Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (2): 964-973.DOI: 10.16085/j.issn.1000-6613.2021-0449
• Resources and environmental engineering • Previous Articles Next Articles
ZHENG Chengqiang1,2(), LI Xiaolong1,2, LI Junzhuang1,2, DUAN Jiuxiang1,2, YANG Linjun3()
Received:
2021-03-07
Revised:
2021-04-28
Online:
2022-02-23
Published:
2022-02-05
Contact:
YANG Linjun
郑成强1,2(), 李小龙1,2, 李军状1,2, 段玖祥1,2, 杨林军3()
通讯作者:
杨林军
作者简介:
郑成强(1995—),男,硕士,研究方向为燃煤电厂大气污染防治。E-mail:基金资助:
CLC Number:
ZHENG Chengqiang, LI Xiaolong, LI Junzhuang, DUAN Jiuxiang, YANG Linjun. Research progress on migration and transformation characteristics of escaped ammonia in coal-fired power plants[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 964-973.
郑成强, 李小龙, 李军状, 段玖祥, 杨林军. 燃煤电厂逃逸氨迁移转化特性研究进展[J]. 化工进展, 2022, 41(2): 964-973.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0449
1 | 中国电力企业联合会. 中国电力行业年度发展报告-2020[M]. 北京: 中国建材工业出版社, 2020. |
China Electric Power Council. China electric power industry annual development report 2020[M]. Beijing: China Building Material Industry Publishing House, 2020. | |
2 | 林伯强. “十三五”时期中国电力发展成就及“十四五”展望[J]. 中国电业, 2020(12): 22-23. |
LIN Boqiang. China’s electric power development achievements in the “Thirteenth Five-Year” period and the “Fourteenth Five-Year” outlook[J]. China Electric Power, 2020(12): 22-23. | |
3 | 唐坚, 杨建辉, 陈鸥, 等. 氨逃逸过大成为加重大气雾霾的又一成因[J]. 中国能源, 2020, 42(10): 39-41. |
TANG Jian, YANG Jianhui, CHEN Ou, et al. Excessive escaping of ammonia has been another factor to aggravate atmospheric haze[J]. Energy of China, 2020, 42(10): 39-41. | |
4 | ZHANG Chengyu, WANG Litao, QI Mengyao, et al. Evolution of key chemical components in PM2.5 and potential formation mechanisms of serious haze events in Handan, China[J]. Aerosol and Air Quality Research, 2018, 18(7): 1545-1557. |
5 | 王艳, 段学军. 氨污染: 被忽视的雾霾元凶[J]. 生态经济, 2017, 33(6): 6-9. |
WANG Yan, DUAN Xuejun. Ammonia pollution: the neglected culprit of haze[J]. Ecological Economy, 2017, 33(6): 6-9. | |
6 | 王圣. 燃煤电厂非传统大气污染物控制展望[J]. 中国电力, 2018, 51(8): 173-179. |
WANG Sheng. Prospect of non-traditional air pollutant control in coal-fired power plants[J]. Electric Power, 2018, 51(8): 173-179. | |
7 | 骆律源. 空预器中硫酸铵盐的形成特性及其对颗粒物排放的影响[D]. 南京: 东南大学, 2018. |
LUO Lyuyuan. Formation characteristics of ammonium sulfate salt in air preheater and its effect on particulate emission[D]. Nanjing: Southeast University, 2018. | |
8 | 高畅, 金保昇, 张勇, 等. 非均匀入口条件下SCR脱硝系统精准喷氨策略[J]. 东南大学学报(自然科学版), 2017, 47(2): 271-276. |
GAO Chang, JIN Baosheng, ZHANG Yong, et al. Precise ammonia injection strategy in SCR denitrification system based on non-uniform inlet parameters[J]. Journal of Southeast University (Natural Science Edition), 2017, 47(2): 271-276. | |
9 | 赵宗让. 电厂锅炉SCR烟气脱硝系统设计优化[J]. 中国电力, 2005, 38(11): 69-74. |
ZHAO Zongrang. Design optimization of SCR system for coal-fired boilers[J]. Electric Power, 2005, 38(11): 69-74. | |
10 | 董建勋, 李辰飞, 王松岭, 等. 还原剂分布不均匀对SCR脱硝性能影响的模拟分析[J]. 电站系统工程, 2007, 23(1): 20-21, 24. |
DONG Jianxun, LI Chenfei, WANG Songling, et al. Simulation of effect of non-uniformity of reagent distribution on SCR DeNOx performance[J]. Power System Engineering, 2007, 23(1): 20-21, 24. | |
11 | 杜学森. 钛基SCR脱硝催化剂中毒失活及抗中毒机理的实验和分子模拟研究[D]. 杭州: 浙江大学, 2014. |
DU Xuesen. An experimental and theoretical study on the anti-poisoning of the titania-based SCR catalyst[D]. Hangzhou: Zhejiang University, 2014. | |
12 | 石磊, 牛国平, 马强, 等. 燃煤电厂烟气飞灰吸附氨变化规律[J]. 热力发电, 2019, 48(6): 53-57. |
SHI Lei, NIU Guoping, MA Qiang, et al. Ammonia adsorption by fly ash in flue gas of a coal-fired power plant[J]. Thermal Power Generation, 2019, 48(6): 53-57. | |
13 | 李小龙, 朱法华, 段玖祥, 等. 600MW燃煤机组逃逸氨迁移规律与排放特性[J]. 中国电机工程学报, 2021, 41(19): 6560-6570. |
LI Xiaolong, ZHU Fahua, DUAN Jiuxiang, et al. Migration law and emission characteristics of ammonia slip in A 600MW ultra-low emission coal-fired unit[J]. Proceedings of the CSEE, 2021, 41(19): 6560-6570. | |
14 | 马双忱, 金鑫, 孙云雪, 等. SCR烟气脱硝过程硫酸氢铵的生成机理与控制[J]. 热力发电, 2010, 39(8): 12-17. |
MA Shuangchen, JIN Xin, SUN Yunxue, et al. The formation mechanism of ammonium bisulfate in scr flue gas denitrification process and control thereof[J]. Thermal Power Generation, 2010, 39(8): 12-17. | |
15 | SI Fengqi, ROMERO C E, YAO Zheng, et al. Inferential sensor for on-line monitoring of ammonium bisulfate formation temperature in coal-fired power plants[J]. Fuel Processing Technology, 2009, 90(1): 56-66. |
16 | SRIVASTAVA R K, HALL R E, KHAN S, et al. Nitrogen oxides emission control options for coal-fired electric utility boilers[J]. Journal of the Air & Waste Management Association, 2005, 55(9): 1367-1388. |
17 | 束航. SCR烟气脱硝过程中硫酸(氢)铵细颗粒生成及分解特性研究[D]. 南京: 东南大学, 2015. |
SHU Hang. Investigation on the formation and decomposition mechanism of ammonium sulfate and ammonium bisulfate fine particles during SCR process of coal-fired flue gas[D]. Nanjing: Southeast University, 2015. | |
18 | 唐昊, 李慧, 杨江毅, 等. NH3-SCR工艺中硫酸铵盐的生成与分解机理研究进展[J]. 化工进展, 2018, 37(3): 822-831. |
TANG Hao, LI Hui, YANG Jiangyi, et al. Research progress on the formation and decomposition mechanism of ammonium-sulfate salts in NH3-SCR technology[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 822-831. | |
19 | 范红梅, 张玉华, 束航, 等. SCR脱硝过程中细颗粒物排放特性[J]. 中南大学学报(自然科学版), 2016, 47(1): 321-329. |
FAN Hongmei, ZHANG Yuhua, SHU Hang, et al. Characteristics of fine particulates emission from SCR reactor[J]. Journal of Central South University (Science and Technology), 2016, 47(1): 321-329. | |
20 | LI Zhen, JIANG Jingkun, MA Zizhen, et al. Effect of selective catalytic reduction (SCR) on fine particle emission from two coal-fired power plants in China[J]. Atmospheric Environment, 2015, 120: 227-233. |
21 | YE Dong, QU Ruiyang, SONG Hao, et al. New insights into the various decomposition and reactivity behaviors of NH4HSO4 with NO on V2O5/TiO2 catalyst surfaces[J]. Chemical Engineering Journal, 2016, 283: 846-854. |
22 | ZHENG Chengqiang, CHENG Teng, YANG Linjun, et al. Effect of SiO2 addition on NH4HSO4 decomposition and SO2 poisoning over V2O5-MoO3/TiO2-CeO2 catalyst[J]. Journal of Environmental Sciences, 2020, 91: 279-291. |
23 | YE Dong, QU Ruiyang, ZHENG Chenghang, et al. Mechanistic investigation of enhanced reactivity of NH4HSO4 and NO on Nb- and Sb-doped VW/Ti SCR catalysts[J]. Applied Catalysis A: General, 2018, 549: 310-319. |
24 | 高磊. SCR催化剂表面硫酸氢铵分解与反应特性研究[D]. 太原: 中北大学, 2019. |
GAO Lei. Investigation on decomposition and reactivity of NH4HSO4 on the surface of SCR catalysts[D]. Taiyuan: North University of China, 2019. | |
25 | QU Ruiyang, YE Dong, ZHENG Chenghang, et al. Exploring the role of V2O5 in the reactivity of NH4HSO4 with NO on V2O5/TiO2 SCR catalysts[J]. RSC Advances, 2016, 6(104): 102436-102443. |
26 | 骆律源, 程滕, 杨林军, 等. 空预器中硫酸氢铵形成特性及其对颗粒物排放的影响[J]. 高校化学工程学报, 2018, 32(3): 675-682. |
LUO Lyuyuan, CHENG Teng, YANG Linjun, et al. Formation of ammonium bisulfate in air preheater and its effect on particle emission[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(3): 675-682. | |
27 | SRIVASTAVA R K, MILLER C A, ERICKSON C, et al. Emissions of sulfur trioxide from coal-fired power plants[J]. Journal of the Air & Waste Management Association, 2004, 54(6): 750-762. |
28 | WANG Xiangmin, DU Xuesen, LIU Shaojun, et al. Understanding the deposition and reaction mechanism of ammonium bisulfate on a vanadia SCR catalyst: a combined DFT and experimental study[J]. Applied Catalysis B: Environmental, 2020, 260: 118168. |
29 | HAZRA M K, SINHA A. Formic acid catalyzed hydrolysis of SO3 in the gas phase: a barrierless mechanism for sulfuric acid production of potential atmospheric importance[J]. Journal of the American Chemical Society, 2011, 133(43): 17444-17453. |
30 | LI Lei, KUMAR M, ZHU Chongqin, et al. Near-barrierless ammonium bisulfate formation via a loop-structure promoted proton-transfer mechanism on the surface of water[J]. Journal of the American Chemical Society, 2016, 138(6): 1816-1819. |
31 | CHOTHANI C. Ammonium bisulfate (ABS) measurement for SCR NOx control and air heater protection[J]. Breen Energy Solution, 2008, 24: 1-13. |
32 | 马双忱, 邓悦, 吴文龙, 等. SCR脱硝过程中硫酸氢铵形成特性实验研究[J]. 动力工程学报, 2016, 36(2): 143-150. |
MA Shuangchen, DENG Yue, WU Wenlong, et al. Experimental research on ABS formation characteristics in SCR denitrification process[J]. Journal of Chinese Society of Power Engineering, 2016, 36(2): 143-150. | |
33 | MORETTI A L, TRISCORI R J, RITZENTHALER D P. A system approach to SO3 mitigation[R]. Ohio, USA: The Babcock & Wilcox Company, 2006: 1-6. |
34 | CHENG Teng, LUO Lyuyuan, YANG Linjun, et al. Formation and emission characteristics of ammonium sulfate aerosols in flue gas downstream of selective catalytic reduction[J]. Energy & Fuels, 2019, 33(8): 7861-7868. |
35 | 叶栋, 曲瑞陽, 翁卫国, 等. Fe2O3添加对钛基SCR催化剂表面硫酸氢铵分解行为的影响规律[J]. 环境科学学报, 2018, 38(5): 1774-1782. |
YE Dong, QU Ruiyang, WENG Weiguo, et al. Investigation of the effect of Fe2O3 addition on the decomposition behavior of NH4HSO4 on the TiO2-based SCR catalyst surfaces[J]. Acta Scientiae Circumstantiae, 2018, 38(5): 1774-1782. | |
36 | 刘建民, 陈国庆, 黄启龙, 等. 燃煤脱硝机组空气预热器蓄热片表面飞灰沉积板结机理研究[J]. 中国电机工程学报, 2016, 36(S1): 132-139. |
LIU Jianmin, CHEN Guoqing, HUANG Qilong, et al. Study on mechanism of fly ash deposition and hardening on the air preheater regenerative piece surface of the coal-fired and denitration unit[J]. Proceedings of the CSEE, 2016, 36(S1): 132-139. | |
37 | MENASHA J, DUNN-RANKIN D, MUZIO L, et al. Ammonium bisulfate formation temperature in a bench-scale single-channel air preheater[J]. Fuel, 2011, 90(7): 2445-2453. |
38 | 邬东立, 王洁, 张国鑫, 等. 660MW SCR脱硝机组空预器堵塞原因分析及对策[J]. 浙江电力, 2014, 33(3): 46-50. |
WU Dongli, WANG Jie, ZHANG Guoxin, et al. Analysis on air preheater blockage of 660MW SCR denitration units and the countermeasures[J]. Zhejiang Electric Power, 2014, 33(3): 46-50. | |
39 | CHENG Teng, ZHENG Chengqiang, YANG Linjun, et al. Effect of selective catalytic reduction denitrification on fine particulate matter emission characteristics[J]. Fuel, 2019, 238: 18-25. |
40 | WILBURN R T, WRIGHT T L. SCR ammonia slip distribution in coal plant effluents and dependence upon SO3[J]. Powerplant Chemistry, 2004, 6(5): 295-304. |
41 | 李军状, 杨勇平, 朱法华, 等. SCR高脱硝效率燃煤发电机组逃逸氨分布特性实测研究[J]. 中国电机工程学报, 2021, 41(10): 3447-3453, 3670. |
LI Junzhuang, YANG Yongping, ZHU Fahua, et al. Actual measurement study on escaped ammonia distribution with SCR high denitration efficiency of coal-fired unit[J]. Proceedings of the CSEE, 2021, 41(10): 3447-3453, 3670. | |
42 | 雷健康, 王浩楠, 赵伶玲. 空气预热器蓄热板硫酸氢铵动态积灰模型[J]. 热力发电, 2020, 49(9): 52-57. |
LEI Jiankang, WANG Haonan, ZHAO Lingling. Dynamic ash deposition model of hydrogen sulfate in an air preheater[J]. Thermal Power Generation, 2020, 49(9): 52-57. | |
43 | 赵宏, 张发捷, 马云龙, 等. 燃煤电厂SCR脱硝氨逃逸迁移规律试验研究[J]. 中国电力, 2021, 54(1): 196-202. |
ZHAO Hong, ZHANG Fajie, MA Yunlong, et al. Test study on the migration characteristics of slip ammonia from the SCR system in the coal-fired power plant[J]. Electric Power, 2021, 54(1): 196-202. | |
44 | ZHOU Chaoyang, ZHANG Linan, DENG Yue, et al. Research progress on ammonium bisulfate formation and control in the process of selective catalytic reduction[J]. Environmental Progress & Sustainable Energy, 2016, 35(6): 1664-1672. |
45 | 钟洪玲, 陈鸥, 王洪亮, 等. 超低排放下燃煤电厂氨排放特征[J]. 环境科学研究, 2021, 34(1): 124-131. |
ZHONG Hongling, CHEN Ou, WANG Hongliang, et al. Characteristics of ammonia emission in flue gas from ultra-low emission coal-fired power plants[J]. Research of Environmental Sciences, 2021, 34(1): 124-131. | |
46 | MOHR M, YLÄTALO S, KLIPPEL N, et al. Submicron fly ash penetration through electrostatic precipitators at two coal power plants[J]. Aerosol Science and Technology, 1996, 24(3): 191-204. |
47 | LIU Wei, WU Bobo, BAI Xiaoxuan, et al. Migration and emission characteristics of ammonia/ammonium through flue gas cleaning devices in coal-fired power plants of China[J]. Environmental Science & Technology, 2020, 54(1): 390-399. |
48 | 程滕, 杨林军, 孙稚权. 湿法脱硫系统对脱硝产生逃逸氨的脱除特性[J]. 东南大学学报(自然科学版), 2020, 50(3): 530-536. |
CHENG Teng, YANG Linjun, SUN Zhiquan. Removal properties of NH3 slip from selective catalytic reduction during wet flue gas desulfurization process[J]. Journal of Southeast University (Natural Science Edition), 2020, 50(3): 530-536. | |
49 | CHENG Teng, ZHOU Xincheng, YANG Linjun, et al. Emission characteristics of soluble ions in fine particulates in limestone-gypsum wet flue gas desulfurization system[J]. Energy & Fuels, 2020, 34(3): 3836-3842. |
50 | LI Zhen, JIANG Jingkun, MA Zizhen, et al. Influence of flue gas desulfurization (FGD) installations on emission characteristics of PM2.5 from coal-fired power plants equipped with selective catalytic reduction (SCR)[J]. Environmental Pollution, 2017, 230: 655-662. |
51 | 马子轸, 李振, 蒋靖坤, 等. 燃煤电厂产生和排放的PM2.5中水溶性离子特征[J]. 环境科学, 2015, 36(7): 2361-2366. |
MA Zizhen, LI Zhen, JIANG Jingkun, et al. Characteristics of water-soluble inorganic ions in PM2.5 emitted from coal-fired power plants[J]. Environmental Science, 2015, 36(7): 2361-2366. | |
52 | MA Zizhen, LI Zhen, JIANG Jingkun, et al. PM2.5 emission reduction by technical improvement in a typical coal-fired power plant in China[J]. Aerosol and Air Quality Research, 2017, 17(2): 636-643. |
53 | WU Bobo, TIAN Hezhong, HAO Yan, et al. Effects of wet flue gas desulfurization and wet electrostatic precipitators on emission characteristics of particulate matter and its ionic compositions from four 300MW level ultralow coal-fired power plants[J]. Environmental Science & Technology, 2018, 52(23): 14015-14026. |
54 | 张周红, 丁少波, 张楠, 等. 燃煤电厂湿法脱硫对PM2.5和多环芳烃排放的影响[J]. 环境工程, 2019, 37(9): 119-124. |
ZHANG Zhouhong, DING Shaobo, ZHANG Nan, et al. Influence of wet flue gas desulfurization on PM2.5 and PAHs emitted from coal-fired power plants[J]. Environmental Engineering, 2019, 37(9): 119-124. | |
55 | 杨柳, 张斌, 王康慧, 等. 超低排放路线下燃煤烟气可凝结颗粒物在WFGD、WESP中的转化特性[J]. 环境科学, 2019, 40(1): 121-125. |
YANG Liu, ZHANG Bin, WANG Kanghui, et al. Conversion characteristics of combustible particles from coal-fired flue gas in WFGD and WESP[J]. Environmental Science, 2019, 40(1): 121-125. | |
56 | 马文杰, 孙道华. 火电厂脱硝逃逸氨对脱硫系统及环境影响分析研究[J]. 环境科技, 2019, 32(5): 24-27, 34. |
MA Wenjie, SUN Daohua. Analysis and research of effect on ammonia slip from denitrification to gas desulfurization system and environment in power plant[J]. Environmental Science and Technology, 2019, 32(5): 24-27, 34. | |
57 | CHENG Teng, ZHOU Xincheng, YANG Linjun, et al. Transformation and removal of ammonium sulfate aerosols and ammonia slip from selective catalytic reduction in wet flue gas desulfurization system[J]. Journal of Environmental Sciences, 2020, 88: 72-80. |
58 | 王慧红, 杨明华, 刘碧涛. 湿式电除尘简介及应用[J]. 清洗世界, 2020, 36(6): 73-74. |
WANG Huihong, YANG Minghua, LIU Bitao. Brief introduction and application of wet electric dust removal[J]. Cleaning World, 2020, 36(6): 73-74. | |
59 | CAO Ruijie, TAN Houzhang, XIONG Yingying, et al. Improving the removal of particles and trace elements from coal-fired power plants by combining a wet phase transition agglomerator with wet electrostatic precipitator[J]. Journal of Cleaner Production, 2017, 161: 1459-1465. |
60 | 柏源, 刘涛, 安风霞, 等. 某300MW燃煤机组FGD与WESP对颗粒物协同控制效果分析[J]. 电力科技与环保, 2020, 36(6): 27-29. |
BAI Yuan, LIU Tao, AN Fengxia, et al. Analysis of collaborative control effect of FGD and WESP on particulate matter in a 300MW coal-fired unit[J]. Electric Power Technology and Environmental Protection, 2020, 36(6): 27-29. | |
61 | 张英杰, 孔少飞, 汤莉莉, 等. 基于在线监测的江苏省大型固定燃煤源排放清单及其时空分布特征[J]. 环境科学, 2015, 36(8): 2775-2783. |
ZHANG Yingjie, KONG Shaofei, TANG Lili, et al. Analysis on emission inventory and temporal-spatial characteristics of pollutants from key coal-fired stationary sources in Jiangsu Province by online monitoring data[J]. Environmental Science, 2015, 36(8): 2775-2783. | |
62 | 屈加豹, 王鹏, 伯鑫, 等. 超低改造下中国火电排放清单及分布特征[J]. 环境科学, 2020, 41(9): 3969-3975. |
QU Jiabao, WANG Peng, BO Xin, et al. Inventory and distribution characteristics of China’s thermal power emissions under ultra-low reconstruction[J]. Environmental Science, 2020, 41(9): 3969-3975. | |
63 | 苏跃进, 周念昕. 氨法脱硝中未参与还原反应氨气产生的氨排放问题研究[J]. 科学与管理, 2019, 39(6): 68-75. |
SU Yuejin, ZHOU Nianxin. Ammonia emission without participating in the reduction reaction of denitrification[J]. Science and Management, 2019, 39(6): 68-75. | |
64 | 苏跃进, 曹顺安. 废气脱硝氨排放因子存在的不足及改进建议[J]. 节能与环保, 2019(11): 24-26. |
SU Yuejin, CAO Shun’an. Deficiencies in exhaust gas denitrification ammonia emission factors and suggestions for improvement[J]. Energy Conservation and Environmental Protection, 2019(11): 24-26. |
[1] | ZHANG Tingting, ZUO Xuqian, TIAN Lingdi, WANG Shimeng. Construction method of volatile organic compounds emission inventory and factor database in chemical industry park [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 549-557. |
[2] | YANG Ziqiang, LI Fenghai, GUO Weijie, MA Mingjie, ZHAO Wei. Review on phosphorus migration and transformation during municipal sewage sludge heat treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2081-2090. |
[3] | GU Liyan, DONG Weigang, LIU Fengjun, CAI Chenjian, CHEN Heng, YANG Linjun. Progress on migration and transformation characteristics of volatile components in hot flue gas evaporation of desulfurization wastewater [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 434-438. |
[4] | YU Yang, ZHOU Xin, CHENG Junfeng, DONG Changqing, WANG Yushan, LIU Yinghua. Research progress in detection methods, emission natures and removal technologies of condensable particulate matter from coal-fired power plants [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4515-4524. |
[5] | DENG Jiaxiao, FAN Junjie, ZHANG Bei, REN Zhiyuan. Migration and transformation of sodium in the pyrolysis of Naomaohu coal [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2138-2144. |
[6] | MA Shuangchen, LIN Chenyu, ZHOU Quan, WU Zhongsheng, LIU Qi, CHEN Wentong, FAN Shuaijun, YAO Yakun, MA Caini. Prediction model of FGD system based on deep neural network and its application [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1689-1698. |
[7] | Yingli YU, Xuchen FU, Yingying DAI, Jun RONG, Zhengping GAO, Bin CAI, Junhu HU. Analysis and countermeasure of high temperature corrosion on water wall of coal-fired power plant boiler [J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 90-96. |
[8] | Weijing YU, Chao MA, Wenbin TAN, Lei CUI, Yubin CHEN, Changhao LI. Research progress of white plume control in coal-fired power plants [J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 232-241. |
[9] | Xiaoyuan ZHENG, Zhengwei JIANG, Wei CHEN, Yutong YE, Zhi YING, Shasha JI, Bo WANG. Migration and transformation of phosphorus in sewage sludge during hydrothermal carbonization process [J]. Chemical Industry and Engineering Progress, 2020, 39(5): 2017-2025. |
[10] | Peng FENG, Zhenghong LI, Hexin LIU, Houzhang TAN, Sicong ZHANG, Xuchao LU, Fuxin YANG. Migration and removal characteristics of SO3 in ultra-low emission coal-fired power plant [J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4660-4667. |
[11] | Haizhou LIN, Haizhong LUO, Aiguo PEI, Mengxiang FANG. Simulation and analysis of carbon dioxide capture process using MDEA/PZ blend solution in a coal-fired power plant [J]. Chemical Industry and Engineering Progress, 2019, 38(04): 2046-2055. |
[12] | Haiping XIAO,Yuhui CHEN,Jinlin GE,Xiaoning WANG,Jianlin XI,Lining LIU. Online monitoring heating surface pollution of a boiler economizer in coal-fired power plant [J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1573-1578. |
[13] | LIN Haizhou, PEI Aiguo, FANG Mengxiang. Progress of research on process modifications for amine solvent-based post combustion CO2 capture from coal-fired power plant [J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4874-4886. |
[14] | LIU Hanxiao, YAO Yuping, LI Jianguo, HE Yuzhong, CHEN Zhaomei, GUO Ying, GUO Feng, FANG Xiaowei. Research of PM2.5 agglomeration for multi-scale integrated/multi-field synergy/multiphase coupling mechanism [J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 500-505. |
[15] | SUN Yawei, XIE Meilian, LIU Qingling, MA Degang, JI Na, SONG Chunfeng. Membrane-based carbon dioxide separation from flue gases of coal-fired power plant-current status and developments [J]. Chemical Industry and Engineering Progress, 2017, 36(05): 1880-1889. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |