Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (4): 1957-1967.DOI: 10.16085/j.issn.1000-6613.2024-1481
• Special column:Measurement techniques for multiphase flow • Previous Articles Next Articles
ZOU Zao1,2(
), TIAN Chang1, SU Mingxu1(
), YIN Huamo2, QU Yanyang2, HE Guansong2(
)
Received:2024-09-09
Revised:2024-10-22
Online:2025-05-07
Published:2025-04-25
Contact:
SU Mingxu, HE Guansong
邹藻1,2(
), 田昌1, 苏明旭1(
), 尹华模2, 屈延阳2, 何冠松2(
)
通讯作者:
苏明旭,何冠松
作者简介:邹藻(2000—),女,硕士研究生,研究方向为图像处理与识别。E-mail:zzao2021@163.com。
基金资助:CLC Number:
ZOU Zao, TIAN Chang, SU Mingxu, YIN Huamo, QU Yanyang, HE Guansong. Image processing method of HMX molding powders based on improved Swin Transformer[J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1957-1967.
邹藻, 田昌, 苏明旭, 尹华模, 屈延阳, 何冠松. 基于改进Swin Transformer的HMX造型粉图像处理方法[J]. 化工进展, 2025, 44(4): 1957-1967.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1481
| 训练环境 | 图形处理单元(GPU) | 中央处理器(CPU) | 框架 | 计算统一设备体系结构(CUDA) | CUDA深度神经网络库(cuDNN) |
|---|---|---|---|---|---|
| Windows11 | NVIDIA GeForce RTX 4060 | 13th Gen Intel(R) Core(TM) i7-13700H 2.40GHz | Pytorch | 11.0 | v8.0.4 |
| 训练环境 | 图形处理单元(GPU) | 中央处理器(CPU) | 框架 | 计算统一设备体系结构(CUDA) | CUDA深度神经网络库(cuDNN) |
|---|---|---|---|---|---|
| Windows11 | NVIDIA GeForce RTX 4060 | 13th Gen Intel(R) Core(TM) i7-13700H 2.40GHz | Pytorch | 11.0 | v8.0.4 |
| 超参数 | 设置 |
|---|---|
| 批量大小 | 2 |
| 训练轮次 | 96 |
| 学习率 | 0.001 |
| 权重衰减 | 0.05 |
| 优化器 | AdamW |
| 超参数 | 设置 |
|---|---|
| 批量大小 | 2 |
| 训练轮次 | 96 |
| 学习率 | 0.001 |
| 权重衰减 | 0.05 |
| 优化器 | AdamW |
| 模型 | AP/% | AP50/% | AP75/% | 处理能力/fps |
|---|---|---|---|---|
| PRNet(本文) | 62.3 | 84.4 | 72.5 | 8.739 |
| Mask RCNN(ResNet-50) | 58.4 | 82.0 | 66.6 | 11.259 |
| Mask RCNN(Swin) | 59.9 | 84.1 | 67.9 | 10.480 |
| Mask RCNN(CA-Swin) | 61.2 | 83.3 | 69.6 | 9.368 |
| Mask RCNN+FEM | 62.0 | 84.4 | 71.2 | 9.898 |
| PRNet(本文)+无数据增强 | 62.2 | 83.7 | 71.8 | 8.684 |
| YOLACT | 57.1 | 80.6 | 64.5 | 15.372 |
| SOLO | 59.2 | 82.6 | 67.8 | 10.235 |
| SCNet | 60.9 | 83.4 | 68.3 | 8.904 |
| 模型 | AP/% | AP50/% | AP75/% | 处理能力/fps |
|---|---|---|---|---|
| PRNet(本文) | 62.3 | 84.4 | 72.5 | 8.739 |
| Mask RCNN(ResNet-50) | 58.4 | 82.0 | 66.6 | 11.259 |
| Mask RCNN(Swin) | 59.9 | 84.1 | 67.9 | 10.480 |
| Mask RCNN(CA-Swin) | 61.2 | 83.3 | 69.6 | 9.368 |
| Mask RCNN+FEM | 62.0 | 84.4 | 71.2 | 9.898 |
| PRNet(本文)+无数据增强 | 62.2 | 83.7 | 71.8 | 8.684 |
| YOLACT | 57.1 | 80.6 | 64.5 | 15.372 |
| SOLO | 59.2 | 82.6 | 67.8 | 10.235 |
| SCNet | 60.9 | 83.4 | 68.3 | 8.904 |
| 模型 | D10/μm | D50/μm | D90/μm | Dmax/μm | 颗粒数量 |
|---|---|---|---|---|---|
| Mask RCNN | 36.528 | 120.121 | 220.534 | 328.324 | 101 |
| Mask RCNN(Swin) | 37.355 | 122.478 | 222.458 | 314.997 | 93 |
| PRNet(本文) | 38.259 | 122.742 | 222.595 | 321.601 | 95 |
| 人工标注 | 40.183 | 123.695 | 223.203 | 320.599 | 96 |
| 模型 | D10/μm | D50/μm | D90/μm | Dmax/μm | 颗粒数量 |
|---|---|---|---|---|---|
| Mask RCNN | 36.528 | 120.121 | 220.534 | 328.324 | 101 |
| Mask RCNN(Swin) | 37.355 | 122.478 | 222.458 | 314.997 | 93 |
| PRNet(本文) | 38.259 | 122.742 | 222.595 | 321.601 | 95 |
| 人工标注 | 40.183 | 123.695 | 223.203 | 320.599 | 96 |
| 1 | WANG Hao, CHENG Yangfan, ZHU Shoujun, et al. Effects of content and particle size of TiH2 powders on the energy output rules of RDX composite explosives[J]. Defence Technology, 2024, 32: 297-308. |
| 2 | MANNER Virginia W, TIEMANN Clay G, YEAGER John D, et al. Examining explosives handling sensitivity of trinitrotoluene (TNT) with different particle sizes[C]//Shock Compression of Condensed Matter—2019: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. Portland, OR, USA:AIP Conference Proceedings, 2020: 050015. |
| 3 | SIVIOUR C R, GIFFORD M J, WALLEY S M, et al. Particle size effects on the mechanical properties of a polymer bonded explosive[J]. Journal of Materials Science, 2004, 39(4): 1255-1258. |
| 4 | HUSSAIN Tariq, LIU Yan, HUANG Fenglei, et al. Ignition and growth modeling of shock initiation of different particle size formulations of PBXC03 explosive[J]. Journal of Energetic Materials, 2016, 34(1): 38-48. |
| 5 | 马寅翔. TATB造型粉颗粒结构及其与宏观力学性质的关系研究[D]. 绵阳:中国工程物理研究院, 2021. |
| MA Yinxiang. Mesoscopic structure of TATB granule and its correlation with macroscopic properties[D]. Mianyang: China Academy of Engineering Physics, 2020. | |
| 6 | 徐来斌, 王美荣, 刘学堂. 火炸药粉体材料的粒度测量[J]. 火炸药, 1996(2): 22-25. |
| XU Laibin, WANG Meirong, LIU Xuetang. The measurement of the particle size of powdered materials of propellants and explosives[J]. Explosives and Propellants, 1996(2): 22-25. | |
| 7 | SARANGAPANI Radhakrishnan, RAMAVAT Vijayalakshmi, REDDY T S, et al. Effect of particle size and shape of NTO on micromeritic characteristics and its explosive formulations[J]. Powder Technology, 2014, 253: 276-283. |
| 8 | 张一凡, 掌亚军, 金桂玉, 等. 超声波在炸药粒度测量中的应用研究[J]. 化工设计通讯, 2019, 45(4): 151-153. |
| ZHANG Yifan, ZHANG Yajun, JIN Guiyu, et al. Application of ultrasound in particle size measurement of explosives[J]. Chemical Engineering Design Communications, 2019, 45(4): 151-153. | |
| 9 | 田昌, 苏明旭, 蒋瑜, 等. 超声法在线测量烟气脱硫浆液粒度分布、密度方法和装置[J]. 化工进展, 2021, 40(12): 6516-6522. |
| TIAN Chang, SU Mingxu, JIANG Yu, et al. Method and device for on-line measurement of particle size distribution and density of desulfurization slurry by ultrasonic[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6516-6522. | |
| 10 | Jesse ROSS-JONES, TEUMER Tobias, WUNSCH Susann, et al. Feasibility study for a chemical process particle size characterization system for explosive environments using low laser power[J]. Micromachines, 2020, 11(10): 911. |
| 11 | CHEN Xiaozhen, ZHOU Wu, CAI Xiaoshu, et al. In-line imaging measurements of particle size, velocity and concentration in a particulate two-phase flow[J]. Particuology, 2014, 13: 106-113. |
| 12 | Orsolya PÉTERFI, Lajos MADARÁSZ, Máté FICZERE, et al. In-line particle size measurement during granule fluidization using convolutional neural network-aided process imaging[J]. European Journal of Pharmaceutical Sciences, 2023, 189: 106563. |
| 13 | NAZAR A M, SILVA F A, AMMANN J J. Image processing for particle characterization[J]. Materials Characterization, 1996, 36(4/5): 165-173. |
| 14 | GIRSHICK Ross, DONAHUE Jeff, DARRELL Trevor, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition Columbus, OH, USA: IEEE, 2014. |
| 15 | REN Shaoqing, HE Kaiming, GIRSHICK Ross, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]//.IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. |
| 16 | HE Kaiming, GKIOXARI Georgia, Piotr DOLLÁR, et al. Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017: 2961-2969. |
| 17 | VASWANI Ashish, SHAZEER Noam, PARMAR Niki, et al. Attention is all you need[EB/OL]. (2023-08-02)[2024-09-09]. . |
| 18 | DOSOVITSKIY Alexey, BEYER Lucas, KOLESNIKOV Alexander, et al. An image is worth 16×16 words: Transformers for image recognition at scale[EB/OL]. (2021-06-03)[2024-09-09]. . |
| 19 | LIU Ze, LIN Yutong, CAO Yue, et al. Swin Transformer: Hierarchical Vision Transformer using shifted windows[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. 2021:9992-10002. |
| 20 | CHEN Jieneng, LU Yongyi, YU Qihang, et al. TransUNet: Transformers make strong encoders for medical image segmentation[EB/OL]. (2021-02-08)[2024-09-09].. |
| 21 | CUI Shichao, CHEN Wei, GU Wenzhu, et al. SiamC Transformer: Siamese coupling Swin Transformer multi-scale semantic segmentation network for vegetation extraction under shadow conditions[J]. Computers and Electronics in Agriculture, 2023, 213: 108245. |
| 22 | ZHU Wei, ZHANG Hui, ZHANG Chao, et al. Surface defect detection and classification of steel using an efficient Swin Transformer[J]. Advanced Engineering Informatics, 2023, 57: 102061. |
| 23 | HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 7132-7141. |
| 24 | 赵凯, 黄亚峰, 杨雄, 等. 炸药与黏结剂溶液的黏附功对PBX水悬浮制备工艺的影响[J]. 爆破器材, 2023, 52(6): 9-15. |
| ZHAO Kai, HUANG Yafeng, YANG Xiong, et al. Effect of adhesion work between explosive and adhesive solution on the water suspension preparation process of PBX[J]. Explosive Materials, 2023, 52(6): 9-15. | |
| 25 | BOLYA Daniel, ZHOU Chong, XIAO Fanyi, et al. YOLACT: Real-time instance segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul: IEEE,2019: 9157-9166. |
| 26 | WANG Xinlong, KONG Tao, SHEN Chunhua, et al. SOLO: Segmenting objects by locations[C]// Computer Vision-ECCV 2020.Cham: Springer International Publishing, 2020: 649-665. |
| 27 | Thang VU, KANG Haeyong, YOO Chang D. SCNet: Training inference sample consistency for instance segmentation[C]//Proceedings of the AAAI Conference on Artifical Intelligence. 2021, 35(3): 2701-2709. |
| [1] | SU Qian, BAI Fan, LIU Zhenxing, LIU Zhang. Ultrasonic identification of gas-liquid two-phase flow patterns based on XGBoost [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1786-1793. |
| [2] | LI Linghan, ZHANG Shumei, DONG Feng. State identification of gas-liquid two-phase flow in few-shot scenario [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1794-1805. |
| [3] | CHEN Nuoheng, WANG Shengnan, KONG Ming. Multi-frequency electrical capacitance-based circuit design for online measurement of gas-solid phase fraction [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1806-1814. |
| [4] | LI Jinxia, RU Haoran, LIU Wenkai, SUN Hongjun, DING Hongbing. Physical-guided neural network based on three-fluid model for disturbance wave velocity prediction [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1815-1824. |
| [5] | SU Qian, WANG Jinge, LIU Zhenxing. Analysis of ultrasonic attenuation characteristics in oil-water two-phase flow based on FVM-FEM [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1825-1833. |
| [6] | HUANG Linbin, LI Tianchi, LI Can, LI Ning, WENG Chunsheng. Multi-parameter extraction method for particle-containing droplets based on DeepViT and rainbow scattering [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1859-1866. |
| [7] | DING Hongbing, CHAI Xutian, WANG Shiwei, SONG Xinyu, SUN Hongjun. Experimental investigation on single and successive droplet impacts on flowing liquid film [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1888-1897. |
| [8] | REN Shipeng, AN Yuan, LOU Chun, MEI Shengdong, LIU Kai, CHEN Xinjian. Online reconstruction of combustion temperature field distribution in furnace by integrating deep learning algorithm [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1923-1933. |
| [9] | DAI Yueming, ZHOU Meifang, SHEN Jianhua, JIANG Haibo, LI Chunzhong. Molecular dynamics simulation of sintering mechanism of TiO2 nanoparticles [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2202-2214. |
| [10] | ZHU Fanglong, FENG Qianqian. Preparation and optical-thermal properties of infrared-transparent nylon porous membrane [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2215-2224. |
| [11] | LI Haoyang, LI Hongwei, TAN Jianyu. Dynamic characteristics of boiling bubbles under transient oscillating heating conditions [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 735-742. |
| [12] | CAI Kainan, CHEN Jianyong, CHEN Ying, LUO Xianglong, LIANG Yingzong, HE Jiacheng. Thermodynamic performance of zeotropic mixtures in liquid-vapor separation plate condenser [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 48-56. |
| [13] | XING Lei, ZHOU Xiaoqing, JIANG Minghu, ZHAO Lixin, LI Xinya, CHEN Dehai. Motion behavior and deformation characteristics of discrete oil droplets in a sudden contraction and sudden expansion round pipe [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 27-37. |
| [14] | CHEN Xiaole, LI Na, CHEN Linyu, ZHOU Qulan. Preparation of ZIFs/PDMDES mixed matrix membranes for ethanol recovery from aqueous solutions via pervaporation [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 407-414. |
| [15] | QI Sijiu, TAN Wei, LIN Wenjing, HAN Peize, ZHU Guorui. Test method for fluid excitation force around a heat exchange tube in a two-phase flow tunnel [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 85-93. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |