Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (2): 951-963.DOI: 10.16085/j.issn.1000-6613.2021-0420
• Resources and environmental engineering • Previous Articles Next Articles
CHEN Shiyu1,2(), XU Zhicheng1, YANG Jing3, XU Hao1,2(), YAN Wei1,2
Received:
2021-03-02
Revised:
2021-05-11
Online:
2022-02-23
Published:
2022-02-05
Contact:
XU Hao
陈诗雨1,2(), 许志成1, 杨婧3, 徐浩1,2(), 延卫1,2
通讯作者:
徐浩
作者简介:
陈诗雨(1997—),女,硕士研究生,研究方向为微生物燃料电池。E-mail:基金资助:
CLC Number:
CHEN Shiyu, XU Zhicheng, YANG Jing, XU Hao, YAN Wei. Research progress of microbial fuel cell in wastewater treatment[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 951-963.
陈诗雨, 许志成, 杨婧, 徐浩, 延卫. 微生物燃料电池在废水处理中的研究进展[J]. 化工进展, 2022, 41(2): 951-963.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0420
MFC构型 | 优点 | 缺点 |
---|---|---|
单室型 | 内阻小、输出功率高 | 氧气易扩散至阳极 |
双室型 | 操作简单,稳定性高 | 传质阻力较大,产电密度较低 |
平板式 | 两极间距小、内阻小,输出功率高 | 氧气易渗透至阳极 |
升流式 | 实现连续进料,增大废水处理容量 | 操作不稳定 |
堆栈式 | 增大废水处理容量,提高输出功率,增加COD去除率 | 电压、电极反转,操作不稳定 |
MFC构型 | 优点 | 缺点 |
---|---|---|
单室型 | 内阻小、输出功率高 | 氧气易扩散至阳极 |
双室型 | 操作简单,稳定性高 | 传质阻力较大,产电密度较低 |
平板式 | 两极间距小、内阻小,输出功率高 | 氧气易渗透至阳极 |
升流式 | 实现连续进料,增大废水处理容量 | 操作不稳定 |
堆栈式 | 增大废水处理容量,提高输出功率,增加COD去除率 | 电压、电极反转,操作不稳定 |
MFC类型 | 废水类型 | COD去除率/% | 最大输出功率密度 | 参考文献 |
---|---|---|---|---|
平板空气阴极型 | 生活废水∶乙酸=1∶4 | 51.5 | 187W/m3 | [ |
100%生活废水 | 37.4 | 60W/m3 | ||
单室型 | 生活废水∶橄榄加工废水=14∶1 | 60 | 124.6mW/m2 | [ |
单室型 | 生活废水(COD浓度为1650mg/L) | 68 | (170.5±1.5)mW/m2 | [ |
单阴极单室型 | 生活废水(COD浓度为400~500mg/L) | 69.0±0.4 | 300mW/m2 | [ |
双阴极单室型 | 64.8±1.7 | 209mW/m2 | ||
平板型 | 生活废水(COD浓度为1000mg/L) | 79 | (43±1)mW/m2 | [ |
MFC类型 | 废水类型 | COD去除率/% | 最大输出功率密度 | 参考文献 |
---|---|---|---|---|
平板空气阴极型 | 生活废水∶乙酸=1∶4 | 51.5 | 187W/m3 | [ |
100%生活废水 | 37.4 | 60W/m3 | ||
单室型 | 生活废水∶橄榄加工废水=14∶1 | 60 | 124.6mW/m2 | [ |
单室型 | 生活废水(COD浓度为1650mg/L) | 68 | (170.5±1.5)mW/m2 | [ |
单阴极单室型 | 生活废水(COD浓度为400~500mg/L) | 69.0±0.4 | 300mW/m2 | [ |
双阴极单室型 | 64.8±1.7 | 209mW/m2 | ||
平板型 | 生活废水(COD浓度为1000mg/L) | 79 | (43±1)mW/m2 | [ |
MFC类型 | 废水类型 | COD去除率/% | 最大输出功率密度/mW·m-2 | 参考文献 |
---|---|---|---|---|
厌氧流化床型 | 畜禽原水(COD浓度为4189~8432mg/L) | 74.5~88.1 | 74.9 | [ |
双室型 | 添加有磺胺类抗生素的猪场废水 | >95 | — | [ |
管式空气阴极型 | 猪场废水(COD浓度为5845mg/L) | 83.8 | 175.7 | [ |
MFC类型 | 废水类型 | COD去除率/% | 最大输出功率密度/mW·m-2 | 参考文献 |
---|---|---|---|---|
厌氧流化床型 | 畜禽原水(COD浓度为4189~8432mg/L) | 74.5~88.1 | 74.9 | [ |
双室型 | 添加有磺胺类抗生素的猪场废水 | >95 | — | [ |
管式空气阴极型 | 猪场废水(COD浓度为5845mg/L) | 83.8 | 175.7 | [ |
MFC类型 | 偶氮染料 | 脱色效果 | COD去除率/% | 文献 |
---|---|---|---|---|
升流式单室型 | 酸性橙7(75mg/L) | 阴极室脱色率96% 阳极室脱色率75.7% | 阴极室:82.26±3.8 阳极室:64.4±6.7 | [ |
单室无膜型 | 橙黄G(80mg/L) | 脱色率65.1% | 82 | [ |
单室型 | 刚果红(300mg/L) | 脱色率86%; 脱色速率(16.1±0.9)mg/(L?h) | — | [ |
双室型 | 甲基橙2(100mg/L) | 脱色率96.3% | — | [ |
MFC类型 | 偶氮染料 | 脱色效果 | COD去除率/% | 文献 |
---|---|---|---|---|
升流式单室型 | 酸性橙7(75mg/L) | 阴极室脱色率96% 阳极室脱色率75.7% | 阴极室:82.26±3.8 阳极室:64.4±6.7 | [ |
单室无膜型 | 橙黄G(80mg/L) | 脱色率65.1% | 82 | [ |
单室型 | 刚果红(300mg/L) | 脱色率86%; 脱色速率(16.1±0.9)mg/(L?h) | — | [ |
双室型 | 甲基橙2(100mg/L) | 脱色率96.3% | — | [ |
1 | POTTER M C. Electrical effects accompanying the decomposition of organic compounds[J]. Proceedings of the Royal Society of London Series B: Containing Papers of a Biological Character, 1911, 84(571): 260-276. |
2 | LOGAN B E, HAMELERS B, ROZENDAL R, et al. Microbial fuel cells: methodology and technology[J]. Environmental Science & Technology, 2006, 40(17): 5181-5192. |
3 | DU Z, LI H, GU T. A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy[J]. Biotechnology Advances, 2007, 25(5): 464-482. |
4 | LOVLEY D R. The microbe electric: conversion of organic matter to electricity[J]. Current Opinion in Biotechnology, 2008, 19(6): 564-571. |
5 | CHEN H, SIMOSKA O, LIM K, et al. Fundamentals, applications, and future directions of bioelectrocatalysis[J]. Chemical Reviews, 2020, 120(23): 12903-12993. |
6 | 张吉强. 微生物燃料电池同步脱氮产电性能及机理研究[D]. 杭州: 浙江大学, 2014. |
ZHANG Jiqiang. Simultaneous nitreogen removal and electricity generation in microbial fuel cell and its mechanism[D]. Hangzhou: Zhejiang University, 2014. | |
7 | WATANABE K, MANEFIELD M, LEE M, et al. Electron shuttles in biotechnology[J]. Current Opinion in Biotechnology, 2009, 20(6): 633-641. |
8 | AELTERMAN P, RABAEY K, PHAM H T, et al. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells[J]. Environmental Science & Technology, 2006, 40(10): 3388-3394. |
9 | LI M, ZHOU M H, TIAN X Y, et al. Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity[J]. Biotechnology Advances, 2018, 36(4): 1316-1327. |
10 | HINDATU Y, ANNUAR M S M, GUMEL A M. Mini-review: anode modification for improved performance of microbial fuel cell[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 236-248. |
11 | ZHONG D J, LIU Y Q, LIAO X R, et al. Facile preparation of binder-free NiO/MnO2-carbon felt anode to enhance electricity generation and dye wastewater degradation performances of microbial fuel cell[J]. International Journal of Hydrogen Energy, 2018, 43(51): 23014-23026. |
12 | MOHAMED H O, OBAID M, POO K M, et al. Fe/Fe2O3 nanoparticles as anode catalyst for exclusive power generation and degradation of organic compounds using microbial fuel cell[J]. Chemical Engineering Journal, 2018, 349: 800-807. |
13 | NAINA MOHAMED S, THOMAS N, TAMILMANI J, et al. Bioelectricity generation using iron(II) molybdate nanocatalyst coated anode during treatment of sugar wastewater in microbial fuel cell[J]. Fuel, 2020, 277: 118119. |
14 | 梁鹏, 范明志, 曹效鑫, 等. 碳纳米管阳极微生物燃料电池产电特性的研究[J]. 环境科学, 2008, 29(8): 2356-2360. |
LIANG Peng, FAN Mingzhi, CAO Xiaoxin, et al. Electricity generation by the microbial fuel cells using carbon nanotube as the anode[J]. Environmental Science, 2008, 29(8): 2356-2360. | |
15 | XU P, ZHENG D Y, XIE Z Y, et al. The degradation of ibuprofen in a novel microbial fuel cell with PANi@CNTs/SS bio-anode and CuInS2 photocatalytic cathode: property, efficiency and mechanism[J]. Journal of Cleaner Production, 2020, 265: 121872. |
16 | WANG Y Y, WEN Q, CHEN Y, et al. Conductive polypyrrole-carboxymethyl cellulose-titanium nitride/carbon brush hydrogels as bioanodes for enhanced energy output in microbial fuel cells[J]. Energy, 2020, 204: 117942. |
17 | SUN Y, DAI Y, DUAN Y Q, et al. Biofouling inhibition on nano-silver/ferrous sulfide/partly-graphitized carbon cathode with enhanced catalytic activity and durability for microbial fuel cells[J]. Carbon, 2017, 119: 394-402. |
18 | XIN S S, SHEN J G, LIU G C, et al. Electricity generation and microbial community of single-chamber microbial fuel cells in response to Cu2O nanoparticles/reduced graphene oxide as cathode catalyst[J]. Chemical Engineering Journal, 2020, 380: 122446. |
19 | JIANG L T, CHEN J F, HAN D Q, et al. Potential of core-shell NiFe layered double hydroxide@Co3O4 nanostructures as cathode catalysts for oxygen reduction reaction in microbial fuel cells[J]. Journal of Power Sources, 2020, 453: 227877. |
20 | LIU X W, SUN X F, HUANG Y X, et al. Nano-structured manganese oxide as a cathodic catalyst for enhanced oxygen reduction in a microbial fuel cell fed with a synthetic wastewater[J]. Water Research, 2010, 44(18): 5298-5305. |
21 | 白立俊, 王许云, 何海波, 等. M-N-C阴极催化剂的制备及其在微生物燃料电池中的应用[J]. 化工学报, 2014, 65(4): 1267-1272. |
BAI Lijun, WANG Xuyun, HE Haibo, et al. Preparation and characterization of M-N-C as cathode catalysts for microbial fuel cell[J]. CIESC Journal, 2014, 65(4): 1267-1272. | |
22 | GAJDA I, GREENMAN J, SANTORO C, et al. Improved power and long term performance of microbial fuel cell with Fe-N-C catalyst in air-breathing cathode[J]. Energy, 2018, 144: 1073-1079. |
23 | HE W, WEI J H, HUANG T, et al. Enhanced electricity production in single-chamber MFCs with air cathodes decorated by Fe-N-C catalysts derived from 5H-dibenz [b, f] azepine-5-carboxamide (Carbamazepine)[J]. International Journal of Hydrogen Energy, 2020, 45(35): 17525-17532. |
24 | 刘诗彧, 王荣昌, 马翠香, 等. 氧化石墨烯与聚苯胺修饰阴极的微生物燃料电池电化学性能[J]. 中国环境科学, 2019, 39(9): 3866-3871. |
LIU Shiyu, WANG Rongchang, MA Cuixiang, et al. Electrochemical performance of microbial fuel cell with graphene oxide and polyaniline modified cathode[J]. China Environmental Science, 2019, 39(9): 3866-3871. | |
25 | TIAN X Y, ZHOU M H, LI M, et al. Nitrogen-doped activated carbon as metal-free oxygen reduction catalyst for cost-effective rolling-pressed air-cathode in microbial fuel cells[J]. Fuel, 2018, 223: 422-430. |
26 | 黄霞, 梁鹏, 曹效鑫, 等. 无介体微生物燃料电池的研究进展[J]. 中国给水排水, 2007, 23(4): 1-6. |
HUANG Xia, LIANG Peng, CAO Xiaoxin, et al. Progress in research of mediator-less microbial fuel cells[J]. China Water & Wastewater, 2007, 23(4): 1-6. | |
27 | YAN Y Q, WANG X. Ecological responses to substrates in electroactive biofilm: a review[J]. Science China Technological Sciences, 2019, 62(10): 1657-1669. |
28 | YAN X J, LEE H S, LI N, et al. The micro-niche of exoelectrogens influences bioelectricity generation in bioelectrochemical systems[J]. Renewable and Sustainable Energy Reviews, 2020, 134: 110184. |
29 | 郭璇. 微生物燃料电池技术处理炼油废水同步产电及系统内协同作用与代谢特征研究[D]. 北京: 中国石油大学(北京), 2014. |
GUO Xuan. Study on simultaneous biotreatment and electricity generation of refinery wastewater using microbial fuel cell and the microbial synergistic effect and metabolic characteristics in the system[D]. Beijing: China University of Petroleum, 2014. | |
30 | MIN B, LOGAN B E. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell[J]. Environmental Science & Technology, 2004, 38(21): 5809-5814. |
31 | 贾辉, 丁志威, 王捷, 等. 基于MFC的UASB厌氧消化过程生物传感器特性研究[J]. 高校化学工程学报, 2015, 29(5): 1154-1160. |
JIA Hui, DING Zhiwei, WANG Jie, et al. Study on MFC based UASB anaerobic digestion biosensors[J]. Journal of Chemical Engineering of Chinese Universities, 2015, 29(5): 1154-1160. | |
32 | KADIVARIAN M, DADKHAH A A, NASR ESFAHANY M. Oily wastewater treatment by a continuous flow microbial fuel cell and packages of cells with serial and parallel flow connections[J]. Bioelectrochemistry, 2020, 134: 107535. |
33 | WANG Y P, ZHANG H L, LI W W, et al. Improving electricity generation and substrate removal of a MFC-SBR system through optimization of COD loading distribution[J]. Biochemical Engineering Journal, 2014, 85: 15-20. |
34 | WANG X O, TIAN Y M, LIU H, et al. Effects of influent COD/TN ratio on nitrogen removal in integrated constructed wetland-microbial fuel cell systems[J]. Bioresource Technology, 2019, 271: 492-495. |
35 | 祝洪波. 连续流生物阴极微生物燃料电池处理猪场废水研究[D]. 南昌: 南昌大学, 2015. |
ZHU Hongbo. Study on treating swine wastewater by continuous flow microbial fuel cell with biological cathodes[D]. Nanchang: Nanchang University, 2015. | |
36 | PALANISAMY G, JUNG H Y, SADHASIVAM T, et al. A comprehensive review on microbial fuel cell technologies: processes, utilization, and advanced developments in electrodes and membranes[J]. Journal of Cleaner Production, 2019, 221: 598-621. |
37 | 李博文, 赵霞, 谢华, 等. 微生物电化学系统在水处理中的研究进展[J]. 应用化工, 2020, 49(5): 1278-1283. |
LI Bowen, ZHAO Xia, XIE Hua, et al. Research progress of microbial electrochemical system in water treatment[J]. Applied Chemical Industry, 2020, 49(5): 1278-1283. | |
38 | AFTAB S, SHAH A, NISAR J, et al. Marketability prospects of microbial fuel cells for sustainable energy generation[J]. Energy & Fuels, 2020, 34(8): 9108-9136. |
39 | HE L, DU P, CHEN Y Z, et al. Advances in microbial fuel cells for wastewater treatment[J]. Renewable and Sustainable Energy Reviews, 2017, 71: 388-403. |
40 | PARK Y, PARK S, NGUYEN V K, et al. Effect of gradual transition of substrate on performance of flat-panel air-cathode microbial fuel cells to treat domestic wastewater[J]. Bioresource Technology, 2017, 226: 158-163. |
41 | SCIARRIA T P, TENCA A, D’EPIFANIO A, et al. Using olive mill wastewater to improve performance in producing electricity from domestic wastewater by using single-chamber microbial fuel cell[J]. Bioresource Technology, 2013, 147: 246-253. |
42 | SONAWANE J M, MARSILI E, CHANDRA GHOSH P. Treatment of domestic and distillery wastewater in high surface microbial fuel cells[J]. International Journal of Hydrogen Energy, 2014, 39(36): 21819-21827. |
43 | KIM K Y, YANG W L, LOGAN B E. Impact of electrode configurations on retention time and domestic wastewater treatment efficiency using microbial fuel cells[J]. Water Research, 2015, 80: 41-46. |
44 | KOFFI N J, OKABE S. Domestic wastewater treatment and energy harvesting by serpentine up-flow MFCs equipped with PVDF-based activated carbon air-cathodes and a low voltage booster[J]. Chemical Engineering Journal, 2020, 380: 122443. |
45 | 王建军, 刘杨, 杨长军, 等. 厌氧流化床净化畜禽废水与产电性能[J]. 农业工程学报, 2012, 28(10): 214-218. |
WANG Jianjun, LIU Yang, YANG Changjun, et al. Research on livestock wastewater treatment and producing electricity using anaerobic fluidized bed[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(10): 214-218. | |
46 | CHENG D L, NGO H H, GUO W S, et al. Performance of microbial fuel cell for treating swine wastewater containing sulfonamide antibiotics[J]. Bioresource Technology, 2020, 311: 123588. |
47 | ZHUANG L, ZHENG Y, ZHOU S G, et al. Scalable microbial fuel cell (MFC) stack for continuous real wastewater treatment[J]. Bioresource Technology, 2012, 106: 82-88. |
48 | LOGROÑO W, PÉREZ M, URQUIZO G, et al. Single chamber microbial fuel cell (SCMFC) with a cathodic microalgal biofilm: a preliminary assessment of the generation of bioelectricity and biodegradation of real dye textile wastewater[J]. Chemosphere, 2017, 176: 378-388. |
49 | THUNG W E, ONG S A, HO L N, et al. A highly efficient single chambered up-flow membrane-less microbial fuel cell for treatment of azo dye Acid Orange 7-containing wastewater[J]. Bioresource Technology, 2015, 197: 284-288. |
50 | 朱超, 解井坤, 易维洁, 等. 微生物燃料电池快速处理含偶氮染料废水的研究[J]. 工业水处理, 2015, 35(8): 62-65. |
ZHU Chao, XIE Jingkun, YI Weijie, et al. Study on the rapid treatment of azo dye-bearing wastewater with microbial fuel cells[J]. Industrial Water Treatment, 2015, 35(8): 62-65. | |
51 | HUANG W T, CHEN J F, HU Y Y, et al. Enhanced simultaneous decolorization of azo dye and electricity generation in microbial fuel cell (MFC) with redox mediator modified anode[J]. International Journal of Hydrogen Energy, 2017, 42(4): 2349-2359. |
52 | XU H D, QUAN X C, XIAO Z T, et al. Cathode modification with peptide nanotubes (PNTs) incorporating redox mediators for azo dyes decolorization enhancement in microbial fuel cells[J]. International Journal of Hydrogen Energy, 2017, 42(12): 8207-8215. |
53 | MOHANAKRISHNA G, ABU-REESH I M, KONDAVEETI S, et al. Enhanced treatment of petroleum refinery wastewater by short-term applied voltage in single chamber microbial fuel cell[J]. Bioresource Technology, 2018, 253: 16-21. |
54 | ZHANG F, AHN Y, LOGAN B E. Treating refinery wastewaters in microbial fuel cells using separator electrode assembly or spaced electrode configurations[J]. Bioresource Technology, 2014, 152: 46-52. |
55 | MOHANAKRISHNA G, AL-RAOUSH R I, ABU-REESH I M. Induced bioelectrochemical metabolism for bioremediation of petroleum refinery wastewater: optimization of applied potential and flow of wastewater[J]. Bioresource Technology, 2018, 260: 227-232. |
56 | SRIKANTH S, KUMAR M, SINGH D, et al. Electro-biocatalytic treatment of petroleum refinery wastewater using microbial fuel cell (MFC) in continuous mode operation[J]. Bioresource Technology, 2016, 221: 70-77. |
57 | 孙培杰, 王林平, 徐乐瑾. 焦化废水中氰化物的处理技术研究进展[J]. 化工进展, 2021, 40(S1): 386-396. |
SUN Peijie, WANG Linping, XU Lejin. Advances in the treatment of cyanide in coking wastewater[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 386-396. | |
58 | 范小丰, 成岳, 袁萃贤. MFC处理低浓度焦化废水的试验研究[J]. 工业水处理, 2016, 36(8): 81-84. |
FAN Xiaofeng, CHENG Yue, YUAN Cuixian. Experimental research on microbial fuel cells for the treatment of low-concentration coking wastewater[J]. Industrial Water Treatment, 2016, 36(8): 81-84. | |
59 | ZHANG Q, LIU L F. Cathodes of membrane and packed manganese dioxide/titanium dioxide/graphitic carbon nitride/granular activated carbon promoted treatment of coking wastewater in microbial fuel cell[J]. Bioresource Technology, 2021, 321: 124442. |
60 | WU D, YI X Y, TANG R, et al. Single microbial fuel cell reactor for coking wastewater treatment: simultaneous carbon and nitrogen removal with zero alkaline consumption[J]. Science of the Total Environment, 2018, 621: 497-506. |
61 | ZHANG Y, LIU M M, ZHOU M H, et al. Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production: synergistic effects, mechanisms and challenges[J]. Renewable and Sustainable Energy Reviews, 2019, 103: 13-29. |
62 | LI X H, CHEN S, ANGELIDAKI I, et al. Bio-electro-Fenton processes for wastewater treatment: advances and prospects[J]. Chemical Engineering Journal, 2018, 354: 492-506. |
63 | ZHU X P, NI J R. Simultaneous processes of electricity generation and p-nitrophenol degradation in a microbial fuel cell[J]. Electrochemistry Communications, 2009, 11(2): 274-277. |
64 | FENG C H, LI F B, MAI H J, et al. Bio-electro-Fenton process driven by microbial fuel cell for wastewater treatment[J]. Environmental Science & Technology, 2010, 44(5): 1875-1880. |
65 | HASSAN M, OLVERA-VARGAS H, ZHU X P, et al. Microbial electro-Fenton: an emerging and energy-efficient platform for environmental remediation[J]. Journal of Power Sources, 2019, 424: 220-244. |
66 | HASSAN M, POUS N, XIE B, et al. Influence of iron species on integrated microbial fuel cell and electro-Fenton process treating landfill leachate[J]. Chemical Engineering Journal, 2017, 328: 57-65. |
67 | WANG Y Z, ZHANG H M, FENG Y J, et al. Bio-electron-Fenton (BEF) process driven by sediment microbial fuel cells (SMFCs) for antibiotics desorption and degradation[J]. Biosensors and Bioelectronics, 2019, 136: 8-15. |
68 | ZHAO H H, ZHANG Q H. Performance of electro-Fenton process coupling with microbial fuel cell for simultaneous removal of herbicide mesotrione[J]. Bioresource Technology, 2021, 319: 124244. |
69 | YONG X Y, GU D Y, WU Y D, et al. Bio-electron-Fenton (BEF) process driven by microbial fuel cells for triphenyltin chloride (TPTC) degradation[J]. Journal of Hazardous Materials, 2017, 324: 178-183. |
70 | YU X F, FU W N, JIANG M H, et al. Automatic microbial electro-Fenton system driven by transpiration for degradation of acid orange 7[J]. Science of the Total Environment, 2020, 725: 138508. |
71 | LONG S, ZHAO L, CHEN J C, et al. Tetracycline inhibition and transformation in microbial fuel cell systems: performance, transformation intermediates, and microbial community structure[J]. Bioresource Technology, 2021, 322: 124534. |
72 | GANIYU S O, ZHOU M H, MARTÍNEZ-HUITLE C A. Heterogeneous electro-Fenton and photoelectro-Fenton processes: a critical review of fundamental principles and application for water/wastewater treatment[J]. Applied Catalysis B: Environmental, 2018, 235: 103-129. |
73 | LIANOS P. Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity and hydrogen[J]. Applied Catalysis B: Environmental, 2017, 210: 235-254. |
74 | YUAN S J, SHENG G P, LI W W, et al. Degradation of organic pollutants in a photoelectrocatalytic system enhanced by a microbial fuel cell[J]. Environmental Science & Technology, 2010, 44(14): 5575-5580. |
75 | 钟登杰, 徐云兰. MFC产电辅助Fe,Ce-TiO2/Ti-Cu光催化处理染料废水[J]. 环境工程学报, 2018, 12(6): 1644-1650. |
ZHONG Dengjie, XU Yunlan. MFC assisted Fe, Ce-TiO2/Ti-Cu photocatalytic treatment of dye wastewater[J]. Chinese Journal of Environmental Engineering, 2018, 12(6): 1644-1650. | |
76 | LONG X Z, PAN Q R, WANG C Q, et al. Microbial fuel cell-photoelectrocatalytic cell combined system for the removal of azo dye wastewater[J]. Bioresource Technology, 2017, 244: 182-191. |
77 | ZHANG M M, WANG Y, LIANG P, et al. Combined photoelectrocatalytic microbial fuel cell (PEC-MFC) degradation of refractory organic pollutants and in situ electricity utilization[J]. Chemosphere, 2019, 214: 669-678. |
78 | 梁康, 王启烁, 王飞华, 等. 人工湿地处理生活污水的研究进展[J]. 农业环境科学学报, 2014, 33(3): 422-428. |
LIANG Kang, WANG Qishuo, WANG Feihua, et al. Research progresses in domestic wastewater treatment by constructed wetlands[J]. Journal of Agro-Environment Science, 2014, 33(3): 422-428. | |
79 | GUPTA S, SRIVASTAVA P, PATIL S A, et al. A comprehensive review on emerging constructed wetland coupled microbial fuel cell technology: potential applications and challenges[J]. Bioresource Technology, 2021, 320: 124376. |
80 | DOHERTY L, ZHAO Y Q, ZHAO X H, et al. A review of a recently emerged technology: constructed wetland—Microbial fuel cells[J]. Water Research, 2015, 85: 38-45. |
81 | CORBELLA C, HARTL M, FERNANDEZ-GATELL M, et al. MFC-based biosensor for domestic wastewater COD assessment in constructed wetlands[J]. Science of the Total Environment, 2019, 660: 218-226. |
82 | WANG J F, SONG X S, WANG Y H, et al. Nitrate removal and bioenergy production in constructed wetland coupled with microbial fuel cell: establishment of electrochemically active bacteria community on anode[J]. Bioresource Technology, 2016, 221: 358-365. |
83 | XU H, SONG H L, SINGH R P, et al. Simultaneous reduction of antibiotics leakage and methane emission from constructed wetland by integrating microbial fuel cell[J]. Bioresource Technology, 2021, 320: 124285. |
84 | 李骅, 杨小丽, 宋海亮, 等. 微生物燃料电池型人工湿地去除抗生素的效能研究[J]. 东南大学学报(自然科学版), 2017, 47(2): 410-415. |
LI Hua, YANG Xiaoli, SONG Hailiang, et al. Study on antibiotics removal by microbial fuel cell coupled constructed wetland[J]. Journal of Southeast University (Natural Science Edition), 2017, 47(2): 410-415. | |
85 | ZHAO Y Q, COLLUM S, PHELAN M, et al. Preliminary investigation of constructed wetland incorporating microbial fuel cell: batch and continuous flow trials[J]. Chemical Engineering Journal, 2013, 229: 364-370. |
86 | 夏函青, 伍永钢, 付成林, 等. 人工湿地-微生物电解池耦合系统的脱氮特性[J]. 化工进展, 2020, 39(11): 4677-4684. |
XIA Hanqing, WU Yonggang, FU Chenglin, et al. Nitrogen removal characteristics of the coupling system of constructed wetland and microbial electrolysis cell[J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4677-4684. | |
87 | TANG C, ZHAO Y Q, KANG C, et al. Towards concurrent pollutants removal and high energy harvesting in a pilot-scale CW-MFC: insight into the cathode conditions and electrodes connection[J]. Chemical Engineering Journal, 2019, 373: 150-160. |
88 | WANG X O, TIAN Y M, LIU H, et al. Optimizing the performance of organics and nutrient removal in constructed wetland-microbial fuel cell systems[J]. Science of the Total Environment, 2019, 653: 860-871. |
89 | 王博, 高冠道, 李凤祥, 等. 微生物电解池应用研究进展[J]. 化工进展, 2017, 36(3): 1084-1092. |
WANG Bo, GAO Guandao, LI Fengxiang, et al. Advance in application of microbial electrolysis cells[J]. Chemical Industry and Engineering Progress, 2017, 36(3): 1084-1092. | |
90 | 郭坤, 张京京, 李浩然, 等. 微生物电解电池制氢[J]. 化学进展, 2010, 22(4): 748-753. |
GUO Kun, ZHANG Jingjing, LI Haoran, et al. Hydrogen production by microbial electrolysis cells[J]. Progress in Chemistry, 2010, 22(4): 748-753. | |
91 | SUN M, SHENG G P, ZHANG L, et al. An MEC-MFC-coupled system for biohydrogen production from acetate[J]. Environmental Science & Technology, 2008, 42(21): 8095-8100. |
92 | 吴丹菁, 潘璐璐, 刘维平. MFC-MEC生物电化学耦合系统回收钴[J]. 中国有色金属学报, 2019, 29(7): 1536-1542. |
WU Danjing, PAN Lulu, LIU Weiping. Recovery of cobalt by MFC-MEC bioelectrochemical coupling system[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(7): 1536-1542. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[3] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[4] | WANG Ying, HAN Yunping, LI Lin, LI Yanbo, LI Huili, YAN Changren, LI Caixia. Research status and future prospects of the emission characteristics of virus aerosols in urban wastewater treatment plants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 439-446. |
[5] | XU Zhongshuo, ZHOU Panpan, WANG Yuhui, HUANG Wei, SONG Xinshan. Advances in sulfur iron ore mediated autotrophic denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4863-4871. |
[6] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[7] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[8] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[9] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[10] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[11] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[12] | JIANG Bolong, CUI Yanyan, SHI Shunjie, CHANG Jiacheng, JIANG Nan, TAN Weiqiang. Synthesis of transition metal Co3O4/ZnO-ZIF oxygen reduction catalyst by Co/Zn-ZIF template method and its electricity generation performance [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3066-3076. |
[13] | ZHANG Peng, PAN Yuan. Progress of single atom catalysts in electrocatalytic oxygen reduction to hydrogen peroxide [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2944-2953. |
[14] | CHEN Shaohua, WANG Yihua, HU Qiangfei, HU Kun, CHEN Li’ai, LI Jie. Research progress on detection of Cr(Ⅵ) by electrochemically modified electrode [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2429-2438. |
[15] | LI Huahua, LI Yihang, JIN Beichen, LI Longxin, CHENG Shao’an. Research progress of Anammox bio-electrochemical coupling wastewater treatment system [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2678-2690. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |