Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (S1): 307-322.DOI: 10.16085/j.issn.1000-6613.2025-0469
• Materials science and technology • Previous Articles
DU Liangliang1(
), SHAO Jie1, WANG Chao1, SONG Junda2, CHENG Yao2, KAI Yuan3, HU Chao1(
)
Received:2025-03-31
Revised:2025-06-18
Online:2025-11-24
Published:2025-10-25
Contact:
HU Chao
杜亮亮1(
), 邵杰1, 汪超1, 宋俊达2, 程尧2, 开元3, 胡超1(
)
通讯作者:
胡超
作者简介:杜亮亮(2000—),男,硕士研究生,研究方向为沥青基钠离子电池负极材料。E-mail:3067372887@qq.com。
基金资助:CLC Number:
DU Liangliang, SHAO Jie, WANG Chao, SONG Junda, CHENG Yao, KAI Yuan, HU Chao. Research progress on pitch-based anode materials for sodium-ion batteries[J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 307-322.
杜亮亮, 邵杰, 汪超, 宋俊达, 程尧, 开元, 胡超. 沥青基钠离子电池负极材料研究进展[J]. 化工进展, 2025, 44(S1): 307-322.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2025-0469
| [74] | 宗世荣, 王玲, 姚秋月, 等. 炭材料在储钠器件负极中的研究进展[J]. 化工进展, 2024, 43(10): 5581-5600. |
| ZONG Shirong, WANG Ling, YAO Qiuyue, et al. Research progress of carbon as anode materials for sodium-ion storage devices[J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5581-5600. | |
| [75] | QIU Ruoxue, MA Dakai, ZHENG Hui, et al. Performance degradation mechanisms and mitigation strategies of hard carbon anode and solid electrolyte interface for sodium-ion battery[J]. Nano Energy, 2024, 128: 109920. |
| [76] | HAO Mingyuan, XIAO Nan, WANG Yuwei, et al. Pitch-derived N-doped porous carbon nanosheets with expanded interlayer distance as high-performance sodium-ion battery anodes[J]. Fuel Processing Technology, 2018, 177: 328-335. |
| [77] | ZHAO Xiaobing, SHI Peng, WANG Haibo, et al. Unlocking plateau capacity with versatile precursor crosslinking for carbon anodes in Na-ion batteries[J]. Energy Storage Materials, 2024, 70: 103543. |
| [78] | XIE Fei, NIU Yaoshen, ZHANG Qiangqiang, et al. Screening heteroatom configurations for reversible sloping capacity promises high-power Na-ion batteries[J]. Angewandte Chemie International Edition, 2022, 61(11): e202116394. |
| [79] | XIE Jinming, ZHUANG Rong, DU Yuxuan, et al. Advances in sulfur-doped carbon materials for use as anodes in sodium-ion batteries[J]. New Carbon Materials, 2023, 38(2): 305-316. |
| [80] | 肖雪, 李佳纯, 孟祥桐, 等. 硫掺杂针状焦基多孔碳的制备及其储钠性能[J]. 洁净煤技术, 2023, 29(9): 162-170. |
| XIAO Xue, LI Jiachun, MENG Xiangtong, et al. Preparation of sulfur-doped needle coke-based porous carbon for robust sodium-ion storage[J]. Clean Coal Technology,2023, 29(9): 162-170. | |
| [81] | HE Jiale, DU Juntao, FENG Chenming, et al. S/O co-doped honeycomb-like porous carbon nanosheets with ultra-high edge defects for high-performance sodium storage[J]. Carbon, 2024, 219: 118825. |
| [82] | SHI Lu, LIU Wei, ZHAO Fanjun, et al. Tailoring the dual precursors coupled hard carbon by embedding the pitch-derived graphitic domains to achieve high-performance sodium storage[J]. Journal of Power Sources, 2024, 596: 234093. |
| [83] | YIN Xiuping, ZHAO Yufeng, WANG Xuan, et al. Modulating the graphitic domains of hard carbons derived from mixed pitch and resin to achieve high rate and stable sodium storage[J]. Small, 2022, 18(5): e2105568. |
| [1] | ZHAO Lina, ZHANG Teng, LI Wei, et al. Engineering of sodium-ion batteries: Opportunities and challenges[J]. Engineering, 2023, 24: 172-183. |
| [2] | HWANG Jang-Yeon, MYUNG Seung-Taek, SUN Yang-Kook. Sodium-ion batteries: Present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614. |
| [3] | GAO Yun, ZHANG Hang, PENG Jian, et al. A 30-year overview of sodium-ion batteries[J]. Carbon Energy, 2024, 6(6): e464. |
| [4] | HIRSH Hayley S, LI Yixuan, TAN Darren H S, et al. Sodium-ion batteries paving the way for grid energy storage[J]. Advanced Energy Materials, 2020, 10(32): 2001274. |
| [5] | KIM Sung-Wook, SEO Dong-Hwa, MA Xiaohua, et al. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries[J]. Advanced Energy Materials, 2012, 2(7): 710-721. |
| [6] | NAYAK Prasant Kumar, YANG Liangtao, BREHM Wolfgang, et al. Von lithium- zu natriumionenbatterien: Vorteile, herausforderungen und überraschendes[J]. Angewandte Chemie, 2018, 130(1): 106-126. |
| [7] | 容晓晖, 陆雅翔, 戚兴国, 等. 钠离子电池: 从基础研究到工程化探索[J]. 储能科学与技术, 2020, 9(2): 515-522. |
| RONG Xiaohui, LU Yaxiang, QI Xingguo, et al. Na-ion batteries:From fundamental research to engineering exploration[J]. Energy Storage Science and Technology, 2020, 9(2): 515-522. | |
| [8] | YABUUCHI Naoaki, KUBOTA Kei, DAHBI Mouad, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682. |
| [9] | QIAO Shuangyan, ZHOU Qianwen, MA Meng, et al. Advanced anode materials for rechargeable sodium-ion batteries[J]. ACS Nano, 2023, 17(12): 11220-11252. |
| [10] | CHEN Xiaoyang, LIU Changyu, FANG Yongjin, et al. Understanding of the sodium storage mechanism in hard carbon anodes[J]. Carbon Energy, 2022, 4(6): 1133-1150. |
| [11] | SUN Ning, QIU Jieshan, XU Bin. Understanding of sodium storage mechanism in hard carbons: Ongoing development under debate[J]. Advanced Energy Materials, 2022, 12(27): 2200715. |
| [12] | LI Li, ZHENG Yang, ZHANG Shilin, et al. Recent progress on sodium ion batteries: Potential high-performance anodes[J]. Energy & Environmental Science, 2018, 11(9): 2310-2340. |
| [13] | 朱子翼, 张英杰, 董鹏, 等. 高性能钠离子电池负极材料的研究进展[J]. 化工进展, 2019, 38(5): 2222-2232. |
| ZHU Ziyi, ZHANG Yingjie, DONG Peng, et al. Research progress of anode materials for high performance sodium-ion batteries[J]. Chemical Industry and Engineering Progress, 2019, 38(5): 2222-2232. | |
| [14] | ZHOU Hanyu, SONG Yihang, ZHANG Boyang, et al. Overview of electrochemical competing process of sodium storage and metal plating in hard carbon anode of sodium ion battery[J]. Energy Storage Materials, 2024, 71: 103645. |
| [15] | TIAN Zhihong, ZHANG Yu, ZHU Jixin, et al. A reanalysis of the diverse sodium species in carbon anodes for sodium ion batteries: A thermodynamic view[J]. Advanced Energy Materials, 2021, 11(47): 2102489. |
| [16] | MATEI GHIMBEU Camélia, BEDA Adrian, Bénédicte RÉTY, et al. Review: Insights on hard carbon materials for sodium-ion batteries (SIBs): Synthesis-properties-performance relationships[J]. Advanced Energy Materials, 2024, 14(19): 2303833. |
| [17] | LIU Mingquan, WANG Yahui, WU Feng, et al. Advances in carbon materials for sodium and potassium storage[J]. Advanced Functional Materials, 2022, 32(31): 2203117. |
| [18] | WU Jinru, YANG Tao, SONG Yan, et al. Preparation of disordered carbon for alkali metal-ion (lithium, sodium, and potassium) batteries by pitch molecular modification: A review[J]. Carbon, 2024, 221: 118902. |
| [19] | 郭行, 韩纹莉, 董晓玲, 等. 调控炭化过程优化煤基硬炭负极储钠性能[J]. 化工学报, 2022, 73(4): 1794-1806. |
| GUO Hang, HAN Wenli, DONG Xiaoling, et al. Adjusting carbonization process to optimize sodium storage performance of coal-based hard carbon anode[J]. CIESC Journal, 2022, 73(4): 1794-1806. | |
| [20] | DU Wensheng, SUN Chen, SUN Qiang. The recent progress of pitch nanoengineering to obtain the carbon anode for high-performance sodium ion batteries[J]. Materials, 2023, 16(13): 4871. |
| [21] | LI Cen, YAN Lunjing, WANG Meijun, et al. Synthesis strategies and applications for pitch-based anode: From industrial by-products to power sources[J]. The Chemical Record, 2023, 23(2): e202200216. |
| [22] | LIU Zhaoguo, LU Ziyang, GUO Shaohua, et al. Toward high performance anodes for sodium-ion batteries: From hard carbons to anode-free systems[J]. ACS Central Science, 2023, 9(6): 1076-1087. |
| [23] | ANNE SAWHNEY M, WAHID Malik, MUHKERJEE Santanu, et al. Process-structure-formulation interactions for enhanced sodium ion battery development: A review[J]. ChemPhysChem, 2022, 23(5): e202100860. |
| [24] | LIU Huichao, ZHU Sheng, CHANG Yunzhen, et al. Pitch-based carbon materials: A review of their structural design, preparation and applications in energy storage[J]. New Carbon Materials, 2023, 38(3): 459-473. |
| [25] | SENDA Takahiro, YAMADA Yasuhiro, MORIMOTO Masakazu, et al. Analyses of oxidation process for isotropic pitch-based carbon fibers using model compounds[J]. Carbon, 2019, 142: 311-326. |
| [26] | LIU Dong, LOU Bin, CHANG Guangkai, et al. Study on effect of cross-linked structures induced by oxidative treatment of aromatic hydrocarbon oil on subsequent carbonized behaviors[J]. Fuel, 2018, 231: 495-506. |
| [27] | ZHANG Zhichen, HUANG Xiaoqiao, ZHANG Lanjie, et al. Study on the evolution of oxygenated structures in low-temperature coal tar during the preparation of needle coke by co-carbonization[J]. Fuel, 2022, 307: 121811. |
| [28] | 张亚婷, 孔政翰, 李雪, 等. 煤基炭负极材料在钠离子电池中的研究进展[J]. 炭素技术, 2024, 43(3): 1-8. |
| ZHANG Yating, KONG Zhenghan, LI Xue, et al. Research progress of coal based carbon anode materials in sodium-ion batteries[J]. Carbon Techniques, 2024, 43(3): 1-8. | |
| [29] | CORBETT Luke W. Composition of asphalt based on generic fractionation, using solvent deasphaltening, elution-adsorption chromatography, and densimetric characterization[J]. Analytical Chemistry, 1969, 41(4): 576-579. |
| [30] | ZHANG Xufeng, YI Zonglin, TIAN Yanru, et al. Insight into the effect of structural differences among pitch fractions on sodium storage performance of pitch-derived hard carbons[J]. Carbon, 2024, 226: 119165. |
| [31] | GUAN Taotao, ZHAO Jianghong, ZHANG Guoli, et al. Insight into controllability and predictability of pore structures in pitch-based activated carbons[J]. Microporous and Mesoporous Materials, 2018, 271: 118-127. |
| [32] | CHEN Changwei, HUANG Huang, YU Yanke, et al. Template-free synthesis of hierarchical porous carbon with controlled morphology for CO2 efficient capture[J]. Chemical Engineering Journal, 2018, 353: 584-594. |
| [33] | GUAN Taotao, LI Kaixi, ZHAO Jianghong, et al. Template-free preparation of layer-stacked hierarchical porous carbons from coal tar pitch for high performance all-solid-state supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5(30): 15869-15878. |
| [34] | ZHOU Bin, LIU Qingya, SHI Lei, et al. Electron spin resonance studies of coals and coal conversion processes: A review[J]. Fuel Processing Technology, 2019, 188: 212-227. |
| [35] | MA Zhihao, WEI Xianyong, LIU Guanghui, et al. Value-added utilization of high-temperature coal tar: A review[J]. Fuel, 2021, 292: 119954. |
| [36] | 宁汇, 王路海, 何盛宝, 等. 石油沥青基碳材料的电化学应用研究进展[J]. 石油炼制与化工, 2021, 52(10): 38-45. |
| NING Hui, WANG Luhai, HE Shengbao, et al. Research process of petroleum pitch-based carbon materials in electrochemical applications[J]. Petroleum Processing and Petrochemicals, 2021, 52(10): 38-45. | |
| [37] | 张英杰, 朱子翼, 董鹏, 等. 钠离子电池碳基负极材料的研究进展[J]. 化工进展, 2017, 36(11): 4106-4115. |
| ZHANG Yingjie, ZHU Ziyi, DONG Peng, et al. Research progress of carbon-based anode materials for sodium ion batteries[J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4106-4115. | |
| [38] | KWAK Cheol Hwan, SEO Sang Wan, KIM Min Il, et al. Waste plastic for increasing softening point of pitch and specific surface area of activated carbon based on the petroleum residue[J]. Carbon Letters, 2021, 31(5): 991-1000. |
| [39] | JI Lichang, ZHAO Yun, CAO Lijuan, et al. A fundamental understanding of structure evolution in the synthesis of hard carbon from coal tar pitch for high-performance sodium storage[J]. Journal of Materials Chemistry A, 2023, 11(48): 26727-26741. |
| [40] | LI Peihua, CHEN Pengfei, ZHANG Wanggang, et al. Advanced multielement (O, N, S) modified strategies for pitch-based carbon anodes toward both lithium and sodium storage[J]. Vacuum, 2024, 224: 113121. |
| [41] | JIANG Ye, JIANG Jiangmin, NIE Ping, et al. Recent progress and prospects of pitch-based carbon anodes for alkali metal-ion (Li/Na/K) batteries[J]. Journal of Energy Storage, 2023, 72: 108484. |
| [42] | LU Yaxiang, ZHAO Chenglong, QI Xingguo, et al. Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance[J]. Advanced Energy Materials, 2018, 8(27): 1800108. |
| [43] | XU Ran, YI Zonglin, SONG Mingxin, et al. Boosting sodium storage performance of hard carbons by regulating oxygen functionalities of the cross-linked asphalt precursor[J]. Carbon, 2023, 206: 94-104. |
| [44] | CHEN He, SUN Ning, WANG Yingxian, et al. One stone two birds: Pitch assisted microcrystalline regulation and defect engineering in coal-based carbon anodes for sodium-ion batteries[J]. Energy Storage Materials, 2023, 56: 532-541. |
| [45] | WANG Haiyang, ZHU Hongzhe, WANG Shoukai, et al. Dicarbonyl-tuned microstructures of hierarchical porous carbons derived from coal-tar pitch for supercapacitor electrodes[J]. RSC Advances, 2019, 9(35): 20019-20028. |
| [46] | WANG Yuwei, XIAO Nan, WANG Zhiyu, et al. Rational design of high-performance sodium-ion battery anode by molecular engineering of coal tar pitch[J]. Chemical Engineering Journal, 2018, 342: 52-60. |
| [47] | ZHANG Guoli, GUAN Taotao, WU Juncheng, et al. Tailor-made C—Cl bond towards rapid homogeneous stabilization of low-softening-point coal tar pitch[J]. Fuel, 2021, 284: 119288. |
| [48] | WANG Laibin, XU Zikang, LIN Ping, et al. Oxygen-crosslinker effect on the electrochemical characteristics of asphalt-based hard carbon anodes for sodium-ion batteries[J]. Advanced Energy Materials, 2025, 15(7): 2403084. |
| [49] | FUJIMOTO Hiroyuki, TOKUMITSU Katsuhisa, MABUCHI Akihiro, et al. The anode performance of the hard carbon for the lithium ion battery derived from the oxygen-containing aromatic precursors[J]. Journal of Power Sources, 2010, 195(21): 7452-7456. |
| [50] | QI Yuruo, LU Yaxiang, LIU Lilu, et al. Retarding graphitization of soft carbon precursor: From fusion-state to solid-state carbonization[J]. Energy Storage Materials, 2020, 26: 577-584. |
| [51] | HE Hanna, HE Jun, YU Huaibo, et al. Dual-interfering chemistry for soft-hard carbon translation toward fast and durable sodium storage[J]. Advanced Energy Materials, 2023, 13(16): 2300357. |
| [52] | PAN Zibing, CHEN Huaqi, ZENG Yubin, et al. Fluorine chemistry in lithium-ion and sodium-ion batteries[J]. Energy Materials,2023, 3(6): 300051. |
| [53] | SHAO Yuan, CUI Yahui, WANG Changda, et al. Initiating fluorine chemistry in polycyclic aromatic hydrocarbon-derived carbon for new cluster-mode Na storage with superhigh capacity[J]. Small, 2023, 19(22): e2300107. |
| [54] | JI Lichang, ZHAO Yun, QI Xingguo, et al. Metal chloride-induced hydrogen transfer enables efficient conversion of aromatic hydrocarbons for sodium storage[J]. Advanced Functional Materials, 2024, 34(48): 2408242. |
| [55] | LIU Chang, ZHENG Hongjie, WANG Yuwei, et al. Microstructure regulation of pitch-based soft carbon anodes by iodine treatment towards high-performance potassium-ion batteries[J]. Journal of Colloid and Interface Science, 2022, 615: 485-493. |
| [56] | 杨涵, 张一波, 李琦, 等. 面向实用化的钠离子电池碳负极: 进展及挑战[J]. 化工进展, 2023, 42(8): 4029-4042. |
| YANG Han, ZHANG Yibo, LI Qi, et al. Practical carbon anodes for sodium-ion batteries: Progress and challenge[J]. Chemical Industry and Engineering Progress,2023, 42(8): 4029-4042. | |
| [57] | HUANG Gang, ZHANG Hao, GAO Fan, et al. Overview of hard carbon anode for sodium-ion batteries: Influencing factors and strategies to extend slope and plateau regions[J]. Carbon, 2024, 228: 119354. |
| [58] | 张俊, 李琦, 陶莹, 等. 钠离子电池筛分型碳: 缘起与进展[J]. 储能科学与技术, 2022, 11(9): 2825-2833. |
| ZHANG Jun, LI Qi, TAO Ying, et al. Sieving carbons for sodium-ion batteries: Origin and progress[J]. Energy Storage Science and Technology, 2022, 11(9): 2825-2833. | |
| [59] | LI Qi, LIU Xiangsi, TAO Ying, et al. Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries[J]. National Science Review, 2022, 9(8): nwac084. |
| [60] | WANG Haihua, NIU Huizhu, SHU Kewei, et al. Regulating the “core-shell” microstructure of hard carbon through sodium hydroxide activation for achieving high-capacity SIBs anode[J]. Journal of Materials Science & Technology, 2025, 209: 161-170. |
| [61] | IGLESIAS Luis Kitsu, ANTONIO Emma N, MARTINEZ Tristan D, et al. Revealing the sodium storage mechanisms in hard carbon pores[J]. Advanced Energy Materials, 2023, 13(44): 2302171. |
| [62] | ZHENG Zhi, HU Sijiang, YIN Wenji, et al. CO2-etching creates abundant closed pores in hard carbon for high-plateau-capacity sodium storage[J]. Advanced Energy Materials, 2024, 14(3): 2303064. |
| [63] | TANG Zheng, ZHANG Rui, WANG Haiyan, et al. Revealing the closed pore formation of waste wood-derived hard carbon for advanced sodium-ion battery[J]. Nature Communications, 2023, 14(1): 6024. |
| [64] | LIN Jianhao, ZHOU Qingfeng, LIAO Zhishan, et al. Steric hindrance engineering to modulate the closed pores formation of polymer-derived hard carbon for high-performance sodium-ion batteries[J]. Angewandte Chemie International Edition, 2024, 63(39): e202409906. |
| [65] | 吴希, 孙博, 刘银东, 等. 钠离子电池沥青基碳负极材料制备技术研究进展[J]. 化工学报, 2024, 75(4): 1270-1283. |
| WU Xi, SUN Bo, LIU Yindong, et al. Research progress in preparation technology of pitch-based carbon anode materials for sodium-ion batteries[J]. CIESC Journal, 2024, 75(4): 1270-1283. | |
| [66] | 所聪, 王阳峰, 朱紫宸, 等. 钠离子电池软碳基负极的研究进展[J]. 储能科学与技术, 2024, 13(6): 1807-1823. |
| SUO Cong, WANG Yangfeng, ZHU Zichen, et al. Research progress of soft carbon as negative electrodes in sodium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(6): 1807-1823. | |
| [67] | IGARASHI Daisuke, TANAKA Yoko, KUBOTA Kei, et al. New template synthesis of anomalously large capacity hard carbon for Na- and K-ion batteries[J]. Advanced Energy Materials, 2023, 13(47): 2302647. |
| [68] | HAN Liang, LI Zhimin, YANG Fei, et al. Enhancing capacitive storage of carbonaceous anode by surface doping and structural modulation for high-performance sodium-ion battery[J]. Powder Technology, 2021, 382: 541-549. |
| [69] | LU Peng, SUN Yi, XIANG Hongfa, et al. 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries[J]. Advanced Energy Materials, 2018, 8(8): 1702434. |
| [70] | SUN Dong, ZHAO Lu, SUN Peiliang, et al. Rationally regulating closed pore structures by pitch coating to boost sodium storage performance of hard carbon in low-voltage platforms[J]. Advanced Functional Materials, 2024, 34(40): 2403642. |
| [71] | TIAN Yanru, YI Zonglin, SU Fangyuan, et al. Regulating the pore structure of activated carbon by pitch for high-performance sodium-ion storage[J]. ACS Applied Materials & Interfaces, 2024, 16(14): 17553-17562. |
| [72] | CHENG Dejian, LI Zhenghui, ZHANG Minglu, et al. Engineering ultrathin carbon layer on porous hard carbon boosts sodium storage with high initial coulombic efficiency[J]. ACS Nano, 2023, 17(19): 19063-19075. |
| [73] | ZHAO Yanhong, HU Zhuang, ZHOU Wang, et al. Advanced structural engineering design for tailored microporous structure via adjustable graphite sheet angle to enhance sodium-ion storage in anthracite-based carbon anode[J]. Advanced Functional Materials, 2024, 34(44): 2405174. |
| [84] | WENG Guoming, XIE Yu, WANG Hang, et al. A promising carbon/g-C3N4 composite negative electrode for a long-life sodium-ion battery[J]. Angewandte Chemie International Edition, 2019, 58(39): 13727-13733. |
| [85] | ZHAO Yan, CONG Yao, NING Hui, et al. Petroleum-pitch-based carbon nanocages encapsulated few-layer MoS2 with S vacancies for a high-performance sodium-ion battery[J]. Energy & Fuels, 2023, 37(6): 4641-4649. |
| [86] | 董伟, 杨绍斌, 沈丁, 等. 石油沥青和葡萄糖热解炭的可逆储钠性能研究[J]. 新型炭材料, 2017, 32(3): 227-233. |
| DONG Wei, YANG Shaobin, SHEN Ding, et al. Performance of pitch and glucose pyrocarbons for reversible sodium storage[J]. New Carbon Materials, 2017, 32(3): 227-233. | |
| [87] | LIN Saisai, YANG Zhuo, CHEN Jian, et al. Functional electrolyte additives for sodium-ion and sodium-metal batteries: Progress and perspectives[J]. Advanced Functional Materials, 2024, 34(34): 2400731. |
| [88] | TANG Zheng, WANG Hong, WU Pengfei, et al. Electrode-electrolyte interfacial chemistry modulation for ultra-high rate sodium-ion batteries[J]. Angewandte Chemie International Edition, 2022, 61(18): e202200475. |
| [89] | LU Ziyang, GENG Chuannan, YANG Huijun, et al. Step-by-step desolvation enables high-rate and ultra-stable sodium storage in hard carbon anodes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(40): e2210203119. |
| [90] | ZHAO Siwei, HUANG Fuqiang. Weakly solvating few-layer-carbon interface toward high initial coulombic efficiency and cyclability hard carbon anodes[J]. ACS Nano, 2024, 18(2): 1733-1743. |
| [91] | XIA Huicong, ZAN Lingxing, QU Gan, et al. Evolution of a solid electrolyte interphase enabled by FeN X /C catalysts for sodium-ion storage[J]. Energy & Environmental Science, 2022, 15(2): 771-779. |
| [92] | ZHAI Pengbo, WANG Tianshuai, YANG Weiwei, et al. Uniform lithium deposition assisted by single-atom doping toward high-performance lithium metal anodes[J]. Advanced Energy Materials, 2019, 9(18): 1804019. |
| [93] | LU Zhixiu, WANG Jing, FENG Wuliang, et al. Zinc single-atom-regulated hard carbons for high-rate and low-temperature sodium-ion batteries[J]. Advanced Materials, 2023, 35(26): 2211461. |
| [1] | MA Xiaobiao, LIU Han, WANG Weihuan, MIAO Peipei, JI Yinghui, CHEN Boyang, PENG Xiaowei, XU Qiang, JIN Fengying, MA Mingchao, WANG Yinbin, GUO Chunlei. Effect of acid and phosphorus composite modification on the catalytic cracking performance of ZSM-5 molecular sieve [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 197-204. |
| [2] | LI Ruiying, ZHOU Ying, ZHOU Hongjun, XU Chunming. Biomass-derived nano-carbon-based materials: Opportunities and challenges in electrochemical applications [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 288-306. |
| [3] | WANG Yangfeng, CAI Haile, ZHANG Shudong, ZHU Zichen, SUO Cong, YANG Yan, HOU Shuandi. Compatibility of petroleum coke based anodes and electrolytes in sodium ion batteries [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3850-3859. |
| [4] | ZHANG Wei, LIANG Yaocheng, WU Qiao, FU Yehao, YIN Yanshan, CHENG Shan, RUAN Min, LIU Tao, ZHOU Zhaoyi, ZHANG Kaikai, LI Dancong. Metal ion modified Cu-SSZ-13 catalyst for NH3-selective catalytic reduction of NO x [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3879-3891. |
| [5] | XU Ruting, ZHAO Jian, SUN Kang, LU Xincheng, JIANG Jianchun, SU Zhonggao, LIU Junli, CHEN Zibiao, SU Zihan. Modification of activated carbon and its purification performance for simulated waste lubricating oil [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4022-4031. |
| [6] | SUN Yan, CHEN Machao, TIAN Na, XIE Xiaoyang, LI Xiaoling, HE Jiaojie, ZHAO Xiaohong. Research on in-situ construction of TFC forward osmosis membrane by β-cyclodextrin and its antifouling performance [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3671-3682. |
| [7] | HUANG Jiao, ZHU Yaming, YUE Jiaxing, WANG Ying, CHENG Junxia, ZHAO Xuefei. Advances in the preparation, modification and application of spherical activated carbon [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2081-2101. |
| [8] | ZHANG Yiru, HAN Dongmei, MA Weifang. Research progress on iron-based composite bismuth oxyhalide magnetic materials for enhanced visible light catalytic treatment of refractory organic wastewater [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2258-2273. |
| [9] | LI Jiahao, FAN Haiming, WEI Zhiyi, CHENG Siyuan. Research progress and prospects of nanomaterials in low-permeability reservoirs [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1485-1495. |
| [10] | ZHANG Maorun, SUN Weiru, MA Tianlin, XIN Zhiling. Anti-SO2 poisoning performance of Mo-modified MnCe/SiC in low-temperature SCR denitrification [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1378-1386. |
| [11] | WANG Xueli, YANG Weiya, ZHANG Huicheng, WANG Shaojun, LING Fengxiang. Interfacial modification method of MOF-based mixed matrix membrane and its gas separation performance [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 928-940. |
| [12] | LIU Fazhi, ZHANG Pengwei, LIU Tao, XIE Yuxian, HE Jianle, SU Sheng, XU Jun, XIANG Jun. Mechanism of anti-CO poisoning of Sb-modified vanadium-titanium SCR denitrification catalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1129-1137. |
| [13] | ZHAO Liyang, LI Qian, HE Peixi, PAN Honghui, LIU Yan, LIU Xixiang. Tetracycline adsorption properties of sludge-based biochar ball-milled co-modified by phosphomolybdic acid-Fe3O4 [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 583-595. |
| [14] | ZHUANG Ke, CHEN Hong, XU Yun, ZHONG Zhaoping, ZHOU Junwu, ZHOU Kai, DONG Yuehong. Resistance of SiO2 modified Ce-V-W/Ti catalyst support to alkali (earth) metal poisoning [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 266-276. |
| [15] | XU Yang, YANG Qizhou, PAN Yueyue, ZHOU Yongjun. Flow field characteristics in stirred tank equipped with punched and four-pitched blade combined impeller [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 38-47. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |