Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (9): 5140-5149.DOI: 10.16085/j.issn.1000-6613.2024-1099
• Materials science and technology • Previous Articles
CHENG Jingwen1(
), CHEN Qingcai1(
), YU Bo2, LIU Huan1, XU Tengfei1, HU Yukun1, LIU Sitong1
Received:2024-07-08
Revised:2024-09-02
Online:2025-09-30
Published:2025-09-25
Contact:
CHEN Qingcai
程静雯1(
), 陈庆彩1(
), 于博2, 刘欢1, 徐腾飞1, 呼宇坤1, 刘思彤1
通讯作者:
陈庆彩
作者简介:程静雯(2001—),女,硕士研究生,研究方向为VOCs气体传感器。E-mail:230311038@sust.edu.cn。
基金资助:CLC Number:
CHENG Jingwen, CHEN Qingcai, YU Bo, LIU Huan, XU Tengfei, HU Yukun, LIU Sitong. Detection performance and mechanism of VOCs by different metal-doped SnO2-based gas sensors[J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5140-5149.
程静雯, 陈庆彩, 于博, 刘欢, 徐腾飞, 呼宇坤, 刘思彤. 不同金属掺杂的SnO2基气体传感器对挥发性有机物的检测性能及机制[J]. 化工进展, 2025, 44(9): 5140-5149.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1099
| 样品 | 平均孔径/nm | 孔容积/cm3·g-1 | 比表面积/m2·g-1 |
|---|---|---|---|
| SnO2 | 4.1999 | 0.0908 | 86.5241 |
| Sb-SnO2 | 19.8434 | 0.2244 | 45.2376 |
| Co-SnO2 | 23.5044 | 0.1558 | 26.5188 |
| Zn-SnO2 | 26.1887 | 0.2291 | 34.9946 |
| 样品 | 平均孔径/nm | 孔容积/cm3·g-1 | 比表面积/m2·g-1 |
|---|---|---|---|
| SnO2 | 4.1999 | 0.0908 | 86.5241 |
| Sb-SnO2 | 19.8434 | 0.2244 | 45.2376 |
| Co-SnO2 | 23.5044 | 0.1558 | 26.5188 |
| Zn-SnO2 | 26.1887 | 0.2291 | 34.9946 |
| [1] | 李万勇, 黄浩瑜, 王艳振, 等. 聊城市城区夏季VOCs污染特征及来源解析[J]. 环境科学, 2023, 44(12): 6564-6575. |
| LI Wanyong, HUANG Haoyu, WANG Yanzhen, et al. Pollution characteristics and source apportionment of VOCs in urban areas of Liaocheng in summer[J]. Environmental Science, 2023, 44(12): 6564-6575. | |
| [2] | ZHANG Kai, DING Honglei, PAN Weiguo, et al. Research progress of a composite metal oxide catalyst for VOC degradation[J]. Environmental Science & Technology, 2022, 56(13): 9220-9236. |
| [3] | WANG Shuyi, ZHAO Yilong, HAN Yu, et al. Spatiotemporal variation, source and secondary transformation potential of volatile organic compounds (VOCs) during the winter days in Shanghai, China[J]. Atmospheric Environment, 2022, 286: 119203. |
| [4] | DAI Mingjun, ZHAO Liupeng, GAO Hongyu, et al. Hierarchical assembly of α -Fe2O3 nanorods on multiwall carbon nanotubes as a high-performance sensing material for gas sensors[J]. ACS Applied Materials & Interfaces, 2017, 9(10): 8919-8928. |
| [5] | WANG Qingji, KOU Xueying, LIU Chang, et al. Hydrothermal synthesis of hierarchical CoO/SnO2 nanostructures for ethanol gas sensor[J]. Journal of Colloid and Interface Science, 2018, 513: 760-766. |
| [6] | HSIAO Yu-Jen, NAGARJUNA Yempati, TSAI Chun-An, et al. High selectivity Fe3O4 nanoparticle to volatile organic compound (VOC) for MEMS gas sensors[J]. Materials Research Express, 2020, 7(6): 065013. |
| [7] | LIU Yaning, GAO Lilin, FU Shiyang, et al. Highly efficient VOC gas sensors based on Li-doped diamane[J]. Applied Surface Science, 2023, 611: 155694. |
| [8] | TIAN Qinghua, CHEN Yanbin, ZHANG Feng, et al. Hierarchical carbon-riveted 2D@0D TiO2 nanosheets@SnO2 nanoparticles composite for an improved lithium-ion battery anode[J]. Applied Surface Science, 2020, 511: 145625. |
| [9] | GAILLARD Nicolas, PRASHER Dixit, CHONG Marina, et al. Wide-bandgap Cu(In, Ga)S2 photocathodes integrated on transparent conductive F:SnO2 substrates for chalcopyrite-based water splitting tandem devices[J]. ACS Applied Energy Materials, 2019, 2(8): 5515-5524. |
| [10] | HUANG Shahua, Nasir ALI, HUAI Zhaoxiang, et al. A facile strategy for enhanced performance of inverted organic solar cells based on low-temperature solution-processed SnO2 electron transport layer[J]. Organic Electronics, 2020, 78: 105555. |
| [11] | 张清. SnO2气体传感器选择性改善研究进展[J]. 微纳电子技术, 2022, 59(12): 1263-1270. |
| ZHANG Qing. Research progress on selectivity improvement of SnO2 gas sensors[J]. Micronanoelectronic Technology, 2022, 59(12): 1263-1270. | |
| [12] | BAIK Nam Seok, SAKAI Go, MIURA Norio, et al. Preparation of stabilized nanosized tin oxide particles by hydrothermal treatment[J]. Journal of the American Ceramic Society, 2000, 83(12): 2983-2987. |
| [13] | LIU X M, WU S L, CHU Paul K, et al. Characteristics of nano Ti-doped SnO2 powders prepared by sol-gel method[J]. Materials Science and Engineering: A, 2006, 426(1/2): 274-277. |
| [14] | ZENG Yi, WANG Yanzhe, QIAO Liang, et al. Synthesis and the improved sensing properties of hierarchical SnO2 hollow nanosheets with mesoporous and multilayered interiors[J]. Sensors and Actuators B: Chemical, 2016, 222: 354-361. |
| [15] | 胡瑞金, 王兢, 朱慧超. PdO, Au, CdO修饰SnO2纳米纤维的制备及其气敏特性[J]. 物理化学学报, 2015, 31(10): 1997-2004. |
| HU Ruijin, WANG Jing, ZHU Huichao. Preparation and gas sensing properties of PdO, Au, CdO coatings on SnO2 nanofibers[J]. Acta Physico-Chimica Sinica, 2015, 31(10): 1997-2004. | |
| [16] | YANG Jiaqi, HAN Wenjiang, MA Jian, et al. Sn doping effect on NiO hollow nanofibers based gas sensors about the humidity dependence for triethylamine detection[J]. Sensors and Actuators B: Chemical, 2021, 340: 129971. |
| [17] | FAN Yaru, XU Yanyan, WANG Yuxuan, et al. Fabrication and characterization of Co-doped ZnO nanodiscs for selective TEA sensor applications with high response, high selectivity and ppb-level detection limit[J]. Journal of Alloys and Compounds, 2021, 876: 160170. |
| [18] | MA Longtao, FAN Huiqing, TIAN Hailin, et al. The n-ZnO/n-In2O3 heterojunction formed by a surface-modification and their potential barrier-control in methanal gas sensing[J]. Sensors and Actuators B: Chemical, 2016, 222: 508-516. |
| [19] | WANG Yun, ZHANG Hui, SUN Xuhui. Electrospun nanowebs of NiO/SnO2 p-n heterojunctions for enhanced gas sensing[J]. Applied Surface Science, 2016, 389: 514-520. |
| [20] | WANG Dongxue, GU Kuikun, ZHANG Jing, et al. MOF-derived NiWO4@NiO p-p heterostructure for distinguish detection of TEA and xylene by temperature regulation[J]. Journal of Alloys and Compounds, 2021, 875: 160015. |
| [21] | 璩光明, 杨莹丽, 王国东, 等. 金属氧化物半导体气体传感器改性研究进展[J]. 传感器与微系统, 2022, 41(2): 1-4. |
| QU Guangming, YANG Yingli, WANG Guodong, et al. Research progress in properties modification of metal oxide semiconductor gas sensors[J]. Transducer and Microsystem Technologies, 2022, 41(2): 1-4. | |
| [22] | WANG Li, MA Shuyi, LI Jianpeng, et al. Mo-doped SnO2 nanotubes sensor with abundant oxygen vacancies for ethanol detection[J]. Sensors and Actuators B: Chemical, 2021, 347: 130642. |
| [23] | TOMER Vijay K, SINGH Kulvinder, KAUR Harmanjit, et al. Rapid acetone detection using indium loaded WO3/SnO2 nanohybrid sensor[J]. Sensors and Actuators B: Chemical, 2017, 253: 703-713. |
| [24] | FAN Guijun, NIE Linfeng, WANG Hang, et al. Ce doped SnO/SnO2 heterojunctions for highly formaldehyde gas sensing at low temperature[J]. Sensors and Actuators B: Chemical, 2022, 373: 132640. |
| [25] | 于丹, 田振玉, 杜利军, 等. 国内VOCs来源、 排放标准及脱除技术分析[J]. 工程热物理学报, 2024, 45(6): 1825-1837. |
| YU Dan, TIAN Zhenyu, DU Lijun, et al. Source, emission standard and abatement technique of VOCs in China[J]. Journal of Engineering Thermophysics, 2024, 45(6): 1825-1837. | |
| [26] | 翟增秀, 李佳音, 杨伟华, 等. 典型化学制品企业OVOCs排放特征及环境影响[J]. 环境科学学报, 2024, 44(10): 111-120. |
| ZHAI Zengxiu, LI Jiayin, YANG Weihua, et al. Emission characteristics and environmental impact of OVOCs in typical chemical product enterprises[J]. Acta Scientiae Circumstantiae, 2024, 44(10): 111-120. | |
| [27] | SHAO Ping, AN Junlin, XIN Jinyuan, et al. Source apportionment of VOCs and the contribution to photochemical ozone formation during summer in the typical industrial area in the Yangtze River Delta, China[J]. Atmospheric Research, 2016, 176: 64-74. |
| [28] | TONG Dan, CHEN Jiangyao, QIN Dandan, et al. Mechanism of atmospheric organic amines reacted with ozone and implications for the formation of secondary organic aerosols[J]. Science of the Total Environment, 2020, 737: 139830. |
| [29] | 苑雪玲. 热解金属有机骨架法制备SnO2基复合材料及其气敏性能研究[D]. 南宁: 广西大学, 2021. |
| YUAN Xueling. Preparation by pyrolyzation of metallic organic frameworks and gas-sensing properties of SnO2-based composites [D]. Nanning: Guangxi University, 2021. | |
| [30] | 张晓, 徐瑶华, 刘皓, 等. 基于金属氧化物的乙醇检测气敏材料的研究进展[J]. 化工进展, 2019, 38(7): 3207-3226. |
| ZHANG Xiao, XU Yaohua, LIU Hao, et al. Recent advances of ethanol detection materials based on metal oxides[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3207-3226. | |
| [31] | LUO Yifan, Ahmadou LY, LAHEM Driss, et al. Role of cobalt in Co-ZnO nanoflower gas sensors for the detection of low concentration of VOCs[J]. Sensors and Actuators B: Chemical, 2022, 360: 131674. |
| [32] | 曾文, 林志东, 高俊杰. 金属离子掺杂纳米SnO2材料的气敏性能及掺杂机理[J]. 纳米技术与精密工程, 2008(3): 174-179. |
| ZENG Wen, LIN Zhidong, GAO Junjie. Gas sensitivity and the mechanism of nano-SnO2 doped by metallic ions[J]. Nanotechnology and Precision Engineering, 2008(3): 174-179. | |
| [33] | LI Yuxiu, CHEN Nan, DENG Dongyang, et al. Formaldehyde detection: SnO2 microspheres for formaldehyde gas sensor with high sensitivity, fast response/recovery and good selectivity[J]. Sensors and Actuators B: Chemical, 2017, 238: 264-273. |
| [34] | 徐林婕. 基于传感器阵列的多组分VOCs检测及工业应用验证研究[D]. 杭州: 浙江大学, 2023. |
| XU Linjie. Research on multi-component VOCs detection based on sensor array and its industrial application verification[D]. Hangzhou: Zhejiang University, 2023. | |
| [35] | LIU Fangmeng, YANG Zijie, HE Junming, et al. Ultrafast-response stabilized zirconia-based mixed potential type triethylamine sensor utilizing CoMoO4 sensing electrode[J]. Sensors and Actuators B: Chemical, 2018, 272: 433-440. |
| [36] | 金士成, 闫爽. 金属氧化物室温气敏材料的结构调控及传感机理[J]. 化学进展, 2021, 33(12): 2348-2361. |
| JIN Shicheng, YAN Shuang. Nanostructure construction and sensing mechanism of metal oxides for room temperature gas sensing[J]. Progress in Chemistry, 2021, 33(12): 2348-2361. | |
| [37] | XU Keng, ZOU Jingping, TIAN Shouqin, et al. Single-crystalline porous nanosheets assembled hierarchical Co3O4 microspheres for enhanced gas-sensing properties to trace xylene[J]. Sensors and Actuators B: Chemical, 2017, 246: 68-77. |
| [38] | HU Jie, YANG Jie, WANG Wenda, et al. Synthesis and gas sensing properties of NiO/SnO2 hierarchical structures toward ppb-level acetone detection[J]. Materials Research Bulletin, 2018, 102: 294-303. |
| [39] | WANG Wanjing, XIAN Jianbiao, LI Jin, et al. Construction of Co3O4/SnO2 yolk-shell nanofibers for acetone gas detection[J]. Sensors and Actuators B: Chemical, 2024, 398: 134724. |
| [40] | MENG Xiaoning, YAO Mengxia, MU Shifang, et al. Oxygen vacancies enhance triethylamine sensing properties of SnO2 nanoparticles[J]. ChemistrySelect, 2019, 4(38): 11268-11274. |
| [41] | ZHAO Liupeng, LI Yiwen, ZHOU Yue, et al. Mechanism of high- and low-valence doping on adsorbed oxygen of SnO2-based gas sensors and a strategy to combine the advantages of both dopants[J]. Sensors and Actuators B: Chemical, 2022, 371: 132603. |
| [42] | WANG Mengjie, LIU Hongyan, SUN Caixuan, et al. High efficiency toluene sensor based on iron-doped nickel oxide triple-shell microspheres with high moisture resistance[J]. Materials Science and Engineering: B, 2024, 299: 117001. |
| [43] | WANG Yanzhe, LIU Chunbao, QIAO Liang, et al. Localized inside-out Ostwald ripening of hybrid double-shelled cages into SnO2 triple-shelled hollow cubes for improved toluene detection[J]. Nanoscale, 2020, 12(3): 2011-2021. |
| [44] | RAMANATHAN Ramarajan, NAGARAJAN Selvakumar, SATHIYAM OORTHY Surya, et al. A highly sensitive and room temperature ethanol gas sensor based on spray deposited Sb doped SnO2 thin films[J]. Materials Advances, 2024, 5(1): 293-305. |
| [1] | CHE Xinghao, LUO Chenhui, DUAN Dongquan, FENG Yajuan, CAO Junya, ZHANG Xianglan, XIE Qiang. Safety evaluation system and application of VOCs treatment engineering in industrial coating industry based on process simulation [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4741-4753. |
| [2] | LIU Shida, HOU Shuandi, LIU Zhongsheng. Comparative study, prospects, and suggestions of air pollutant control standards related to the petrochemical industry source between China and the United States [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4089-4101. |
| [3] | LIU Shida, WANG Haiyan, HOU Shuandi, LIU Zhongsheng, LIAO Changjian, WANG Kuanling. Recent advances in safely efficient deep emission reduction, recovery and thermal oxidation of VOCs from petrochemical storage tanks in China [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2063-2076. |
| [4] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
| [5] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
| [6] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
| [7] | ZHENG Yamei, LIN Shengnan, JING Guohua, SHEN Huazhen, LYU Bihong. Evaluation of VOCs terminal treatment technology in pesticide production based on fuzzy analytic hierarchy process [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3372-3380. |
| [8] | DU Jiahui, LIU Jia, YANG Juping, QI Hongyi, DOU Xiaona, LI Jian. Recent advances in biological combined technology for VOCs treatment [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2802-2812. |
| [9] | WANG Xu, WU Yushuai, YANG Xin, CHEN Huiyong, ZHANG Jianbo, MA Xiaoxun. Review of adsorptive removal of volatile organic compounds by zeolite [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2813-2826. |
| [10] | WEI Jinghui, FENG Yongchao, YU Qingjun, YI Honghong, TANG Xiaolong, ZHANG Yuanyuan, MENG Xianzheng, YUAN Yuting. Research progress of catalytic oxidation of typical VOCs in cooking oil fumes [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5730-5746. |
| [11] | Meng LI, Wei LI, Shuai ZHANG, Yuwei LI, Fang LIU, Chaocheng ZHAO, Yongqiang WANG. Research progress on adsorption of VOCs by MOF and its composite [J]. Chemical Industry and Engineering Progress, 2021, 40(1): 415-426. |
| [12] | Lingbo LI,Long LI,Mengting CHENG,Xiangchen FANG. Current status and future developments in monitoring of fugitive VOC emissions from petroleum refining and petrochemical industry [J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1196-1208. |
| [13] | Chunlin ZHAO, Ziran MA, Baodong WANG, Ge LI, Hongyan WANG, Jiali ZHOU, Guangjie LU, Yuting XIAO, Jianhui YANG, Jinfeng LU. Research progress of catalyst coating process for exhaust gas treatment from fixed source [J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4015-4023. |
| [14] | Jinjin LI,Feiran CHEN,Xiuwei MA,Zhi ZHANG,Linjun YANG. Emission of coal-fired VOCs and prospect of control technology [J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5539-5547. |
| [15] | HU Yingjie, WANG Zhiqiang, CHENG Xingxing, LIU Ming, MA Chunyuan. Recent progress in the removal of volatile organic compounds by combustion [J]. Chemical Industry and Engineering Progress, 2018, 37(01): 319-329. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |