1 |
ESAPOUR M, HOSSEINI M J, RANJBAR A A, et al. Phase change in multi-tube heat exchangers[J]. Renewable Energy, 2016, 85: 1017-1025.
|
2 |
FALLAH Najafabadi Maryam, TALEBI Rostami Hossein, FARHADI Mousa. Analysis of a twisted double-pipe heat exchanger with lobed cross-section as a novel heat storage unit for solar collectors using phase-change material[J]. International Communications in Heat and Mass Transfer, 2021, 128: 105598.
|
3 |
尹少武, 康鹏, 韩嘉维, 等. 基于相变材料的锂离子电池热管理性能[J]. 化工进展, 2022, 41(10): 5518-5529.
|
|
YIN Shaowu, KANG Peng, HAN Jiawei, et al. Thermal management performance of lithium ion battery based on phase change materials[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5518-5529.
|
4 |
刘畅, 陈艳军, 张超灿. 用于冷链的低温相变材料的研究进展[J]. 化工进展, 2022, 41(1): 286-299.
|
|
LIU Chang, CHEN Yanjun, ZHANG Chaocan. Low temperature phase change materials for subzero applications[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 286-299.
|
5 |
倪金鹏, 罗祝清, 屈治国, 等. 不同气候条件下相变屋顶传热性能数值分析[J]. 化工进展, 2022, 41(1): 104-112.
|
|
NI Jinpeng, LUO Zhuqing, QU Zhiguo, et al. Numerical analysis on heat transfer performance of phase change roofs under different climates[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 104-112.
|
6 |
林文珠, 凌子夜, 方晓明, 等. 相变储热的传热强化技术研究进展[J]. 化工进展, 2021, 40(9): 5166-5179.
|
|
LIN Wenzhu, LING Ziye, FANG Xiaoming, et al. Research progress on heat transfer of phase change material heat storage technology[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5166-5179.
|
7 |
LU Bohui, ZHANG Yongxue, WANG Zhihao, et al. Effect of shell shape on the charging and discharging performance of a vertical latent heat thermal energy storage unit: An experimental study[J]. Journal of Energy Storage, 2022, 56: 105996.
|
8 |
SHEN Gang, WANG Xiaolin, CHAN Andrew, et al. Study of the effect of tilting lateral surface angle and operating parameters on the performance of a vertical shell-and-tube latent heat energy storage system[J]. Solar Energy, 2019, 194: 103-113.
|
9 |
NIE Changda, LIU Jiangwei, DENG Shengxiang. Effect of geometry modification on the thermal response of composite metal foam/phase change material for thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2021, 165: 120652.
|
10 |
DAI Hui, WANG Yuhang, WANG Nini, et al. Simulation study on charging performance of the latent energy storage heat exchanger with a novel conical inner tube[J]. Journal of Energy Storage, 2022, 56: 106006.
|
11 |
SHAHSAVAR Amin, KHOSRAVI Javad, MOHAMMED Hayder I, et al. Performance evaluation of melting/solidification mechanism in a variable wave-length wavy channel double-tube latent heat storage system[J]. Journal of Energy Storage, 2020, 27: 101063.
|
12 |
ABDOLLAHZADEH M, ESMAEILPOUR M. Enhancement of phase change material (PCM) based latent heat storage system with nano fluid and wavy surface[J]. International Journal of Heat and Mass Transfer, 2015, 80: 376-385.
|
13 |
SHAHSAVAR Amin, AL-RASHED Abdullah A A A, ENTEZARI Sajad, et al. Melting and solidification characteristics of a double-pipe latent heat storage system with sinusoidal wavy channels embedded in a porous medium[J]. Energy, 2019, 171: 751-769.
|
14 |
GHALAMBAZ Mohammad, MELAIBARI Ammar A, CHAMKHA Ali J, et al. Phase change heat transfer and energy storage in a wavy-tube thermal storage unit filled with a nano-enhanced phase change material and metal foams[J]. Journal of Energy Storage, 2022, 54: 105277.
|
15 |
MA X J, SHEIKHOLESLAMI M, JAFARYAR M, et al. Solidification inside a clean energy storage unit utilizing phase change material with copper oxide nanoparticles[J]. Journal of Cleaner Production, 2020, 245: 118888.
|
16 |
SHAHSAVAR Amin, SHAHAM Aidin, Çağatay YıLDıZ, et al. Entropy generation characteristics of phase change material in a variable wavy walled triplex tube latent heat storage unit for battery thermal management system[J]. Journal of Energy Storage, 2022, 51: 104374.
|
17 |
EISAPOUR Amir Hossein, SHAFAGHAT A H, MOHAMMED Hayder I, et al. A new design to enhance the conductive and convective heat transfer of latent heat thermal energy storage units[J]. Applied Thermal Engineering, 2022, 215: 118955.
|
18 |
XU Hongtao, WANG Ning, ZHANG Chenyu, et al. Optimization on the melting performance of triplex-layer PCMs in a horizontal finned shell and tube thermal energy storage unit[J]. Applied Thermal Engineering, 2020, 176: 115409.
|
19 |
WANG Peilun, WANG Xiang, HUANG Yun, et al. Thermal energy charging behaviour of a heat exchange device with a zigzag plate configuration containing multi-phase-change-materials (m-PCMs)[J]. Applied Energy, 2015, 142: 328-336.
|
20 |
CHEN Lanxin, FAN Aiwu. Effects of shell modifications and operational parameters on melting uniformity of a vertical multi-section shell-and-tube latent heat thermal energy storage unit[J]. Journal of Energy Storage, 2022, 55: 105593.
|
21 |
XU Yang, REN Qinlong, ZHENG Zhangjing, et al. Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media[J]. Applied Energy, 2017, 193: 84-95.
|
22 |
LONGEON Martin, SOUPART Adèle, Jean-François FOURMIGUÉ, et al. Experimental and numerical study of annular PCM storage in the presence of natural convection[J]. Applied Energy, 2013, 112: 175-184.
|