Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (01): 319-329.DOI: 10.16085/j.issn.1000-6613.2017-0740
Previous Articles Next Articles
HU Yingjie, WANG Zhiqiang, CHENG Xingxing, LIU Ming, MA Chunyuan
Received:
2017-04-24
Revised:
2017-06-13
Online:
2018-01-05
Published:
2018-01-05
户英杰, 王志强, 程星星, 刘命, 马春元
通讯作者:
王志强,副教授,研究方向为燃烧及污染物控制。
作者简介:
户英杰(1994-),男,硕士,研究方向为大气污染物脱除。
基金资助:
CLC Number:
HU Yingjie, WANG Zhiqiang, CHENG Xingxing, LIU Ming, MA Chunyuan. Recent progress in the removal of volatile organic compounds by combustion[J]. Chemical Industry and Engineering Progress, 2018, 37(01): 319-329.
户英杰, 王志强, 程星星, 刘命, 马春元. 燃烧处理挥发性有机污染物的研究进展[J]. 化工进展, 2018, 37(01): 319-329.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2017-0740
[1] 陈颖,李丽娜,郝郑平,等. 我国VOC类有毒空气污染物优先控制对策探讨[J]. 环境科学,2011,32(12):3469-3475. CHEN Y,LI L N,HAO Z P,et al. Countermeasures for priority control of toxic VOC pollution[J]. Environmental Science,2011,32(12):3469-3475. [2] Lewtas J,Pang Y,Booth D,et al. Comparison of sampling methods for semi-volatile organic carbon associated with PM2.5[J]. Aerosol Science and Technology,2001,34(1):9-22. [3] Hsu D J,Huang H L,Chien C H,et al. Potential exposure to VOCs caused by dry process photocopiers:results from a chamber study[J]. Bulletin of Environmental Contamination and Toxicology,2005,75(6):1150-1155. [4] Geng F,Tie X,Xu J,et al. Characterizations of ozone,NOx,and VOCs measured in Shanghai,China[J]. Atmospheric Environment,2008,42(29):6873-6883. [5] 王海林,张国宁,聂磊,等. 我国工业VOCs减排控制与管理对策研究[J]. 环境科学,2011,32(12):3462-3468. WANG H L,ZHANG G N,NEI L,et al. Study on control and management for industrial volatile organic compounds(VOCs)in China[J]. Environmental Science,2011,32(12):3462-3468. [6] 莫梓伟,邵敏,陆思华. 中国挥发性有机物(VOCs)排放源成分谱研究进展[J]. 环境科学学报,2014,34(9):2179-2189. MO Z H,SHAO M,LU S H. Review on volatile organic compounds (VOCs)source profiles measured in China[J]. Acta Scientiae Circumstantiae,2014,34(9):2179-2189. [7] 许伟,刘军利,孙康. 活性炭吸附法在挥发性有机物治理中的应用研究进展[J]. 化工进展,2016,35(4):1223-1229. XU W,LIU J L,SUN K. Application progresses in the treatment of volatile organic compounds by adsorption on activated carbon[J]. Chemical Industry and Engineering Progress,2016,35(4):1223-1229. [8] 王小军,徐校良,李兵,等. 生物法净化处理工业废气的研究进展[J]. 化工进展,2014,33(1):213-218. WANG X J,XU X L,LI B,et al. Research progress of biological methods for treating and purifying industrial waste gas[J]. Chemical Industry and Engineering Progress,2014,33(1):213-218. [9] 王宇飞,刘昌新,程杰,等. 工业VOCs经济手段和工程技术减排对比性分析[J]. 环境科学,2015,36(4):1507-1512. WANG Y F,LIU C X,CHENG J,et al. Comparison analysis of economic and engineering control of industrial VOCs[J]. Environmental Science,2015,36(4):1507-1512. [10] 栾志强,郝郑平,王喜芹. 工业固定源VOCs治理技术分析评估[J]. 环境科学,2011,32(12):3476-3486. LUAN Z Q,HAO Z P,WANG X Q. Evaluation of treatment technology of volatile organic compounds for fixed industrial resources[J]. Environmental Science,2011,32(12):3476-3486. [11] 李春生. 热力燃烧法处理电子元件厂VOCs研究[J]. 广州化工,2015,43(3):141-142. LI C S. Research of the thermal oxidation method dealing with electronic components factory VOCs[J]. Guangzhou Chemical Industry,2015,43(3):141-142. [12] Bennett G F. Current and potential future industrial practices for reducing and controlling volatile organic compounds[J]. Journal of Hazardous Materials,1994,38(2):345-346. [13] Khan F I,Ghoshal A K. Removal of volatile organic compounds from polluted air[J]. Journal of Loss Prevention in the Process Industries,2000,13(6):527-545. [14] Donley E,Lewandowski D. Optimized design and operating parameters for minimizing emissions during VOC thermal oxidation[J]. Metal Finishing,2000,98(6):446449-447458. [15] 张宇峰,邵春燕,张雪英,等. 挥发性有机化合物的污染控制技术[J]. 南京工业大学学报(自科版),2003,25(3):89-92. ZHANG Y F,SHAO C Y,ZHANG X Y,et al. Control technology of pollution caused by VOC[J]. Journal of Nanjing University of Technology,2003,25(3):89-92. [16] Ruddy E N,Carroll L A. Select the best VOC control strategy[J]. Chemical Engineering Progress,1993,89:7. [17] 贾海亮,赵军,李钰甫,等. 凹版印刷工业的绿色节能技术[J]. 包装学报,2015,7(2):53-58. JIA H L,ZHAO J F,LI Y F,et al. Green energy-saving technology in gravure press[J]. Packaging Journal,2015,72(2):53-58. [18] 李长英,陈明功,盛楠,等. 挥发性有机物处理技术的特点与发展[J]. 化工进展,2016,35(3):917-925. LI C Y,CHEN M G,SHENG N,et al. The characteristics and development of volatile organic compounds treatment technology[J]. Chemical Industry and Engineering Progress,2016,35(3):917-925. [19] 张建萍,项菲. 浅析蓄热式热力氧化技术处理挥发性有机废气[J]. 浙江化工,2014(3):36-39. ZHANG J P,XIANG F. The treatment of the volatile organic compound gas by the regenerative thermal oxidation technology[J]. Zhejiang Chemical Industry,2014(3):36-39. [20] 高娟,贾志刚,张照. 蓄热段长度对流向变换催化燃烧反应器性能影响的模型研究[J]. 工业催化,2014,22(9):719-724. GAO J,JIA Z G,ZHANG Z. Modeling a reversal flow reactor for catalytic combustion and the effects of regenerative length[J]. Industrial Catalysis,2014,22(9):719-724. [21] LITTO R,HAYES R E,SAPOUNDJIEV H,et al. Optimization of a flow reversal reactor for the catalytic combustion of lean methane mixtures[J]. Catalysis Today,2006,117(4):536-542. [22] MUJEEBU M A,ABDULLAH M Z,BAKAR M Z A,et al. Applications of porous media combustion technology-a review[J]. Applied Energy,2009,86(9):1365-1375. [23] 秦朝葵,郑璐. 多孔介质燃烧技术现状[J]. 城市燃气,2015(7):7-11. QIN C K,ZHENG L. Present status of porous medium combustion technology[J]. Chengshi Ranqi,2015(7):7-11. [24] GNESDILOV N N,DOBREGO K V,KOZLOV I M. Parametric study of recuperative VOC oxidation reactor with porous media[J]. International Journal of Heat & Mass Transfer,2007,50:2787-2794. [25] QU Z,GAO H,FENG X,et al. Premixed combustion in a porous burner with different fuels[J]. combustion Science & Technology,2014,187(3):489-504. [26] TRIMIS D,DURST F. Combustion in a porous medium-advances and applications[J]. Combustion Science and Technology,1996,121(1-6):153-168. [27] JUGJAI S,SOMJETLERTCHAROEN A. Multimode heat transfer in cyclic flow reversal combustion in a porous medium[J]. International Journal of Energy Research,2015,23:183-206. [28] 张俊春. 多孔介质燃烧处理低热值气体及燃烧不稳定性研究[D]. 杭州:浙江大学,2014. ZHANG J C. Porous media combustion for low calorific gases and combustion instabilites[D]. Hangzhou:Zhejiang University,2014. [29] 岑可法,程乐鸣,骆仲泱,等. 渐变型多孔介质燃烧器:01226080.0[P]. 2002-04-03. CEN K F,CHENG L M,LUO Z Y,et al. A gradually-varied porous media burner:01226080.0[P]. 2002-04-03. [30] 王恩宇,程乐鸣,吴学成,等. 渐变型多孔介质中预混燃烧试验研究[J]. 浙江大学学报(工学版),2002,36(6):685-689. WANG E Y,CHENG L M,WU X C,et al. Experimental research on premixed combustion in gradually-varied porous media[J]. Journal of Zhejiang University(Engineering Science),2002,36(6):685-689. [31] 李涛,程乐鸣,郑成航. 低热值燃气往复多孔介质燃烧特性[J]. 浙江大学学报(工学版),2011,45(1):151-156. LI T,CHENG L M,ZHENG C H. Combustion characteristics of low calorific gas in reciprocal flow porous media burner[J]. Journal of Zhejiang University(Engineering Science),2011,45(1):151-156. [32] SHI W,WANG D. (Engineering Science)Combined application of regenerative combustion technology and porous medium combustion technology[J]. Energy Procedia,2015,66:209-212. [33] DOBREGO K V,GNESDILOV N N,KOZLOV I M,et al. Numerical investigation of the new regenerator-recuperator scheme of VOC oxidizer[J]. International Journal of Heat & Mass Transfer,2005,48(23/24):4695-4703. [34] 张广宏,赵福真,季生福,等. 挥发性有机物催化燃烧消除的研究进展[J]. 化工进展,2007,26(5):624-631. ZHANG G H,ZHAO F Z,JI S F,et al. Development of the elimination of volatile organic compounds by catalytic combustion[J]. Chemical Industry and Engineering Progress,2007,26(5):624-631. [35] Rooke J C,Barakat T,Brunet J,et al. Hierarchically nanostructured porous group Vb,metal oxides from alkoxide precursors and their role in the catalytic remediation of VOCs[J]. Applied Catalysis B:Environmental,2015,162:300-309. [36] LI B,CHEN Y,LI L,et al. Reaction kinetics and mechanism of benzene combustion over the NiMnO3/CeO2/Cordierite catalyst[J]. Journal of Molecular Catalysis A:Chemical,2016,415:160-167. [37] KAMAL M S,RAZZAK S A,HOSSAIN M M. Catalytic oxidation of volatile organic compounds(VOCs) -a review[J]. Atmospheric Environment,2016,140:117-134. [38] Wang Y,Zhang C,Liu F,et al. Well-dispersed palladium supported on ordered mesoporous Co3O4,for catalytic oxidation of o-xylene[J]. Applied Catalysis B:Environmental,2013,s142/143(10):72-79. [39] 乔南利,李杨,李娜,等. 双介孔硅基材料负载Pd催化剂上甲苯氧化性能的研究[J]. 催化学报,2015,36(10):1686-1693. QIAO N L,LI Y,LI N,et al. High performance Pd catalysts supported on bimodal mesopore silica for the catalytic oxidation of toluene[J]. Chinese Journal of Catalysis,2015,36(10):1686-1693. [40] RUI Z b,Chen C y,LU Y Bet al. Anodic alumina supported Pt catalyst for total oxidation of trace toluene[J]. Chinese Journal of Chemical Engineering,2014,22(8):882-887. [41] Sedjame H J,Fontaine C,Lafaye G,et al. On the promoting effect of the addition of ceria to platinum based alumina catalysts for VOCs oxidation[J]. Applied Catalysis B:Environmental,2014,144(1):233-242. [42] Joung H J,Kim J H,Oh J S,et al. Catalytic oxidation of VOCs over CNT-supported platinum nanoparticles[J]. Applied Surface Science,2014,290(4):267-273. [43] Carabineiro S A C,Chen X,Martynyuk O,et al. Gold supported on metal oxides for volatile organic compounds total oxidation[J]. Catalysis Today,2015,244:103-114. [44] Hosseini M,Siffert S,Cousin R,et al. Total oxidation of VOCs on Pd and/or Au supported on TiO2/ZrO2 followed by"operando"[J]. Science Direct,2009,12:654-659. [45] 陈清波,罗来涛,王建鑫. 载体对Au-Pd催化剂甲醇部分氧化性能的影响[J]. 化工学报,2008,59(4):898-903. CHEN Q B,LUO L T,WANG J X. Effect of supports on activity of Au-Pd catalysts for partial oxidation of methanol[J]. Journal of Chemical Industry & Engineering(China),2008,59(4):898-903. [46] Barakat T,Rooke J C,Franco M,et al. Pd-and/or Au-loaded Nb-and V-doped macro-mesoporous TiO2,supports as catalysts for the total oxidation of VOCs[J]. European Journal of Inorganic Chemistry,2012(16):2812-2818. [47] 潘红艳,张煜,林倩,等. 催化燃烧VOCs用非贵金属催化剂研究新进展[J]. 化工进展,2011,30(8):1726-1732. PAN H Y,ZHANG Y,LIN Q,et al. Advance in non-noble metal catalysts for catalytic combustion of volatile organic compounds[J]. Chemical Industry and Engineering Progress,2011,30(8):1726-1725. [48] Maupin I,Mijoin J,BARBIER Jr J,et al. Improved oxygen storage capacity on CeO2/zeolite hybrid catalysts,application to VOCs catalytic combustion[J]. Catalysis Today,2011,176(1):103-109. [49] Heynderickx P M,Thybaut J W,Poelman H,et al. The total oxidation of propane over supported Cu and Ce oxides:a comparison of single and binary metal oxides[J]. Journal of Catalysis,2010,272(1):109-120. [50] De Rivas B. Synthesis,characterisation and catalytic performance of nanocrystalline Co3O4 for gas-phase chlorinated VOC abatement[J]. Journal of Catalysis,2011,281(1):88-97. [51] SANG C K,WANG G S. Catalytic combustion of VOCs over a series of manganese oxide catalysts[J]. Applied Catalysis B:Environmental,2010,98(3/4):180-185. [52] Sun H,Liu Z,Chen S,et al. The role of lattice oxygen on the activity and selectivity of the OMS-2 catalyst for the total oxidation of toluene[J]. Chemical Engineering Journal,2015,270:58-65. [53] SANG C K,PARK Y K,NAH J W. Property of a highly active bimetallic catalyst based on a supported manganese oxide for the complete oxidation of toluene[J]. Powder Technology,2014,266(6):292-298. [54] TIAN H,HE J,LIU L,et al. Highly active manganese oxide catalysts for low-temperature oxidation of formaldehyde[J]. Microporous & Mesoporous Materials,2012,151(11):397-402. [55] Tang W,WU X f,Liu G,et al. Preparation of hierarchical layer-stacking Mn-Ce composite oxide for catalytic total oxidation of VOCs[J]. Journal of Rare Earths,2015,33(1):62-69. [56] Zhou G,He X,Liu S,et al. Phenyl VOCs catalytic combustion on supported CoMn/AC oxide catalyst[J]. Journal of Industrial & Engineering Chemistry,2015,21(1):932-941. [57] Li S,Wang H,Li W,et al. Effect of Cu substitution on promoted benzene oxidation over porous CuCo-based catalysts derived from layered double hydroxide with resistance of water vapor[J]. Applied Catalysis B:Environmental,2015,166:260-269. [58] 薛雯娟,张新艳,李鹏,等. Au-Cu/Co3O4双金属催化剂上乙烯完全催化氧化性能[J]. 物理化学学报,2011,27(7):1730-1736. XUE W J,ZHANG X Y,LI P,et al. Catalytic activities for the complete oxidation of ethylene over Au-Cu/Co3O4 catalysts[J]. Acta Physico-Chimica Sinica,2011,27(7):1730-1736. [59] HE C,YU Y,LIN Y,et al. Low-temperature removal of toluene and propanal over highly active mesoporous CuCeOx,catalysts synthesized via,a simple self-precipitation protocol[J]. Applied Catalysis B:Environmental,2014,147:156-166. [60] 李兵,王志良,吴海锁,等. Ce-Ni-Mn-O复合氧化物催化剂催化燃烧苯的性能研究[J]. 功能材料,2013,44(10):1457-1460. LI B,WANG Z L,WU H S,et al. Catalytic performance of Ce-Ni-Mn-O mixed oxide for combustion of benzene[J]. Journal of Functional Materials,2013,44(10):1457-1460. [61] HE C,YU Y,CHEN C,et al. Facile preparation of 3D ordered mesoporous CuOx-CeO2 with notably enhanced efficiency for the low temperature oxidation of heteroatom-containing volatile organic compounds[J]. RSC Advances,2013,3(42):19639-19656. [62] 阚家伟,李兵,李林,等. 含氯挥发性有机化合物催化燃烧催化剂的研究进展[J]. 化工进展,2016,35(2):499-505. KAN J W,LI B,LI L,et al. Advances in catalysts for catalytic combustion of chlorinated volatile organic compounds[J]. Chemical Industry and Engineering Progress,2016,35(2):499-505. [63] Teh L P,Triwahyono S,Jalil A A,et al. Mesoporous ZSM-5 having both intrinsic acidic and basic sites for cracking and methanation[J]. Chemical Engineering Journal,2015,270:196-204. [64] 李兵,徐校良,牛茜,等. 负载型钙钛矿LaBxMn1-xO3/堇青石(B=Co,Fe,Ni,Cu)催化燃烧苯的性能[J]. 南京工业大学学报(自然科学版),2014,36(4):1-6. LI B,XU X L,NIU Q,et al. Properties of supported perovskite LaBxMn1-xO3/cordierite(B=Co,Fe,Ni,Cu)catalysts for benzene combustion[J]. Journal of Nanjing Tech University(Natural Science Edition),2014,36(4):1-6. [65] López-Fonseca R,Gutiérrez-Ortiz J I,Gutiérrez-Ortiz M A,et al. Catalytic oxidation of aliphatic chlorinated volatile organic compounds over Pt/H-BETA zeolite catalyst under dry and humid conditions[J]. Catalysis Today,2005,107/108(44):200-207. [66] Bertinchamps F,Attianese A,Mestdagh M M,et al. Catalysts for chlorinated VOCs abatement:multiple effects of water on the activity of VOx,based catalysts for the combustion of chlorobenzene[J]. Catalysis Today,2006,112(1):165-168. [67] Aranzabal A,Romero-Sáez M,Elizundia U,et al. Deactivation of H-zeolites during catalytic oxidation of trichloroethylene[J]. Journal of Catalysis,2012,296(7):165-174. [68] 沈柳倩,翁芳蕾,袁鹏军,等. 钙钛矿型催化剂对VOCs催化燃烧的抗毒性和稳定性研究[J]. 分子催化,2008,22(4):320-324. SHEN L Q,WENG F L,YUAN P J,et al. Research on the poison resistance and stabilization of the perovskite catalysts for VOCs catalytic combustion[J]. Journal of Molecular Catalysis,2008,22(4):320-324. [69] 黄海凤,宁星杰,蒋孝佳,等. V-M/TiO2(M=Cu、Cr、Ce、Mn、Mo)催化燃烧含氯有机废气[J]. 中国环境科学,2014,34(9):2179-2185. HUANG H F,NING X J,JIANG X J,et al. Catalytic combustion of chlorinated volatile organic compounds over V-M/TiO2(M=Cu、Cr、Ce、Mn、Mo)catalysts[J]. China Environmental Science,2014,34(9):2179-2185. [70] HE C,XU B T,SHI J W,et al. Catalytic destruction of chlorobenzene over mesoporous ACeOx,(A=Co,Cu,Fe,Mn,or Zr) composites prepared by inorganic metal precursor spontaneous precipitation[J]. Fuel Processing Technology,2015,130(1):179-187. [71] Zhang Z,Jiang Z,Shangguan W. Low-temperature catalysis for VOCs removal in technology and application:a state-of-the-art review[J]. Catalysis Today,2015,264:270-278. [72] 王海林,王俊慧,祝春蕾,等. 包装印刷行业挥发性有机物控制技术评估与筛选[J]. 环境科学,2014,35(7):2503-2507. WANG H L,WANG J H,ZHU C L,et al. Evaluation and selection of VOCs treatment technologies in packaging and printing industry[J]. Environmental Science,2014,35(7):2503-2507. [73] Chou M S,Cheng W H,Lee W S. Performance characteristics of a regenerative catalytic oxidizer for treating VOC-contaminated airstreams[J]. Journal of the Air & Waste Management Association,2000,50(12):2112-2119. [74] Huang S W,Lou J C,Lin Y C. Treatment of VOCs with molecular sieve catalysts in regenerative catalytic oxidizer[J]. Journal of Hazardous Materials,2010,183(1/2/3):641-647. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[14] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[15] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |