阶四分位的分布式光伏发电异常数据辨识[J]. 热力发电, 2024, 53(7): 34-44. |
| LIU Yang, YU Haidong, LIU Wenbin, et al. Identification of abnormal data in distributed photovoltaic power generation based on DTW-second order quartile[J]. Thermal Power Generation, 2024, 53(7): 34-44. | |
| 22 | 张一琛, 陈双全, 靳松, 等. 基于动态时间规整算法的纵波与转换波时间域匹配[J]. 石油科学通报, 2018, 3(2): 144-153. |
| ZHANG Yichen, CHEN Shuangquan, JIN Song, et al. Time domain matching of longitudinal waves and converted waves based on dynamic time warping algorithm[J]. Petroleum Science Bulletin, 2018, 3(2): 144-153. | |
| 23 | 王瑞, 王英洲, 逯静. 基于ICEEMDAN-DTW和ISMA-WLSSVM的光伏发电功率预测[J]. 热能动力工程, 2023, 38(9): 131-140. |
| WANG Rui, WANG Yingzhou, LU Jing. Photovoltaic power generation forecasting based on ICEEMDAN-DTW and ISMA-WLSSVM[J]. Journal of Engineering for Thermal Energy and Power, 2023, 38(9): 131-140. | |
| 24 | GALBALLY Javier, GALBALLY David. A pattern recognition approach based on DTW for automatic transient identification in nuclear power plants[J]. Annals of Nuclear Energy, 2015, 81: 287-300. |
| 25 | 刘健庄, 栗文青. 灰度图象的二维Otsu自动阈值分割法[J]. 自动化学报, 1993, 19(1): 101-105. |
| LIU Jianzhang, LI Wenqing. Two-dimensional Otsu automatic threshold segmentation method for grayscale images[J]. Acta Automatica Sinica, 1993, 19(1): 101-105. | |
| 26 | 覃晓, 元昌安, 邓育林, 等. 一种改进的Ostu图像分割法[J]. 山西大学学报(自然科学版), 2013, 36(4): 530-534. |
| QIN Xiao, YUAN Changan, DENG Yulin, et al. An improved Otsu image segmentation method[J]. Journal of Shanxi University (Natural Science Edition), 2013, 36(4): 530-534. | |
| 27 | GIORGINO Toni. Computing and visualizing dynamic time warping alignments in R: The DTW package[J]. Journal of Statistical Software, 2009, 31(7): 1-24. |
| 28 | 刘鲭洁, 陈桂明, 刘晓方, 等. FFT和小波变换在信号降噪中的应用[J]. 数据采集与处理, 2009, 24(S1): 58-60. |
| LIU Qingjie, CHEN Guiming, LIU Xiaofang, et al. Applications of FFT and wavelet transform in signal denoising[J]. Journal of Data Acquisition and Processing, 2009, 24(S1): 58-60. | |
| 29 | KIRCHHOFF Holger, LERCH Alexander. Evaluation of features for audio-to-audio alignment[J]. Journal of New Music Research, 2011, 40(1): 27-41. |
| [1] | ZHU Shiyu, HE Yongjin, WANG Mingzi, CHEN Bilian. Research progress on microalgae to fix CO2 in flue gas from coal-fired power plants [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1666-1682. |
| [2] | MA Yun, FU Wei, WANG Xin, YANG Ruyi, QIAN Xiangchen. Siamese-inception network based burner flame condition monitoring [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 760-767. |
| [3] | ZHENG Chengqiang, LI Xiaolong, LI Junzhuang, DUAN Jiuxiang, YANG Linjun. Research progress on migration and transformation characteristics of escaped ammonia in coal-fired power plants [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 964-973. |
| [4] | YU Yang, ZHOU Xin, CHENG Junfeng, DONG Changqing, WANG Yushan, LIU Yinghua. Research progress in detection methods, emission natures and removal technologies of condensable particulate matter from coal-fired power plants [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4515-4524. |
| [5] | MA Shuangchen, LIN Chenyu, ZHOU Quan, WU Zhongsheng, LIU Qi, CHEN Wentong, FAN Shuaijun, YAO Yakun, MA Caini. Prediction model of FGD system based on deep neural network and its application [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1689-1698. |
| [6] | Yingli YU, Xuchen FU, Yingying DAI, Jun RONG, Zhengping GAO, Bin CAI, Junhu HU. Analysis and countermeasure of high temperature corrosion on water wall of coal-fired power plant boiler [J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 90-96. |
| [7] | Weijing YU, Chao MA, Wenbin TAN, Lei CUI, Yubin CHEN, Changhao LI. Research progress of white plume control in coal-fired power plants [J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 232-241. |
| [8] | Peng FENG, Zhenghong LI, Hexin LIU, Houzhang TAN, Sicong ZHANG, Xuchao LU, Fuxin YANG. Migration and removal characteristics of SO3 in ultra-low emission coal-fired power plant [J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4660-4667. |
| [9] | Haizhou LIN, Haizhong LUO, Aiguo PEI, Mengxiang FANG. Simulation and analysis of carbon dioxide capture process using MDEA/PZ blend solution in a coal-fired power plant [J]. Chemical Industry and Engineering Progress, 2019, 38(04): 2046-2055. |
| [10] | Haiping XIAO,Yuhui CHEN,Jinlin GE,Xiaoning WANG,Jianlin XI,Lining LIU. Online monitoring heating surface pollution of a boiler economizer in coal-fired power plant [J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1573-1578. |
| [11] | LIN Haizhou, PEI Aiguo, FANG Mengxiang. Progress of research on process modifications for amine solvent-based post combustion CO2 capture from coal-fired power plant [J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4874-4886. |
| [12] | LIU Hanxiao, YAO Yuping, LI Jianguo, HE Yuzhong, CHEN Zhaomei, GUO Ying, GUO Feng, FANG Xiaowei. Research of PM2.5 agglomeration for multi-scale integrated/multi-field synergy/multiphase coupling mechanism [J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 500-505. |
| [13] | SUN Yawei, XIE Meilian, LIU Qingling, MA Degang, JI Na, SONG Chunfeng. Membrane-based carbon dioxide separation from flue gases of coal-fired power plant-current status and developments [J]. Chemical Industry and Engineering Progress, 2017, 36(05): 1880-1889. |
| [14] | ZHANG Shenghan, SUN Chenhao, CHEN Yuqiang. Research progress on selenium removal of FGD wastewater from coal-fired power plants [J]. Chemical Industry and Engineering Progress, 2017, 36(04): 1460-1469. |
| [15] | ZHANG Caizhu,WANG Chunyan,CHEN Shan,WEI Shun’an. Energy analysis of subcritical coal-fired power plant [J]. Chemical Industry and Engineering Progree, 2013, 32(06): 1278-1282. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |