Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (2): 635-645.DOI: 10.16085/j.issn.1000-6613.2024-0144
• Chemical processes and equipment • Previous Articles Next Articles
XIONG Siheng(), HUANG Dongmei, XIAO Yuan, HUANG Xiaohuang, YI Zhikang, CUI Guomin(
)
Received:
2024-01-17
Revised:
2024-03-12
Online:
2025-03-10
Published:
2025-02-25
Contact:
CUI Guomin
熊思恒(), 黄冬梅, 肖媛, 黄晓璜, 易智康, 崔国民(
)
通讯作者:
崔国民
作者简介:
熊思恒(1998—),男,硕士研究生,研究方向为过程系统优化。E-mail:q.xiongsh@qq.com。
基金资助:
CLC Number:
XIONG Siheng, HUANG Dongmei, XIAO Yuan, HUANG Xiaohuang, YI Zhikang, CUI Guomin. Novel continuous non-structural model for mass exchanger network synthesis[J]. Chemical Industry and Engineering Progress, 2025, 44(2): 635-645.
熊思恒, 黄冬梅, 肖媛, 黄晓璜, 易智康, 崔国民. 一种新的连续非结构模型同步优化质量交换网络[J]. 化工进展, 2025, 44(2): 635-645.
流股 | 最大流量 /kg·s-1 | 入口浓度 /kg·kg-1 | 目标浓度 /kg·kg-1 | m | b | CO /USD·kg-1·a-1 |
---|---|---|---|---|---|---|
R1 | 0.9 | 0.07 | 0.0003 | |||
R2 | 0.1 | 0.051 | 0.0001 | |||
S1 | 2.3 | 0.0006 | 0.031 | 1.45 | 0 | 117360 |
S2 | ∞ | 0.0002 | 0.0035 | 0.26 | 0 | 176040 |
流股 | 最大流量 /kg·s-1 | 入口浓度 /kg·kg-1 | 目标浓度 /kg·kg-1 | m | b | CO /USD·kg-1·a-1 |
---|---|---|---|---|---|---|
R1 | 0.9 | 0.07 | 0.0003 | |||
R2 | 0.1 | 0.051 | 0.0001 | |||
S1 | 2.3 | 0.0006 | 0.031 | 1.45 | 0 | 117360 |
S2 | ∞ | 0.0002 | 0.0035 | 0.26 | 0 | 176040 |
方法 | 单元数 | 分流:富/贫 | TAC/USD·a-1 | 文献 |
---|---|---|---|---|
SBS-GMAS | 5 | 0/2 | 469968 | Azeez等[ |
SWS-GMAS | 4 | 0/2 | 429700 | Chen等[ |
LINGO | 4 | 0/2 | 411166 | 侯创等[ |
NNM-FSRWCE | 4 | 0/1 | 407308 | 杨岭等[ |
NSM-RWCE | 6 | 0/1 | 406761 | 本文 |
方法 | 单元数 | 分流:富/贫 | TAC/USD·a-1 | 文献 |
---|---|---|---|---|
SBS-GMAS | 5 | 0/2 | 469968 | Azeez等[ |
SWS-GMAS | 4 | 0/2 | 429700 | Chen等[ |
LINGO | 4 | 0/2 | 411166 | 侯创等[ |
NNM-FSRWCE | 4 | 0/1 | 407308 | 杨岭等[ |
NSM-RWCE | 6 | 0/1 | 406761 | 本文 |
流股 | 最大流量/kg·s-1 | 入口浓度/kg NH3·kg-1 | 目标浓度/kg NH3·kg-1 | m | b | CO/ USD·kg-1·a-1 |
---|---|---|---|---|---|---|
R1 | 3.3 | 0.05 | 0.0015 | |||
R2 | 0.6 | 0.07 | 0.003 | |||
R3 | 1.4 | 0.02 | 0.003 | |||
R4 | 0.2 | 0.03 | 0.002 | |||
S1 | 10 | 0.0013 | 0.025 | 0.71 | 0.001 | 58680 |
S2 | 10 | 0.13 | 0.001 | 417060 | ||
Q1 | 10 | 0 | 0.005 | 1.38 | 0 | 88020 |
流股 | 最大流量/kg·s-1 | 入口浓度/kg NH3·kg-1 | 目标浓度/kg NH3·kg-1 | m | b | CO/ USD·kg-1·a-1 |
---|---|---|---|---|---|---|
R1 | 3.3 | 0.05 | 0.0015 | |||
R2 | 0.6 | 0.07 | 0.003 | |||
R3 | 1.4 | 0.02 | 0.003 | |||
R4 | 0.2 | 0.03 | 0.002 | |||
S1 | 10 | 0.0013 | 0.025 | 0.71 | 0.001 | 58680 |
S2 | 10 | 0.13 | 0.001 | 417060 | ||
Q1 | 10 | 0 | 0.005 | 1.38 | 0 | 88020 |
方法 | 单元数 | 分流:富/贫 | TAC/USD·a-1 | 文献 |
---|---|---|---|---|
Hyper MINLP | 6 | 0/1 | 957000 | Papalexandri等[ |
Pinch | 8 | 0/1 | 706000 | Hallale等[ |
SWS | 7 | 0/1 | 694000 | Chen等[ |
NVM-RWCE | 8 | 0/1 | 680622 | Xiao等[ |
NSM-RWCE | 7 | 0/1 | 678238 | 本文 |
方法 | 单元数 | 分流:富/贫 | TAC/USD·a-1 | 文献 |
---|---|---|---|---|
Hyper MINLP | 6 | 0/1 | 957000 | Papalexandri等[ |
Pinch | 8 | 0/1 | 706000 | Hallale等[ |
SWS | 7 | 0/1 | 694000 | Chen等[ |
NVM-RWCE | 8 | 0/1 | 680622 | Xiao等[ |
NSM-RWCE | 7 | 0/1 | 678238 | 本文 |
流股 | 最大流量/kg·s-1 | 入口浓度/kg NH3·kg-1 | 目标浓度/kg NH3·kg-1 | m | b | CO/USD·kg-1·a-1 |
---|---|---|---|---|---|---|
R1 | 2 | 0.005 | 0.001 | |||
R2 | 4 | 0.005 | 0.0025 | |||
R3 | 3.5 | 0.011 | 0.0025 | |||
R4 | 1.5 | 0.01 | 0.005 | |||
R5 | 0.5 | 0.008 | 0.0025 | |||
S1 | 1.8 | 0.0017 | 0.0071 | 1.2 | 0 | 0 |
S2 | 1 | 0.0025 | 0.0085 | 1 | 0 | 0 |
S3 | ∞ | 0 | 0.017 | 0.5 | 0 | 29340 |
流股 | 最大流量/kg·s-1 | 入口浓度/kg NH3·kg-1 | 目标浓度/kg NH3·kg-1 | m | b | CO/USD·kg-1·a-1 |
---|---|---|---|---|---|---|
R1 | 2 | 0.005 | 0.001 | |||
R2 | 4 | 0.005 | 0.0025 | |||
R3 | 3.5 | 0.011 | 0.0025 | |||
R4 | 1.5 | 0.01 | 0.005 | |||
R5 | 0.5 | 0.008 | 0.0025 | |||
S1 | 1.8 | 0.0017 | 0.0071 | 1.2 | 0 | 0 |
S2 | 1 | 0.0025 | 0.0085 | 1 | 0 | 0 |
S3 | ∞ | 0 | 0.017 | 0.5 | 0 | 29340 |
方法 | 单元数 | 分流:富/贫 | TAC/USD·a-1 | 文献 |
---|---|---|---|---|
Hybrid Approach | 10 | 3/2 | 134399 | Emhamed等[ |
SWS | 8 | 0/1 | 134000 | Szitkai等[ |
IBMS | 7 | 1/1 | 133323 | Isafiade等[ |
SBS | 9 | 1/2 | 129901 | Azeez等[ |
NNM-RWCE | 9 | 0/1 | 127039 | Zhou等[ |
NSM-RWCE | 9 | 0/1 | 126109 | 本文 |
方法 | 单元数 | 分流:富/贫 | TAC/USD·a-1 | 文献 |
---|---|---|---|---|
Hybrid Approach | 10 | 3/2 | 134399 | Emhamed等[ |
SWS | 8 | 0/1 | 134000 | Szitkai等[ |
IBMS | 7 | 1/1 | 133323 | Isafiade等[ |
SBS | 9 | 1/2 | 129901 | Azeez等[ |
NNM-RWCE | 9 | 0/1 | 127039 | Zhou等[ |
NSM-RWCE | 9 | 0/1 | 126109 | 本文 |
1 | 杨友麒. 质量交换网络[J]. 化工进展, 2007, 26(2): 284-289. |
YANG Youqi. Mass exchange networks[J]. Chemical Industry and Engineering Progress,2007(2):284-289. | |
2 | SHORT Michael, ISAFIADE Adeniyi Jide. Thirty years of mass exchanger network synthesis—A systematic review[J]. Journal of Cleaner Production, 2021, 304: 127112. |
3 | YANWARIZAL, OLADOSU Wasiu A, WAN ALWI Sharifah R, et al. A new graphical approach for simultaneous targeting and design of mass exchange networks[J]. Computers & Chemical Engineering, 2020, 142: 107061. |
4 | OLADOSU Wasiu A, WAN ALWI Sharifah R, MANAN Zainuddin A. A new algebraic tool for simultaneous targeting and design of a mass exchange network with stream splitting for sustainable environment[J]. Journal of Cleaner Production, 2020, 249: 119361. |
5 | TAO Shaohui, JIANG Mengmeng, LIU Mingyue, et al. A mixed discrete pso algorithm for synthesis of mass exchange network with incompatible multicomponent[J]. Chemical Engineering Transactions, 2017, 61: 709-714. |
6 | ZHOU Ruijie, LI Lijuan, DONG Hongguang. Optimal design of batch mass exchange networks with multipurpose exchange units[J]. Computers & Chemical Engineering, 2016, 84: 536-545. |
7 | EL-HALWAGI Mahmoud M, MANOUSIOUTHAKIS Vasilios. Synthesis of mass exchange networks[J]. AIChE Journal, 1989, 35(8): 1233-1244. |
8 | PAPALEXANDRI Katerina P, PISTIKOPOULOS Efstrations N, FLOUDAS Christodoulos A. Mass-exchange networks for waste minimization:A simultaneous approach :Process design[J]. Chemical Engineering Research & Design, 1994, 72(3): 279-294. |
9 | BAGAJEWICZ Miguel J, PHAM Robert, MANOUSIOUTHAKIS Vasilios. On the state space approach to mass/heat exchanger network design[J]. Chemical Engineering Science, 1998, 53(14): 2595-2621. |
10 | CHEN Chengliang, HUNG Ping-Sung. Simultaneous synthesis of mass exchange networks for waste minimization[J]. Computers & Chemical Engineering, 2005, 29(7): 1561-1576. |
11 | SZITKAI Z, FARKAS T, LELKES Z, et al. Fairly linear mixed integer nonlinear programming model for the synthesis of mass exchange networks[J]. Industrial & Engineering Chemistry Research, 2006, 45(1): 236-244. |
12 | ISAFIADE A J, FRASER D M. Interval based MINLP superstructure synthesis of mass exchange networks[J]. Chemical Engineering Research and Design, 2008, 86(8): 909-924. |
13 | AZEEZ O S, ISAFIADE A J, FRASER D M. Supply-based superstructure synthesis of heat and mass exchange networks[J]. Computers & Chemical Engineering, 2013, 56: 184-201. |
14 | 易智康, 崔国民, 周志强, 等. 棋盘模型同步优化质量交换网络[J]. 计算物理, 2023, 40(4): 500-510. |
YI Zhikang, CUI Guomin, ZHOU Zhiqiang, et al. A chessboard model for simultaneous optimization of mass exchange networks[J]. Chinese Journal of Computational Physics, 2023, 40(4): 500-510. | |
15 | ZHOU Zhiqiang, CUI Guoming, XIAO Yuan. A novel node-based non-structural model for mass exchanger network synthesis using a stochastic algorithm[J]. Journal of Cleaner Production, 2022, 376: 134227. |
16 | XIAO Yuan, KAYANGE Heri Ambonisye, CUI Guomin,et al. Non-structural model of heat exchanger network: Modeling and optimization[J]. International Journal of Heat and Mass Transfer, 2019, 140: 752-766. |
17 | KAYANGE Heri Ambonisye, CUI Guomin, XU Yue, et al. Non-structural model for heat exchanger network synthesis allowing for stream splitting[J]. Energy, 2020, 201: 117461. |
18 | XIAO Yuan, CUI Guomin. A novel Random Walk algorithm with Compulsive Evolution for heat exchanger network synthesis[J]. Applied Thermal Engineering, 2017, 115: 1118-1127. |
19 | SHENOY Uday V, FRASER Duncan M. A new formulation of the Kremser equation for sizing mass exchangers[J]. Chemical Engineering Science, 2003, 58(22): 5121-5124. |
20 | 侯创, 罗明生, 徐文星. 取整函数优化基于超结构模型的质量交换网络[J]. 化学反应工程与工艺, 2020, 36(2): 108-116. |
HOU Chuang, LUO Mingsheng, XU Wenxing. An integral function to optimize the mass exchange network based on superstructure model[J]. Chemical Reaction Engineering and Technology, 2020, 36(2): 108-116. | |
21 | 杨岭, 崔国民, 周志强, 等. 精细搜索策略应用于质量交换网络综合[J]. 化工学报, 2022, 73(7): 3145-3155. |
YANG Ling, CUI Guomin, ZHOU Zhiqiang, et al. Fine search strategy applied to mass exchange network synthesis[J]. CIESC Journal, 2022, 73(7): 3145-3155. | |
22 | HALLALE N, FRASER D M. Capital and total cost targets for mass exchange networks Part 2: Detailed capital cost models[J]. Computers & Chemical Engineering, 2000, 23(11/12): 1681-1699. |
23 | XIAO Yuan, CUI Guomin, XU Yue, et al. An efficient and random synthesis method for mass exchange networks with multi-component using a node-based vertical non-structural model[J]. Journal of Cleaner Production, 2023, 416: 137951. |
24 | O-S AZEEZ, A-J ISAFIADE, D-M FRASER. Supply and target based superstructure synthesis of heat and mass exchanger networks[J]. Chemical Engineering Research and Design, 2012, 90(2): 266-287. |
25 | EMHAMED Abdulfatah M, LELKES Zoltan, Endre REV, et al. New hybrid method for mass exchange network optimisation[M]//Computer aided chemical engineering. Amsterdam: Elsevier, 2005: 877-882. |
[1] | ZHANG Qian, LIU Xin, WANG Bing, XU Jing, CAO Chenxi. Quantitative analysis of domino effects in large tank farms under various wind conditions and accident scenarios [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1170-1182. |
[2] | HU Panpan, XIAO Mengyao, WANG Na, SHI Jiping, LIU Li. Optimization of multi-enzyme collaborative pretreatment of kitchen waste [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1138-1146. |
[3] | SU Xuanhe, MENG Shida, KE Jiekun, LU Wei. Analyses of performance and energy consumption for a multistage gas separation system based on molecular exchange flow [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 109-120. |
[4] | XIAO Yuan, CHEN Yi, LIU Siqi, CUI Guomin. Mass-heat analogy and global optimization of mass exchange network based on generalized heat exchanger network [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 121-134. |
[5] | QIAO Lei, ZHANG Yaxin, WEI Bo, RAN Wenshen, MA Jingrong, WANG Feng. Optimization of burner layout parameters and operating parameters of oxy-thermal entrained-flow calcium carbide reactor [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 145-157. |
[6] | LI Hao, SUN Yunan, LI Jian, TAO Junyu, CHENG Zhanjun, YAN Beibei, CHEN Guanyi. Co-gasification characteristics of excavated waste and municipal solid waste blends [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 525-537. |
[7] | ZHU Rukai, CHENG Xiao, LIU Jinya, WU Huiying. Flow and heat transfer characteristics and multi-objective optimization of pin-fin multi inclined jet microchannels [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 86-99. |
[8] | DAI Zhengshu, ZUO Yuanhao, CHEN Xiaoluo, ZHANG Li, ZHAO Gen, ZHANG Xuejun, ZHANG Hua. Process in the application of machine learning in ejector research [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 1-12. |
[9] | YANG Junhui, YUAN Jun, ZHANG Jida, WANG Jinhai, QIAO Hongbin, CAI Zhenyi, MA Zhongcheng. Structural design and performance analysis of a new type of heat accumulator [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 282-294. |
[10] | ZHOU Yu, XIA Taiyang, WEI Qi, TANG Tian, TIAN Lei. Optimization of micro-channel coupled reverse osmosis membrane series treatment of methanol to olefin wastewater [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 43-51. |
[11] | CHEN Wangmi, XI Beidou, LI Mingxiao, YE Meiying, HOU Jiaqi, YU Chengze, WEI Yufang, MENG Fanhua. Research progress on carbon emission reduction technology for pyrolysis system [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 479-503. |
[12] | LIU Hongwei, DONG Guoliang, WEN Yanbo, WANG Qianghua, XU Qin, WANG Xingsheng, LI Xusheng, GONG Jieping, ZHAO Bin, LIU Mengyao. Process optimization of Huating extruded granulator [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 52-60. |
[13] | TAO Yi, ZHANG Chen, HU Yijiong, QIU Tong. Molecular reconstruction model of vacuum gas oil based on molecular structural distribution [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 71-76. |
[14] | LUO Shifa, WANG Kan, ZHANG Bingjian, CHEN Qinglin. Analysis and evaluation of heat integration schemes for crude oil distillation unit [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4810-4816. |
[15] | CUI Yi, LI Mengyuan, YANG Lu, LI Haidong, ZHANG Qiqi, CHANG Chenglin, WANG Yufei. New method for automatic design of intensified shell and tube heat exchanger with twisted-tape insert [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4824-4832. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 6
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 32
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |