Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (4): 1945-1956.DOI: 10.16085/j.issn.1000-6613.2024-1933
• Special column:Measurement techniques for multiphase flow • Previous Articles Next Articles
WANG Lei1(
), WANG Yan1(
), GAN Yufeng2(
), LUO Kai1, FEI Hua1, LUAN Yanding1
Received:2024-11-24
Revised:2025-02-12
Online:2025-05-07
Published:2025-04-25
Contact:
WANG Yan, GAN Yufeng
王磊1(
), 王艳1(
), 甘玉凤2(
), 罗凯1, 费华1, 栾俨丁1
通讯作者:
王艳,甘玉凤
作者简介:王磊(1983—),男,讲师,研究方向为传热与制冷。E-mail: 78348594@qq.com。
基金资助:CLC Number:
WANG Lei, WANG Yan, GAN Yufeng, LUO Kai, FEI Hua, LUAN Yanding. Heat transfer characteristics of supercritical CO2 in different heated mini-channels under horizontal flow condition[J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1945-1956.
王磊, 王艳, 甘玉凤, 罗凯, 费华, 栾俨丁. 水平流向不同小流道加热管内超临界CO2的传热特性[J]. 化工进展, 2025, 44(4): 1945-1956.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1933
| 参数 | 不确定度 | ||
|---|---|---|---|
| 1mm | 0.75mm | 0.5mm | |
| 压力 | 0.5% | 0.5% | 0.5% |
| 测量温度 | 0.2 | 0.2 | 0.2 |
| 质量流量 | 1.7%~2.8% | 1.7%~2.8% | 1.7%~2.8% |
| 焓值 | 0.1%~2.6% | 0.1%~3.4% | 0.1%~5.0% |
| 热通量 | 5.3%~5.7% | 6.9%~7.2% | 10.1%~10.4% |
| 对流换热系数 | 5.3%~6.3% | 7.0%~8.2% | 10.6%~13.0% |
| 参数 | 不确定度 | ||
|---|---|---|---|
| 1mm | 0.75mm | 0.5mm | |
| 压力 | 0.5% | 0.5% | 0.5% |
| 测量温度 | 0.2 | 0.2 | 0.2 |
| 质量流量 | 1.7%~2.8% | 1.7%~2.8% | 1.7%~2.8% |
| 焓值 | 0.1%~2.6% | 0.1%~3.4% | 0.1%~5.0% |
| 热通量 | 5.3%~5.7% | 6.9%~7.2% | 10.1%~10.4% |
| 对流换热系数 | 5.3%~6.3% | 7.0%~8.2% | 10.6%~13.0% |
| m/kg·h-1 | G/kg·m-2·s-1 | ||
|---|---|---|---|
| 1mm | 0.75mm | 0.5mm | |
| 1.9 | 672.0 | 1194.6 | 2688.0 |
| 2.4 | 848.8 | 1509.0 | 3395.3 |
| 2.9 | 1025.7 | 1823.4 | 4102.7 |
| m/kg·h-1 | G/kg·m-2·s-1 | ||
|---|---|---|---|
| 1mm | 0.75mm | 0.5mm | |
| 1.9 | 672.0 | 1194.6 | 2688.0 |
| 2.4 | 848.8 | 1509.0 | 3395.3 |
| 2.9 | 1025.7 | 1823.4 | 4102.7 |
| 1 | WANG Kunru, CHEN Jian, ZHAO Rui, et al. Experimental investigation of the effects of transverse vibration on the supercritical CO2 heat transfer characteristics in horizontal tubes[J]. International Journal of Heat and Mass Transfer, 2023, 214: 124311. |
| 2 | LIU Shenghui, LIU Ruilong, HUANG Yanping, et al. Experimental study on flow and heat transfer of supercritical carbon dioxide in zigzag channels with bending angle 30° for advanced nuclear systems[J]. Annals of Nuclear Energy, 2023, 185: 109720. |
| 3 | Oǧuzhan GÖKKAYA, Efe ÖZTABAK, Hojin AHN. Experimental investigation on heat transfer characteristics of supercritical CO2 flowing upward and downward through a microtube at low Reynolds numbers[J]. Experimental Thermal and Fluid Science, 2022, 139: 110717. |
| 4 | DU Xin, ZHU Xiaojing, YU Xiao, et al. Heat transfer deterioration and visualized flow state of supercritical CO2 in a vertical non-circular channel[J]. Nuclear Engineering and Design, 2022, 386: 111574. |
| 5 | WANG Lei, PAN Yucheng, LEE Jinder, et al. Convective heat transfer characteristics of supercritical carbon dioxide in vertical miniature tubes of a uniform heating experimental system[J]. International Journal of Heat and Mass Transfer, 2021, 159: 120833. |
| 6 | PARK Joohyun, KWON Jingyu, KIM Moohwan, et al. Experimental investigation of buoyancy effects on local heat transfer of supercritical pressure CO2 in horizontal semicircular tube[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120496. |
| 7 | WANG Lei, PAN Yucheng, LEE Jinder, et al. Experimental investigation in the local heat transfer of supercritical carbon dioxide in the uniformly heated horizontal miniature tubes[J]. International Journal of Heat and Mass Transfer, 2020, 159: 120136. |
| 8 | GUO Pengcheng, LIU Shouchun, YAN Jianguo, et al. Experimental study on heat transfer of supercritical CO2 flowing in a mini tube under heating conditions[J]. International Journal of Heat and Mass Transfer, 2020, 153: 119623. |
| 9 | JAJJA Saad A, ZADA Kyle R, FRONK Brian M. Experimental investigation of supercritical carbon dioxide in horizontal microchannels with non-uniform heat flux boundary conditions[J]. International Journal of Heat and Mass Transfer, 2019, 130: 304-319. |
| 10 | ZHANG Kaidi, LU Mingjian, SUN Yuwei, et al. Study of the heat transfer deterioration of supercritical CO2 in vertical pipes using a hybrid RANS/LES method[J]. International Journal of Thermal Sciences, 2023, 185: 108101. |
| 11 | HE Jundi, YAN Junjie, WANG Wei, et al. Effects of buoyancy and thermophysical property variations on the flow of supercritical carbon dioxide[J]. International Journal of Heat and Fluid Flow, 2020, 86: 108697. |
| 12 | WAN Teng, ZHAO Pinghui, LIU Jiaming, et al. Mean velocity and temperature scaling for near-wall turbulence with heat transfer at supercritical pressure[J]. Physics of Fluids, 2020, 32: 055103. |
| 13 | WANG Jianyong, GUAN Zhiqiang, GURGENCI Hal, et al. A comprehensive review on numerical approaches to simulate heat transfer of turbulent supercritical CO2 flows[J]. Numerical Heat Transfer, Part B: Fundamentals, 2020, 77: 349-400. |
| 14 | KIM Tae Ho, KWON Jin Gyu, PARK Joo Hyun, et al. Heat transfer model for horizontal flows of CO2 at supercritical pressures in terms of mixed convection[J]. International Journal of Heat and Mass Transfer, 2019, 131: 1117-1128. |
| 15 | ZHANG Yuandong, PENG Minjun, XIA Genglei, et al. Numerical investigation on local heat transfer characteristics of S-CO2 in horizontal semicircular microtube[J]. Applied Thermal Engineering, 2019, 154: 380-392. |
| 16 | NABIL Mahdi, RATTNER Alexander S. Large eddy simulations of high-heat-flux supercritical CO2 convection in microchannels: Mixed convection and non-uniform heating[J]. International Journal of Heat and Mass Transfer, 2019, 145: 118710. |
| 17 | PANDEY Sandeep, LAURIEN Eckart, CHU Xu. A modified convective heat transfer model for heated pipe flow of supercritical carbon dioxide[J]. International Journal of Thermal Sciences, 2017, 117: 227-238. |
| 18 | CHU Xu, LAURIEN Eckart. Flow stratification of supercritical CO2 in a heated horizontal pipe[J]. The Journal of Supercritical Fluids. 2016, 116: 172-189. |
| 19 | WANG Kaizheng, XU Xiaoxiao, WU Yangyang, et al. Numerical investigation on heat transfer of supercritical CO2 in heated helically coiled tubes[J]. The Journal of Supercritical Fluids, 2015, 99: 112-120. |
| 20 | KANDLIKAR Satish G. Fundamental issues related to flow boiling in minichannels and microchannels[J]. Experimental Thermal and Fluid Science, 2002, 26: 389-407. |
| 21 | Yoonhan AHN, Seong Jun BAE, KIM Minseok, et al. Review of supercritical CO2 power cycle technology and current status of research and development[J]. Nuclear Engineering and Technology, 2015, 47: 647-661. |
| 22 | XIE Gongnan, XU Xiaoxiao, LEI Xianliang, et al. Heat transfer behaviors of some supercritical fluids: A review[J]. Chinese Journal of Aeronautics, 2022, 35: 290-306. |
| 23 | XIE Jingzhe, LIU Dechao, YAN Hongbin, et al. A review of heat transfer deterioration of supercritical carbon dioxide flowing in vertical tubes: Heat transfer behaviors, identification methods, critical heat fluxes, and heat transfer correlations[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119233. |
| 24 | CABEZA Luisa F, DE GRACIA Alvaro, Inés FERNÁNDEZ A, et al. Supercritical CO2 as heat transfer fluid: A review[J]. Applied Thermal Engineering, 2017, 125: 799-810. |
| 25 | HUANG Dan, WU Zan, BENGT Sunden, et al. A brief review on convection heat transfer of fluids at supercritical pressures in tubes and the recent progress[J]. Applied Energy, 2016, 162: 494-505. |
| 26 | DUFFY Romney B, PIORO Igor L. Experimental heat transfer of supercritical carbon dioxide flowing inside channels (survey)[J]. Nuclear Engineering and Design, 2005, 235: 913-924. |
| 27 | ZHANG Bo, SHAN Jianqiang, JIANG Jing. Numerical analysis of supercritical water heat transfer in horizontal circular tube[J]. Progress in Nuclear Energy, 2010, 52: 678-684. |
| 28 | LIAO M S, ZHAO T S. An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes[J]. International Journal of Heat and Mass Transfer, 2002, 45: 5025-5034. |
| 29 | JACKSON J D. Fluid flow and convective heat transfer to fluids at supercritical pressure[J]. Nuclear Engineering and Design, 2013, 264: 24-40. |
| 30 | BAZARGAN Majid, FRASER Daniel, CHATOORGAN Vijay. Effect of buoyancy on heat transfer in supercritical water flow in a horizontal round tube[J]. Journal of Heat Transfer, 2005, 127: 897-902. |
| 31 | PETUKHOV B S, POLYAKOV A F, KULESHOV V A, et al. Turbulent flow and heat transfer in horizontal tubes with substantial influence of thermo-gravitational forces[J]. ASME Paper, 1974, 4:8. |
| 32 | HUANG Dan, LI Wei. A brief review on the buoyancy criteria for supercritical fluids[J]. Applied Thermal Engineering, 2018, 131: 977-987. |
| 33 | JACKSON J D, HALL W B. Influence of buoyancy on heat transfer to fluids flowing in vertical tubes under turbulent conditions[M]//Turbulent Forced Convection in Channels and Bundles 2. New York: Hemisphere, 1979: 613-640. |
| 34 | 王磊, 曹雄金, 罗凯, 等. 不同流动方向上微型加热管内超临界CO2的换热特性[J]. 化工学报, 2023, 74(11): 4535-4547. |
| WANG Lei, CAO Xiongjin, LUO Kai, et al. Heat transfer characteristics of supercritical CO2 in mini-type heating tube with the different flow directions[J]. CIESC Journal, 2023, 74(11): 4535-4547. | |
| 35 | 王磊, 曹雄金, 罗凯, 等. 不同流向上小流道加热管内超临界CO2的压降特性[J]. 化工进展, 2024, 43(2): 830-843. |
| WANG Lei, CAO Xiongjin, LUO Kai, et al. Pressure drop characteristics of supercritical CO2 in heating mini-channel with different flow directions[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 830-843. | |
| 36 | LEMMON E W, HUBER M L, MCLINDEN M O. NIST standard reference database 23: Reference fluid thermodynamic and transport properties (REFPROP)[DB/OL]. Version 9.0. Gaithersburg: National Institute of Standards and Technology, 2010 [2023-09-15]. . |
| 37 | Moffat ROBERT J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1: 3-17. |
| [1] | CHEN Jiquan, REN Pengwei, ZHU Riguang, CHEN Sisi, TANG Xingying, QIN Xinyu, YANG Jianqiao. Corrosion of nickel-based alloys in supercritical water oxidation containing erosive ions: A review [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2141-2155. |
| [2] | FENG Peng, XU Donghai, HE Bing, LIU Huanteng, YANG Lijie, WANG Pan, LIU Qingshan. Dissolution characteristics and mechanisms of typical sulphates Na2SO4 and K2SO4 in sub-/supercritical water [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1706-1715. |
| [3] | GONG Decheng, SHEN Qian, ZHU Xianqing, HUANG Yun, XIA Ao, ZHANG Jingmiao, ZHU Xun, LIAO Qiang. Recent progress in the production of hydrogen-rich syngas via supercritical water gasification of microalgae [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3709-3728. |
| [4] | LI Xinze, ZOU Weijie, SUN Chen, FU Xuan, CHEN Qian, YUAN Liang, WANG Zicheng, XING Xiaokai, XIONG Xiaoqin, GUO Lianghui. Prediction of safe shutdown time of a supercritical CO2 pipeline in Xinjiang oilfield [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2823-2833. |
| [5] | JIANG Andi, DING Xuexing, WANG Shipeng, DING Junhua, LI Ning. Research progress on thermodynamic performance of supercritical CO2 dry gas seal [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2354-2369. |
| [6] | WANG Yanhong, JIANG Lei, XUE Shuai, LI Hongwei, JIA Yuting. Analysis on heat transfer characteristics of supercritical methane in precooling channels [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1690-1699. |
| [7] | MA Wenjun, ZHANG Xu, LIU Mengshun, LIANG Zhiyuan. Research progress of novel hydrometallurgy in recycling cathode materials from spent lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2077-2090. |
| [8] | ZHANG Qiaoling, MA Zuhao, YU Ziyuan, LIU Zijun, HUANG Biyun, YANG Zhendong, MA Haoran. Convection heat transfer research of supercritical R134a in mini-channel of tube [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1667-1675. |
| [9] | ZHU Bingguo, GONG Kaigang, PENG Bin. Heat transfer characteristics of supercritical CO2 with high mass flux in vertical tube [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 937-947. |
| [10] | WANG Lei, CAO Xiongjin, LUO Kai, WANG Yan, FEI Hua. Pressure drop characteristics of supercritical CO2 in heating mini-channel with different flow directions [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 830-843. |
| [11] | LIAO Zhixin, LUO Tao, WANG Hong, KONG Jiajun, SHEN Haiping, GUAN Cuishi, WANG Cuihong, SHE Yucheng. Application and progress of solvent deasphalting technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4573-4586. |
| [12] | PANG Liping, YUAN Hu, QIU Wensheng, DUAN Liqiang, LI Wenxue. Hydrodynamic characteristics during peaking operation in utility boiler [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1708-1718. |
| [13] | HAN Changliang, HUANG Yiyan, XU Jianquan. Flow and heat transfer characteristics of supercritical nitrogen in micro-channel with different cavity structures [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5592-5601. |
| [14] | YANG Xin, XU Hong, HU Weixun, LIU Hongzuo, LONG Quanzhi, ZHU Liye. Regeneration of waste lubricant oil by supercritical carbon dioxide extraction [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5399-5405. |
| [15] | SUN Xianhang, REN Zhu, ZHANG Guojun, SUN Yuan, FAN Kaifeng, HUANG Weiqiu. Study on the desorption mechanism of toluene in activated carbon under supercritical CO2 [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 631-636. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |