Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (4): 1794-1805.DOI: 10.16085/j.issn.1000-6613.2024-1747
• Special column:Measurement techniques for multiphase flow • Previous Articles Next Articles
LI Linghan1(
), ZHANG Shumei1, DONG Feng1,2(
)
Received:2024-10-30
Revised:2025-01-14
Online:2025-05-07
Published:2025-04-25
Contact:
DONG Feng
通讯作者:
董峰
作者简介:李凌涵(1998—),男,博士研究生,研究方向为多相流数据解析与过程监测。E-mail:lilinghan@tju.edu.cn。
基金资助:CLC Number:
LI Linghan, ZHANG Shumei, DONG Feng. State identification of gas-liquid two-phase flow in few-shot scenario[J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1794-1805.
李凌涵, 张淑美, 董峰. 少样本场景下的气液两相流动状态识别[J]. 化工进展, 2025, 44(4): 1794-1805.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1747
| 序号 | 流动状态 | 水流量/m3·h-1 | 气流量/m3·h-1 |
|---|---|---|---|
| 1 | 泡状流 | 10.0、15.0 | 1.3~2.3 |
| 2 | 塞状流 | 2.0、5.0 | 1.3~2.3 |
| 3 | 弹状流 | 10.0、15.0 | 18.0~40.0 |
| 4 | 波状流 | 0.3、0.8 | 35.4~81.7 |
| 5 | 分层流 | 0.3、0.8 | 0.7~1.6 |
| 6 | 环状流 | 0.3、0.8 | 140.0~189.3 |
| 7 | 泡状流、塞状流间过渡 | 7.0、9.0 | 1.3~2.3 |
| 8 | 塞状流、弹状流间过渡 | 2.0、5.0 | 6.9~18.0 |
| 9 | 弹状流、环状流间过渡 | 2.0、5.0 | 78.4~88.5 |
| 10 | 分层流、波状流间过渡 | 0.3、0.8 | 20.0~38.0 |
| 序号 | 流动状态 | 水流量/m3·h-1 | 气流量/m3·h-1 |
|---|---|---|---|
| 1 | 泡状流 | 10.0、15.0 | 1.3~2.3 |
| 2 | 塞状流 | 2.0、5.0 | 1.3~2.3 |
| 3 | 弹状流 | 10.0、15.0 | 18.0~40.0 |
| 4 | 波状流 | 0.3、0.8 | 35.4~81.7 |
| 5 | 分层流 | 0.3、0.8 | 0.7~1.6 |
| 6 | 环状流 | 0.3、0.8 | 140.0~189.3 |
| 7 | 泡状流、塞状流间过渡 | 7.0、9.0 | 1.3~2.3 |
| 8 | 塞状流、弹状流间过渡 | 2.0、5.0 | 6.9~18.0 |
| 9 | 弹状流、环状流间过渡 | 2.0、5.0 | 78.4~88.5 |
| 10 | 分层流、波状流间过渡 | 0.3、0.8 | 20.0~38.0 |
| 分组 | 源域状态 | 源域训练样本数 | 目标域状态 | 目标域支持(训练)样本数 | 目标域查询(测试)样本数 |
|---|---|---|---|---|---|
| A | 2、3、5~7、9、10 | 32 | 1、4、8 | 3或5 | 16 |
| B | 1~6、8 | 32 | 7、9、10 | 3或5 | 16 |
| C | 1、4、5、7~10 | 32 | 2、3、6 | 3或5 | 16 |
| 分组 | 源域状态 | 源域训练样本数 | 目标域状态 | 目标域支持(训练)样本数 | 目标域查询(测试)样本数 |
|---|---|---|---|---|---|
| A | 2、3、5~7、9、10 | 32 | 1、4、8 | 3或5 | 16 |
| B | 1~6、8 | 32 | 7、9、10 | 3或5 | 16 |
| C | 1、4、5、7~10 | 32 | 2、3、6 | 3或5 | 16 |
| 方法 | 3-way 3-shot | 3-way 5-shot | ||||
|---|---|---|---|---|---|---|
| A | B | C | A | B | C | |
| EWT+SVM | 68.08 | 70.42 | 66.26 | 70.65 | 72.35 | 69.38 |
| EWT+RF | 70.42 | 73.54 | 67.71 | 72.92 | 73.54 | 70.42 |
| EWT+NB | 65.63 | 68.75 | 66.20 | 69.80 | 72.92 | 68.75 |
| 时域、频域统计特征+PN | 76.04 | 80.21 | 73.96 | 76.04 | 80.21 | 78.13 |
| 改进EWT+PN | 81.25 | 82.29 | 77.08 | 80.21 | 83.33 | 78.13 |
| 方法 | 3-way 3-shot | 3-way 5-shot | ||||
|---|---|---|---|---|---|---|
| A | B | C | A | B | C | |
| EWT+SVM | 68.08 | 70.42 | 66.26 | 70.65 | 72.35 | 69.38 |
| EWT+RF | 70.42 | 73.54 | 67.71 | 72.92 | 73.54 | 70.42 |
| EWT+NB | 65.63 | 68.75 | 66.20 | 69.80 | 72.92 | 68.75 |
| 时域、频域统计特征+PN | 76.04 | 80.21 | 73.96 | 76.04 | 80.21 | 78.13 |
| 改进EWT+PN | 81.25 | 82.29 | 77.08 | 80.21 | 83.33 | 78.13 |
| 方法 | 3-way 3-shot | 3-way 5-shot |
|---|---|---|
| EWT+SVM | 68.25 | 70.79 |
| EWT+RF | 70.56 | 72.29 |
| EWT+NB | 66.86 | 70.49 |
| 时域、频域统计特征+PN | 76.74 | 78.82 |
| 改进EWT+PN | 80.21 | 80.56 |
| 方法 | 3-way 3-shot | 3-way 5-shot |
|---|---|---|
| EWT+SVM | 68.25 | 70.79 |
| EWT+RF | 70.56 | 72.29 |
| EWT+NB | 66.86 | 70.49 |
| 时域、频域统计特征+PN | 76.74 | 78.82 |
| 改进EWT+PN | 80.21 | 80.56 |
| 1 | 谭超, 董峰. 多相流过程参数检测技术综述[J]. 自动化学报, 2013, 39(11): 1923-1932. |
| TAN Chao, DONG Feng. Parameters measurement for multiphase flow process[J]. Acta Automatica Sinica, 2013, 39(11): 1923-1932. | |
| 2 | BONIZZI Marco, ISSA Raad I. On the simulation of three-phase slug flow in nearly horizontal pipes using the multi-fluid model[J]. International Journal of Multiphase Flow, 2003, 29(11): 1719-1747. |
| 3 | FOSSA Marco. Design and performance of a conductance probe for measuring the liquid fraction in two-phase gas-liquid flows[J]. Flow Measurement and Instrumentation, 1998, 9(2): 103-109. |
| 4 | 苏茜, 邓翔天, 刘振兴. 油气水三相流相含率超声测试模型优化[J]. 化工进展, 2024, 43(2): 791-799. |
| SU Qian, DENG Xiangtian, LIU Zhenxing. Model optimization of phase fraction in oil-gas-water three-phase flow using ultrasonic testing technique[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 791-799. | |
| 5 | SALGADO César Marques, PEREIRA Cláudio M N A, SCHIRRU Roberto,et al. Flow regime identification and volume fraction prediction in multiphase flows by means of gamma-ray attenuation and artificial neural networks[J]. Progress in Nuclear Energy, 2010, 52(6): 555-562. |
| 6 | GU Mengtao, LI Jian, HOSSAIN Md Moinul,et al. High-resolution microscale velocity field measurement using light field particle image-tracking velocimetry[J]. Physics of Fluids, 2023, 35(11): 112006. |
| 7 | ZHANG Zhixiang, JIN Ningde, BAI Landi, et al. Nonlinear analysis for identification of vertical upward oil-water two-phase flow patterns[J]. IEEE Sensors Journal, 2024, 24(3): 3259-3265. |
| 8 | 徐一, 李轶, 马志扬, 等. 基于电容层析测量的油气两相流动态信号时频分析方法[J]. 化工进展, 2024, 43(2): 855-864. |
| XU Yi, LI Yi, MA Zhiyang, et al. Dynamic signal analysis for gas-oil two-phase flow in time-frequency domain based on electrical capacitance tomography[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 855-864. | |
| 9 | 董峰, 李昭, 李凌涵, 等. 多模态动态核主成分分析的气液两相流状态监测[J]. 自动化学报, 2022, 48(3): 762-773. |
| DONG Feng, LI Zhao, LI Linghan, et al. Flow state monitoring of gas-liquid two-phase flow using multiple dynamic kernel principle component analysis[J]. Acta Automatica Sinica, 2022, 48(3): 762-773. | |
| 10 | LI Linghan, HAN Xinyi, DONG Feng, et al. Zero-shot state identification of industrial gas-liquid two-phase flow via supervised deep slow and steady feature analysis[J]. IEEE Transactions on Industrial Informatics, 2024, 20(6): 8170-8180. |
| 11 | 史雪薇, 谭超, 董峰. 基于环形电导传感器的气液两相流流型识别与过程参数测量[J]. 化工进展, 2024, 43(2): 637-648. |
| SHI Xuewei, TAN Chao, DONG Feng. Gas-liquid two-phase flow pattern identification and flow parameters measurement based on the ring-shape conductance sensor[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 637-648. | |
| 12 | SHI Xuewei, TAN Chao, DONG Xiaoxiao, et al. Structural velocity measurement of gas-liquid slug flow based on EMD of continuous wave ultrasonic Doppler[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(11): 2662-2675. |
| 13 | 王杰, 李爱蓉. 小波包分析识别气液固三相流流型[J]. 石油化工, 2020, 49(1): 62-69. |
| WANG Jie, LI Airong. Identification of gas-liquid-solid three-phase flow patterns by wavelet packet analysis[J]. Petrochemical Technology, 2020, 49(1): 62-69. | |
| 14 | GILLES Jérôme. Empirical wavelet transform[J]. IEEE Transactions on Signal Processing, 2013, 61(16): 3999-4010. |
| 15 | CHEN Jinglong, PAN Jun, LI Zipeng, et al. Generator bearing fault diagnosis for wind turbine via empirical wavelet transform using measured vibration signals[J]. Renewable Energy, 2016, 89: 80-92. |
| 16 | ANURAGI Arti, SISODIA Dilip Singh. Empirical wavelet transform based automated alcoholism detecting using EEG signal features[J]. Biomedical Signal Processing and Control, 2020, 57: 101777. |
| 17 | RAGAB Mohamed, OMER Osama A, Mohamed ABDEL-NASSER. Compressive sensing MRI reconstruction using empirical wavelet transform and grey wolf optimizer[J]. Neural Computing and Applications, 2020, 32(7): 2705-2724 |
| 18 | REN Chao, JIANG Bin, LU Ningyun, et al. Meta-learning with distributional similarity preference for few-shot fault diagnosis under varying working conditions[J]. IEEE Transactions on Cybernetics, 2024, 54(5): 2746-2756. |
| 19 | SNELL Jake, SWERSKY Kevin, ZEMEL Richard, et al. Prototypical networks for few-shot learning[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, California, USA: ACM, 2017: 4080-4090. |
| 20 | VINYALS Oriol, BLUNDELL Charles, LILLICRAP Timothy, et al. Matching networks for one shot learning[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain: ACM, 2016: 3637-3645. |
| 21 | XIE Tingli, HUANG Xufeng, CHOI Seung-Kyum. Metric-based meta-learning for cross-domain few-shot identification of welding defect[J]. Journal of Computing and Information Science in Engineering, 2023, 23(3): 030902. |
| 22 | TANG Tang, WANG Jingwei, YANG Tianyuan, et al. An improved prototypical network with L2 prototype correction for few-shot cross-domain fault diagnosis[J]. Measurement, 2023, 217: 113065. |
| 23 | LI Kang, SHANG Chao, YE Hao. Reweighted regularized prototypical network for few-shot fault diagnosis[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(5): 6206-6217. |
| 24 | WANG Yimeng, SHEN Jie, YANG Shusen, et al. Knowledge and data dual-driven fault diagnosis in industrial scenarios: A survey[J]. IEEE Internet of Things Journal, 2024, 11(11): 19256-19277. |
| 25 | BERTOLAZZI Enrico, FREGO Marco, BIRAL Francesco. Point data reconstruction and smoothing using cubic splines and clusterization[J]. Mathematics and Computers in Simulation, 2020, 176: 36-56. |
| 26 | DONG Feng, ZHANG Shuo, SHI Xuewei, et al. Flow regimes identification-based multidomain features for gas-liquid two-phase flow in horizontal pipe[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 7502911. |
| 27 | DENG Fang, GUO Su, ZHOU Rui, et al. Sensor multifault diagnosis with improved support vector machines[J]. IEEE Transactions on Automation Science and Engineering, 2017, 14(2): 1053-1063. |
| 28 | CHAI Zheng, ZHAO Chunhui. Enhanced random forest with concurrent analysis of static and dynamic nodes for industrial fault classification[J]. IEEE Transactions on Industrial Informatics, 2020, 16(1): 54-66. |
| 29 | ZHEN Rong, JIN Yongxing, HU Qinyou, et al. Maritime anomaly detection within coastal waters based on vessel trajectory clustering and Naïve Bayes classifier[J]. Journal of Navigation, 2017, 70(3): 648-670. |
| 30 | VAN DER MAATEN Laurens, HINTON Geoffrey. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579-2605. |
| [1] | REN Shipeng, AN Yuan, LOU Chun, MEI Shengdong, LIU Kai, CHEN Xinjian. Online reconstruction of combustion temperature field distribution in furnace by integrating deep learning algorithm [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1923-1933. |
| [2] | LI Jinxia, RU Haoran, LIU Wenkai, SUN Hongjun, DING Hongbing. Physical-guided neural network based on three-fluid model for disturbance wave velocity prediction [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1815-1824. |
| [3] | SU Qian, BAI Fan, LIU Zhenxing, LIU Zhang. Ultrasonic identification of gas-liquid two-phase flow patterns based on XGBoost [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1786-1793. |
| [4] | SHI Xuewei, TAN Chao, DONG Feng. Oil-gas-water three-phase flow pattern identification based on multi-mode ultrasonic signal analysis [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1834-1848. |
| [5] | ZOU Zhiyun, YU Meng, LIU Yingli. Prediction of operating conditions of batch distillation process based on LSTM and BP neural networks [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 21-31. |
| [6] | WANG Yanan, LIU Linlin, ZHUANG Yu, DU Jian. Synchronous optimization and heat integration of the production process from EO to EG based on surrogate model [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5234-5241. |
| [7] | ZHANG Jiaxin, ZHANG Miao, DAI Yiyang, DONG Lichun. Design and application of enhanced deep convolutional neural networks model for fault diagnosis in practical chemical processes [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4833-4844. |
| [8] | LI Kai, WEI Helin, YIN Zhifan, ZUO Xiahua, YU Xiaoyu, YIN Hongyuan, YANG Weimin, YAN Hua, AN Ying. Prediction of thermal conductivity and viscosity of water-based carbon black nanofluids based on GA-BP neural network model [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4138-4147. |
| [9] | ZHENG Kexin, JIANG Yuxin, BI Kexin, ZHAO Qiming, CHEN Shaochen, WANG Bingbing, REN Junyu, JI Xu, QIU Tong, DAI Yiyang. Ensemble transfer learning framework for outflow compositions prediction in steam cracking process [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2880-2889. |
| [10] | ZHANG Shuming, LIU Huazhang. Optimization of Fe1-x O ammonia synthesis catalyst by BP neural network model [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1302-1308. |
| [11] | SHAN Liang, HUA Xiajie, NIU Yufeng, ZHAO Tengfei, HONG Bo, KONG Ming. Optimization method for light-field feature extraction in flame temperature field reconstruction [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 823-829. |
| [12] | BIAN Hanqing, ZHANG Xingkai, LIAO Ruiquan, WANG Dong, LI Rui, LUO Xiaochu, HOU Yaodong, BAI Xiaohong, GAN Qingming. Double-parameter measurement method of wet gas in phase-isolation state [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 722-733. |
| [13] | SHI Xuewei, TAN Chao, DONG Feng. Gas-liquid two-phase flow pattern identification and flow parameters measurement based on the ring-shape conductance sensor [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 637-648. |
| [14] | XU Chenyang, DU Jian, ZHANG Lei. Chemical reaction evaluation based on graph network [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 205-212. |
| [15] | WANG Lu, ZHANG Lei, DU Jian. High-throughput screening of zeolite materials for CO2/N2 selective adsorption separation by machine learning [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 148-158. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |