Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (S1): 282-294.DOI: 10.16085/j.issn.1000-6613.2024-1436
• Energy processes and technology • Previous Articles Next Articles
YANG Junhui1(), YUAN Jun2, ZHANG Jida1, WANG Jinhai2, QIAO Hongbin1, CAI Zhenyi2(), MA Zhongcheng1
Received:
2024-09-02
Revised:
2024-10-10
Online:
2024-12-06
Published:
2024-11-20
Contact:
CAI Zhenyi
杨俊辉1(), 袁君2, 张继达1, 王金海2, 乔红斌1, 蔡振义2(), 马中成1
通讯作者:
蔡振义
作者简介:
杨俊辉(1970—),男,教授级高级工程师。E-mail : yangjunhui@chinacoal.com。
基金资助:
CLC Number:
YANG Junhui, YUAN Jun, ZHANG Jida, WANG Jinhai, QIAO Hongbin, CAI Zhenyi, MA Zhongcheng. Structural design and performance analysis of a new type of heat accumulator[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 282-294.
杨俊辉, 袁君, 张继达, 王金海, 乔红斌, 蔡振义, 马中成. 新型蓄热体结构设计及性能分析[J]. 化工进展, 2024, 43(S1): 282-294.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1436
简称 | 开孔 形式 | 开孔位置 | 开孔直径 |
---|---|---|---|
Origin | 无开孔 | — | — |
Case1-1 | 通孔 | 25%、50%、75% | 4mm |
Case1-2 | 通孔 | 25%、50%、75% | 5mm |
Case1-3 | 通孔 | 25%、50%、75% | 6mm |
Case2-1 | 双孔 | 25%、50%、75% | 2mm |
Case2-2 | 双孔 | 16.7%、33.3%、50%、66.7%、83.3% | 2mm |
Case2-3 | 双孔 | 12.5%、25%、37.5%、50%、62.5%、75%、82.5% | 2mm |
Case1-1 | 双通孔 | 25%、50%、75% | 4mm |
Case1-2 | 双通孔 | 25%、50%、75% | 5mm |
Case1-3 | 双通孔 | 25%、50%、75% | 6mm |
简称 | 开孔 形式 | 开孔位置 | 开孔直径 |
---|---|---|---|
Origin | 无开孔 | — | — |
Case1-1 | 通孔 | 25%、50%、75% | 4mm |
Case1-2 | 通孔 | 25%、50%、75% | 5mm |
Case1-3 | 通孔 | 25%、50%、75% | 6mm |
Case2-1 | 双孔 | 25%、50%、75% | 2mm |
Case2-2 | 双孔 | 16.7%、33.3%、50%、66.7%、83.3% | 2mm |
Case2-3 | 双孔 | 12.5%、25%、37.5%、50%、62.5%、75%、82.5% | 2mm |
Case1-1 | 双通孔 | 25%、50%、75% | 4mm |
Case1-2 | 双通孔 | 25%、50%、75% | 5mm |
Case1-3 | 双通孔 | 25%、50%、75% | 6mm |
网格数 | 升温/K | 误差/% |
---|---|---|
2500000 | 776 | — |
3200000 | 781 | 0.69 |
5000000 | 786 | 0.64 |
6000000 | 788 | 0.25 |
7000000 | 789 | 0.13 |
网格数 | 升温/K | 误差/% |
---|---|---|
2500000 | 776 | — |
3200000 | 781 | 0.69 |
5000000 | 786 | 0.64 |
6000000 | 788 | 0.25 |
7000000 | 789 | 0.13 |
1 | 2024年政府间气候变化专门委员会第三次评估报告[R]. https://www.ipcc.ch/assessment-report/ar3/. |
IPCC Third Assessment Report of the Intergovernmental Panel on Climate Change[R]. https://www.ipcc.ch/assessment-report/ar3/. | |
2 | 黄盛初, 刘文革, 赵国泉. 中国煤层气开发利用现状及发展趋势[J]. 中国煤炭, 2009, 35(1): 5-10. |
HUANG Shengchu, LIU Wenge, ZHAO Guoquan. Coalbed methane development and utilization in China: Status and future development[J]. China Coal, 2009, 35(1): 5-10. | |
3 | 王宁. 基于区域因子分析的我国煤矿甲烷排放与控排对策研究[D]. 北京: 中国矿业大学(北京), 2013. |
WANG Ning. Study on methane emission and control countermeasures of coal mines in China based on regional factor analysis[D]. Beijing: China University of Mining & Technology, Beijing, 2013. | |
4 | 吕荣强, 倪克. 煤矿瓦斯发电技术的研究与应用[J]. 煤炭工程, 2013, 45(S2): 114-116. |
Rongqiang LYU, NI Ke. Research and application of coal mine gas power generation technology[J]. Coal Engineering, 2013, 45(S2): 114-116. | |
5 | 周娴, 姜凡, 吕元, 等. 煤矿通风瓦斯处理技术的比较和应用前景[J]. 洁净煤技术, 2009, 15(4): 91-94. |
ZHOU Xian, JIANG Fan, Yuan LYU, et al. Comparison and application prospects of coal mine ventilation air methane treatment technology[J]. Clean Coal Technology, 2009, 15(4): 91-94. | |
6 | 桑逢云, 赵国泉. 通风瓦斯利用技术比较与设备选择[J]. 中国煤层气, 2010, 7(2): 44-46. |
SANG Fengyun, ZHAO Guoquan. Comparison of VAM utilization technology and equipments selection[J]. China Coalbed Methane, 2010, 7(2): 44-46. | |
7 | 郑斌, 刘永启, 刘瑞祥, 等. 煤矿乏风的蓄热逆流氧化[J]. 煤炭学报, 2009, 34(11): 1475-1478. |
ZHENG Bin, LIU Yongqi, LIU Ruixiang, et al. Oxidation of coal mine ventilation air methane in thermal reverse-flow reactor[J]. Journal of China Coal Society, 2009, 34(11): 1475-1478. | |
8 | 张群. 多气源掺混技术在高河煤矿低浓度瓦斯蓄热氧化发电项目中的应用[J]. 矿业安全与环保, 2018, 45(3): 51-54. |
ZHANG Qun. Application of multi-gas mixing technology in thermal storage oxidation and power generation of low concentration gas in gaohe coal mine[J]. Mining Safety & Environmental Protection, 2018, 45(3): 51-54. | |
9 | WANG Shibo, WANG Hua. A numerical simulation about thermal processing of the regenerator in the regenerative chamber[M]//Challenges of power engineering and environment. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007: 1342-1346. |
10 | LIU H, YU Q N, ZHANG Z C, et al. Two-equation method for heat transfer efficiency in metal honeycombs: An analytical solution[J]. International Journal of Heat and Mass Transfer, 2016, 97: 201-210. |
11 | 徐耀祖, 商向东, 徐景久, 等. 固体蓄热装置蓄热过程模拟分析与实验研究[J]. 太阳能学报, 2021, 42(3): 401-405. |
XU Yaozu, SHANG Xiangdong, XU Jingjiu, et al. Simulation analysis and experimental study on thermal storage process of solid heat storage device[J]. Acta Energiae Solaris Sinica, 2021, 42(3): 401-405. | |
12 | 徐耀祖, 商向东, 徐景久, 等. 基于MgO砖非定值物理特性的蓄热体热分析[J]. 太阳能学报, 2021, 42(9): 218-223. |
XU Yaozu, SHANG Xiangdong, XU Jingjiu, et al. Heat analysis of regenerator based on non-fixed value physical characteristics of MgO brick[J]. Acta Energiae Solaris Sinica, 2021, 42(9): 218-223. | |
13 | QI Xiaoni, LIU Yongqi. Heat storage performance of a honeycomb ceramic monolith[J]. The Open Fuels & Energy Science Journal, 2014, 7(1): 113-120. |
14 | 吴仲达, 游永华, 王盛, 等. 扩缩方孔蜂窝蓄热体强化传热的数值模拟[J]. 过程工程学报, 2020, 20(12): 1416-1423. |
WU Zhongda, YOU Yonghua, WANG Sheng, et al. Numerical simulation of heat transfer enhancement in honeycomb regenerators with expansion and contraction square channels[J]. The Chinese Journal of Process Engineering, 2020, 20(12): 1416-1423. | |
15 | 胡自锋. 固体蓄热器蓄放热过程分析与结构研究[D]. 沈阳: 沈阳工业大学, 2023. |
HU Zifeng. Analysis and structural study on heat storage and release process of solid heat accumulator[D]. Shenyang: Shenyang University of Technology, 2023. | |
16 | 胡自锋, 徐耀祖, 段振云, 等. 新型蓄热体结构蓄热过程分析[J]. 储能科学与技术, 2023, 12(1): 165-171. |
HU Zifeng, XU Yaozu, DUAN Zhenyun, et al. Analysis of the heat storage process of a new heat storage body structure[J]. Energy Storage Science and Technology, 2023, 12(1): 165-171. | |
17 | 胡思科, 周林林, 邢姣娇. 圆形和椭圆形孔道固体蓄热装置蓄放热特性模拟[J]. 热力发电, 2018, 47(1): 38-45. |
HU Sike, ZHOU Linlin, XING Jiaojiao. Simulation on heat discharge and heat storage performance of solid heat storage device with round and oval pore canals[J]. Thermal Power Generation, 2018, 47(1): 38-45. | |
18 | 鞠亮亮, 邹杨, 马凤仓, 等. 高温耐火砖蓄热孔道形状及排布研究[J]. 中外能源, 2019, 24(7): 90-97. |
JU Liangliang, ZOU Yang, MA Fengcang, et al. Study on shape and arrangement optimization of heat storage channels of refractory bricks[J]. Sino-Global Energy, 2019, 24(7): 90-97. | |
19 | YUAN Fei, WANG Hongbing, ZHOU Peiling, et al. Heat transfer performances of honeycomb regenerators with square or hexagon cell opening[J]. Applied Thermal Engineering, 2017, 125: 790-798. |
20 | ZHAO Yujie, FENG Junxiao, HUANG Shiping, et al. Analysis and evaluation of the influence of heat storage material on coke oven flue gas exothermic process[J]. Thermal Science, 2021, 25: 1095-1108. |
21 | YOU Yonghua, HUANG Huang, SHAO Guiwei, et al. A three-dimensional numerical model of unsteady flow and heat transfer in ceramic honeycomb regenerator[J]. Applied Thermal Engineering, 2016, 108: 1243-1250. |
22 | YOU Yonghua, WU Zhongda, LI Bin, et al. 3D numerical simulation and optimization of honeycomb regenerators with parallel or crosswise arrangement of circular holes[J]. Chemical Engineering and Processing - Process Intensification, 2019, 137: 22-27. |
23 | 李瑞欣. 挥发性有机物处理中的蓄热体单孔道传热研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
LI Ruixin. Study on heat transfer of regenerator in volatile organic compounds treatment[D]. Harbin: Harbin Institute of Technology, 2019. | |
24 | 班鹏. 旋转蓄热氧化装置蓄热室的研究及优化[D]. 哈尔滨: 哈尔滨工业大学, 2022. |
BAN Peng. Research and optimization of regenerator in rotating regenerative oxidation device[D]. Harbin: Harbin Institute of Technology, 2022. |
[1] | YIN Shaowu, HUANG Ruoxiao, ZAN Xiaojun, TONG Lige, LIU Chuanping, WANG Li. Design of phase-change heat and energy storage system based on CPCM hexagonal and simulation of heat storage and release [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 243-254. |
[2] | JIANG Jingzhi, SHAO Guowei, CUI Haiting, LI Hongtao, YANG Qi. Analysis of enhanced heat transfer characteristics of finned triplex-tube phase change heat storage unit [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4210-4221. |
[3] | SUN Xinru, ZHANG Qiuyi, ZHUO Jiankun, YANG Run, YAO Qiang. Research progress of CaCl2 composite thermochemical heat storage materials [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4506-4515. |
[4] | GAO Xinyue, FAN Gaofeng, LIU Aiping, WANG Chang'an, HOU Yujie, ZHANG Jinming, XU Jie, CHE Defu. Research progress on waste heat recovery technology for flue gas and slurry after wet desulphurization [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4307-4319. |
[5] | MU Lianbo, WANG Suilin, LU Junhui, LIU Guichang, ZHAO Liqiu, LIU Jincheng, HAO Anfeng, ZHANG Tong. Analysis of flue gas deep waste heat recovery with cooperative flue gas pressure control for alkane dehydrogenation heating furnace [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3029-3041. |
[6] | DU Yongliang, LIANG Zhuobin, GONG Yaoxu, BI Haojie, XU Zhiyuan, YUAN Hongying. Air gap membrane distillation research status and applications [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1655-1666. |
[7] | DING Lihua, XU Hongtao, ZHANG Chenyu. Analysis of the heat storage performance of the latent heat storage unit combined with frustum wavy tube [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1214-1223. |
[8] | YIN Shaowu, LI Xianxian, HAN Jiawei, LU Ming, TONG Lige, WANG Li. Heat charge and release characteristics of household off-peak electricity thermal storage heating system [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1206-1213. |
[9] | HU Yafei, FENG Ziping, TIAN Jiayao, SONG Wenji. Waste heat recovery performance of an air-source gas engine-driven heat pump system in multi-heating operation modes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4204-4211. |
[10] | LYU Jie, HUANG Chong, FENG Ziping, HU Yafei, SONG Wenji. Performance and control system of gas engine heat pump based on waste heat recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4182-4192. |
[11] | ZHANG Qunli, HUANG Haotian, ZHANG Lin, ZHAO Wenqiang, ZHANG Qiuyue. Analysis of condensation waste heat recovery system of spray flue gas source heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 650-657. |
[12] | ZHANG Qunli, WANG Yushi, ZHAI Hongbao, GUO Yingjie, ZHANG Qiuyue, HUANG Haotian. Analysis of heat pump flue gas waste heat recovery and nitrogen reduction system [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6600-6608. |
[13] | YU Zhiguo. Intelligent control system of district heating based on fixed structure phase change heat storage module [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 168-176. |
[14] | XIONG Xin, SU Qingzong, NONG Zengyao, WANG Yaxiong. Visualization and numerical analysis of heat transfer enhancement in the shell and tube latent thermal energy storage unit by the heating method [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4635-4643. |
[15] | YANG Zhe, LIU Fei, ZHANG Tao, DENG Xing, ZHANG Zhengwen. Numerical simulation and experiment of heat storage process of TPMS porous aluminum-paraffin composite phase change material [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4918-4927. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |