Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (6): 3190-3198.DOI: 10.16085/j.issn.1000-6613.2024-1794
• Special Column: Chemical process intensification • Previous Articles
LI Ming1,2(
), ZHOU Yi1, NAN Lan1, YE Xiaosheng1,2(
)
Received:2024-11-04
Revised:2024-12-05
Online:2025-07-08
Published:2025-06-25
Contact:
LI Ming, YE Xiaosheng
通讯作者:
李明,叶晓生
作者简介:李明(1992—),男,博士,讲师,硕士生导师,研究方向为化学反应工程。E-mail:hxgclm@163.com。
基金资助:CLC Number:
LI Ming, ZHOU Yi, NAN Lan, YE Xiaosheng. Advances in automatic optimization of continuous synthesis[J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3190-3198.
李明, 周依, 南兰, 叶晓生. 自动优化连续合成研究进展[J]. 化工进展, 2025, 44(6): 3190-3198.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1794
| [1] | KONAN Kouakou Eric, Abollé ABOLLÉ, Elvina BARRÉ, et al. Developing flow photo-thiol-ene functionalizations of cinchona alkaloids with an autonomous self-optimizing flow reactor[J]. Reaction Chemistry & Engineering, 2022, 7(6): 1346-1357. |
| [2] | TROBE Melanie, BURKE Martin D. The molecular industrial revolution: Automated synthesis of small molecules[J]. Angewandte Chemie International Edition, 2018, 57(16): 4192-4214. |
| [3] | VALLET Maëva, Daniel CORTÉS-BORDA, FELPIN François-Xavier. Expanding analytical horizons: 3D HPLC calibration surfaces for micromole scale self-optimizing flow reactors[J]. Reaction Chemistry & Engineering, 2024, 9(8): 2262-2269. |
| [4] | MAO Chunlin, HOU Yongjun, REN Siwu, et al. Analysis of flow characteristics of continuous cementing slurry mixing system[J]. Petroleum Science and Technology, 2025, 43(6): 587-607. |
| [5] | CLAYTON Adam D, SCHWEIDTMANN Artur M, CLEMENS Graeme, et al. Automated self-optimisation of multi-step reaction and separation processes using machine learning[J]. Chemical Engineering Journal, 2020, 384: 123340. |
| [6] | MATEOS Carlos, NIEVES-REMACHA María José, RINCÓN Juan A. Automated platforms for reaction self-optimization in flow[J]. Reaction Chemistry & Engineering, 2019, 4(9): 1536-1544. |
| [7] | MÁNDITY István M, OLASZ Balázs, ÖTVÖS Sándor B, et al. Continuous-flow solid-phase peptide synthesis: A revolutionary reduction of the amino acid excess[J]. ChemSusChem, 2014, 7(11): 3172-3176. |
| [8] | BROCKLEHURST Cara E, ALTMANN Eva, Corentin BON, et al. MicroCycle: An integrated and automated platform to accelerate drug discovery[J]. Journal of Medicinal Chemistry, 2024, 67(3): 2118-2128. |
| [9] | UPADHYA Rahul, PUNIA Ashish, KANAGALA Mythili J, et al. Automated PET-RAFT polymerization toward pharmaceutical amorphous solid dispersion development[J]. ACS Applied Polymer Materials, 2021, 3(3): 1525-1536. |
| [10] | SACHER Stephan, CASTILLO Ismael, REHRL Jakob, et al. Automated and continuous synthesis of drug substances[J]. Chemical Engineering Research and Design, 2022, 177: 493-501. |
| [11] | WENN Benjamin, JUNKERS Tanja. Continuous microflow PhotoRAFT polymerization[J]. Macromolecules, 2016, 49(18): 6888-6895. |
| [12] | RUBENS Maarten, LATSRISAENG Phanumat, JUNKERS Tanja. Visible light-induced iniferter polymerization of methacrylates enhanced by continuous flow[J]. Polymer Chemistry, 2017, 8(42): 6496-6505. |
| [13] | RUBENS Maarten, VRIJSEN Jeroen H, LAUN Joachim, et al. Precise polymer synthesis by autonomous self-optimizing flow reactors[J]. Angewandte Chemie International Edition, 2019, 58(10): 3183-3187. |
| [14] | MIJALIS Alexander J, THOMAS Ⅲ Dale A, SIMON Mark D, et al. A fully automated flow-based approach for accelerated peptide synthesis[J]. Nature Chemical Biology, 2017, 13(5): 464-466. |
| [15] | TRUEX Nicholas L, HOLDEN Rebecca L, WANG Binyou, et al. Automated flow synthesis of tumor neoantigen peptides for personalized immunotherapy[J]. Scientific Reports, 2020, 10(1): 723. |
| [16] | HARTRAMPF N, SAEBI A, POSKUS M, et al. Synthesis of proteins by automated flow chemistry[J]. Science, 2020, 368(6494): 980-987. |
| [17] | Sebastián MANZANO J, HOU Wenduan, ZALESSKIY Sergey S, et al. An autonomous portable platform for universal chemical synthesis[J]. Nature Chemistry, 2022, 14(11): 1311-1318. |
| [18] | ISHIZUKI Naoya, SHIMIZU Ryota, HITOSUGI Taro. Autonomous experimental systems in materials science[J]. Science and Technology of Advanced Materials: Methods, 2023, 3(1): 2197519. |
| [19] | 卢佳敏, 王慧峰, 潘建章, 等. 微流控技术在微/纳米材料合成中的研究进展[J]. 化学学报, 2021, 79(7): 809-819. |
| LU Jiamin, WANG Huifeng, PAN Jianzhang, et al. Research progress of microfluidic technique in synthesis of micro/nano materials[J]. Acta Chimica Sinica, 2021, 79(7): 809-819. | |
| [20] | EPPS Robert W, FELTON Kobi C, COLEY Connor W, et al. Automated microfluidic platform for systematic studies of colloidal perovskite nanocrystals: Towards continuous nano-manufacturing[J]. Lab on a Chip, 2017, 17(23): 4040-4047. |
| [21] | EPPS Robert W, BOWEN Michael S, VOLK Amanda A, et al. Artificial chemist: An autonomous quantum dot synthesis bot[J]. Advanced Materials, 2020, 32(30): 2001626. |
| [22] | JIANG Yibin, SALLEY Daniel, SHARMA Abhishek, et al. An artificial intelligence enabled chemical synthesis robot for exploration and optimization of nanomaterials[J]. Science Advances, 2022, 8(40): eabo2626. |
| [23] | TAO Huachen, WU Tianyi, KHEIRI Sina, et al. Self-driving platform for metal nanoparticle synthesis: Combining microfluidics and machine learning[J]. Advanced Functional Materials, 2021, 31(51): 2106725. |
| [24] | Florian HÄSE, ALDEGHI Matteo, HICKMAN Riley J, et al. GRYFFIN: An algorithm for Bayesian optimization of categorical variables informed by expert knowledge[J]. Applied Physics Reviews, 2021, 8(3): 031406. |
| [25] | SZYMANSKI Nathan J, RENDY Bernardus, FEI Yuxing, et al. An autonomous laboratory for the accelerated synthesis of novel materials[J]. Nature, 2023, 624(7990): 86-91. |
| [26] | TAMASI Matthew J, PATEL Roshan A, BORCA Carlos H, et al. Machine learning on a robotic platform for the design of polymer-protein hybrids[J]. Advanced Materials, 2022, 34(30): e2201809. |
| [27] | LEE Jules, MULAY Prajakatta, TAMASI Matthew J, et al. A fully automated platform for photoinitiated RAFT polymerization[J]. Digital Discovery, 2023, 2(1): 219-233. |
| [28] | Daniel CORTÉS-BORDA, WIMMER Eric, GOUILLEUX Boris, et al. An autonomous self-optimizing flow reactor for the synthesis of natural product carpanone[J]. Journal of Organic Chemistry, 2018, 83(23): 14286-14299. |
| [29] | Ehu Camille AKA, WIMMER Eric, Elvina BARRÉ, et al. Reconfigurable flow platform for automated reagent screening and autonomous optimization for bioinspired lignans synthesis[J]. Journal of Organic Chemistry, 2019, 84(21): 14101-14112. |
| [30] | RUBENS Maarten, VAN HERCK Joren, JUNKERS Tanja. Automated polymer synthesis platform for integrated conversion targeting based on inline benchtop NMR[J]. ACS Macro Letters, 2019, 8(11): 1437-1441. |
| [31] | KNOX Stephen T, PARKINSON Sam J, WILDING Clarissa Y P, et al. Autonomous polymer synthesis delivered by multi-objective closed-loop optimisation[J]. Polymer Chemistry, 2022, 13(11): 1576-1585. |
| [32] | SUMPTER Bobby G, HONG Kunlun, VASUDEVAN Rama K, et al. Autonomous continuous flow reactor synthesis for scalable atom-precision[J]. Carbon Trends, 2023, 10: 100234. |
| [33] | Eduardo SÁNCHEZ-RAMÍREZ, Brenda HUERTA-ROSAS, QUIROZ-RAMÍREZ Juan José, et al. Optimization-based framework for modeling and kinetic parameter estimation[J]. Chemical Engineering Research and Design, 2022, 186: 647-660. |
| [34] | NIELSEN Christian D-T, Jordi BURÉS. Visual kinetic analysis[J]. Chemical Science, 2019, 10(2): 348-353. |
| [35] | TAYLOR Connor J, BOOTH Megan, MANSON Jamie A, et al. Rapid, automated determination of reaction models and kinetic parameters[J]. Chemical Engineering Journal, 2021, 413: 127017. |
| [36] | COHEN Maximilian, GOCULDAS Tejas, VLACHOS Dionisios G. Active learning of chemical reaction networks via probabilistic graphical models and Boolean reaction circuits[J]. Reaction Chemistry & Engineering, 2023, 8(4): 824-837. |
| [37] | WILLIS Mark J, VON STOSCH Moritz. Inference of chemical reaction networks using mixed integer linear programming[J]. Computers & Chemical Engineering, 2016, 90: 31-43. |
| [38] | Joaquim TSU, DÍAZ Víctor Hugo Grisales, WILLIS Mark J. Computational approaches to kinetic model selection[J]. Computers & Chemical Engineering, 2019, 121: 618-632. |
| [39] | HONE Christopher A, HOLMES Nicholas, AKIEN Geoffrey R, et al. Rapid multistep kinetic model generation from transient flow data[J]. Reaction Chemistry & Engineering, 2017, 2(2): 103-108. |
| [40] | BUURMA Niklaas J, BAGLEY Scott W. A focus on computer vision for non-contact monitoring of catalyst degradation and product formation kinetics[J]. Chemical Science, 2023, 14(40): 10994-10996. |
| [41] | VAN PUTTEN Robbert, DE SMET Koen, LEFORT Laurent. RIPPLY: Real-TIme parallel progress analysis of organic reactions using near-infrared spectroscopy[J]. Organic Process Research & Development, 2023, 27(11): 2082-2090. |
| [42] | Filipa ALMEIDA A, ATAÍDE Filipe A P, LOUREIRO Rui M S, et al. Augmenting adaptive machine learning with kinetic modeling for reaction optimization[J]. Journal of Organic Chemistry, 2021, 86(20): 14192-14198. |
| [43] | DEEM Madeleine C, CAI Isabelle, DERASP Joshua S, et al. Best practices for the collection of robust time course reaction profiles for kinetic studies[J]. ACS Catalysis, 2023, 13(2): 1418-1430. |
| [44] | TAYLOR Connor J, SEKI Hikaru, DANNHEIM Friederike M, et al. An automated computational approach to kinetic model discrimination and parameter estimation[J]. Reaction Chemistry & Engineering, 2021, 6(8): 1404-1411. |
| [45] | MCMULLEN Jonathan P, WYVRATT Brian M. Automated optimization under dynamic flow conditions[J]. Reaction Chemistry & Engineering, 2023, 8(1): 137-151. |
| [46] | CLAYTON Adam D, MANSON Jamie A, TAYLOR Connor J, et al. Algorithms for the self-optimisation of chemical reactions[J]. Reaction Chemistry & Engineering, 2019, 4(9): 1545-1554. |
| [47] | Christian GÜNTHER, KHAZAYEL Bahareh, TAMMER Christiane. Nonlinear cone separation theorems in real topological linear spaces[J]. SIAM Journal on Optimization, 2024, 34(1): 225-250. |
| [48] | 夏雨, 汤峰, 余颖烨. 基于单纯形法改进的混沌控制算法[J]. 广西科技大学学报, 2022, 33(3): 53-58, 73. |
| XIA Yu, TANG Feng, YU Yingye. Improved chaos control algorithm based on simplex method[J]. Journal of Guangxi University of Science and Technology, 2022, 33(3): 53-58, 73. | |
| [49] | 罗印, 徐文平. 利用遗传算法优化育种策略的计算机模拟分析[J]. 分子植物育种, 2023, 21(21): 7129-7134. |
| LUO Yin, XU Wenping. Analysis of computer simulation for optimizing breeding strategies using genetic algorithms[J]. Molecular Plant Breeding, 2023, 21(21): 7129-7134. | |
| [50] | 许新华, 高刚, 徐永嘉. 基于改进遗传算法的综合能源优化调度方法[J]. 电气开关, 2023, 61(5): 35-38, 42. |
| XU Xinhua, GAO Gang, XU Yongjia. A comprehensive optimal energy scheduling method based on improved genetic algorithm[J]. Electric Switchgear, 2023, 61(5): 35-38, 42. | |
| [51] | 王童, 代永强, 刘欢. 一种改进的蝴蝶优化算法[J]. 数学的实践与认识, 2023, 53(9): 142-154. |
| WANG Tong, DAI Yongqiang, LIU Huan. An enhanced butterfly optimization algorithm[J]. Mathematics in Practice and Theory, 2023, 53(9): 142-154. | |
| [52] | ARORA Sankalap, SINGH Satvir. Butterfly optimization algorithm: A novel approach for global optimization[J]. Soft Computing, 2019, 23(3): 715-734. |
| [53] | LONG Wen, JIAO Jianjun, WU Tiebin, et al. A balanced butterfly optimization algorithm for numerical optimization and feature selection[J]. Soft Computing, 2022, 26(21): 11505-11523. |
| [54] | TIWARI Anurag, CHATURVEDI Amrita. A hybrid feature selection approach based on information theory and dynamic butterfly optimization algorithm for data classification[J]. Expert Systems with Applications, 2022, 196: 116621. |
| [55] | SHAW Thomas, CLAYTON Adam D, LABES Ricardo, et al. A self-optimised approach to synthesising DEHiBA for advanced nuclear reprocessing, exploiting the power of machine-learning[J]. Reaction Chemistry & Engineering, 2024, 9(2): 426-438. |
| [56] | FATH Verena, KOCKMANN Norbert, Jürgen OTTO, et al. Self-optimising processes and real-time-optimisation of organic syntheses in a microreactor system using Nelder-Mead and design of experiments[J]. Reaction Chemistry & Engineering, 2020, 5(7): 1281-1299. |
| [57] | RUAN Yixiang, LIN Sen, MO Yiming. AROPS: A framework of automated reaction optimization with parallelized scheduling[J]. Journal of Chemical Information and Modeling, 2023, 63(3): 770-781. |
| [58] | KERSHAW Oliver J, CLAYTON Adam D, MANSON Jamie A, et al. Machine learning directed multi-objective optimization of mixed variable chemical systems[J]. Chemical Engineering Journal, 2023, 451: 138443. |
| [1] | WANG Xiaonan, FU Siwei, LIU Kuan, LIN Congsheng, LIN Xiaofeng. Machine learning methods for sustainable alternatives and transition of energy materials [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2767-2776. |
| [2] | SUN Jian, ZHANG Haiyong, WANG Chengxiu, SUN Zeneng, LAN Xingying, GAO Jinsen, ZHU Jingxu. Cluster characteristics in gas-solids circulating fluidized bed based on k-means algorithm-assisted imaging method [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 625-634. |
| [3] | DAI Zhengshu, ZUO Yuanhao, CHEN Xiaoluo, ZHANG Li, ZHAO Gen, ZHANG Xuejun, ZHANG Hua. Process in the application of machine learning in ejector research [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 1-12. |
| [4] | ZHANG Zihang, WANG Shurong. Research advances in biomass pyrolysis conversion and low-carbon utilization of products [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3692-3708. |
| [5] | HE Lin, HE Changqing, SUI Hong. Prospects for the creation of novel interfacial separation materials driven by artificial intelligence [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1649-1654. |
| [6] | HUANG Zhixin, WANG Junyao, YUAN Xiangzhou, DENG Shuai, ZHAO Jie, ZHANG Xinyi. Research advances on upcycling organic solid waste into CO2 adsorbents: A cross-research review [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5748-5764. |
| [7] | WU Zhenghao, ZHOU Tianhang, LAN Xingying, XU Chunming. AI-driven innovative design of chemicals in practice and perspective [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3910-3916. |
| [8] | LI Lanyu, HUANG Xinye, WANG Xiaonan, QIU Tong. Reflection and prospects on the intelligent transformation of chemical engineering research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3325-3330. |
| [9] | WANG Lu, ZHANG Lei, DU Jian. High-throughput screening of zeolite materials for CO2/N2 selective adsorption separation by machine learning [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 148-158. |
| [10] | HU Jinwen, MENG Guangyuan, ZHANG Zhijie, ZHANG Ning, ZHANG Xinwan, CHEN Peng, LI Tong, LIU Yongdi, ZHANG Lehua. Application of artificial intelligence model in electrochemical water treatment process [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 497-506. |
| [11] | ZHANG Xiaoxiao, SHANG Zhenhua, ZHANG Xiangjing. Continuous flow synthesis of nitrochlorobenzene in microtubular reactor [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5022-5028. |
| [12] | LIAN Cheng, CHENG Jin, HUANG Pan, TAO Haolan, YANG Jie, LIU Honglai. Thermodynamics of new energy chemical engineering [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4711-4733. |
| [13] | ZHANG Mengxuan, LIU Hongchen, WANG Min, LAN Xingying, SHI Xiaogang, GAO Jinsen. Intelligence hybrid modeling method and applications in chemical process [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1765-1776. |
| [14] | ZHU Litao, OUYANG Bo, ZHANG Xibao, LUO Zhenghong. Progress on application of machine learning to multiphase reactors [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1699-1714. |
| [15] | YANG Jie, CHANG Hui, SUI Zhijun, ZHU Kake, ZHU Yi’an, ZHOU Xinggui. Advances in chemical looping methane oxidation [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1928-1947. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |