Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (6): 3671-3682.DOI: 10.16085/j.issn.1000-6613.2024-2066
• Resources and environmental engineering • Previous Articles
SUN Yan1(
), CHEN Machao1, TIAN Na2, XIE Xiaoyang1, LI Xiaoling1, HE Jiaojie1, ZHAO Xiaohong1
Received:2024-12-19
Revised:2025-02-26
Online:2025-07-09
Published:2025-06-25
Contact:
SUN Yan
孙燕1(
), 陈马超1, 田娜2, 谢晓阳1, 李晓玲1, 何皎洁1, 赵晓红1
通讯作者:
孙燕
作者简介:孙燕(1991—),女,博士,讲师,研究方向为膜法水处理理论与技术。E-mail:sunyan2021@chd.edu.cn。
基金资助:CLC Number:
SUN Yan, CHEN Machao, TIAN Na, XIE Xiaoyang, LI Xiaoling, HE Jiaojie, ZHAO Xiaohong. Research on in-situ construction of TFC forward osmosis membrane by β-cyclodextrin and its antifouling performance[J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3671-3682.
孙燕, 陈马超, 田娜, 谢晓阳, 李晓玲, 何皎洁, 赵晓红. 基于β-环糊精的TFC正渗透膜原位构筑及抗污染性能[J]. 化工进展, 2025, 44(6): 3671-3682.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-2066
| 平均孔径/nm | 截留分子量/kDa | 孔隙率/% | 透水性/L·m-2·Pa-1·h-1 | 接触角/(°) | 膜厚度/μm |
|---|---|---|---|---|---|
| 13.46±0.49 | 239.57±1.64 | 72.9±1.0 | (275±40)×10-5 | 80.5±3.5 | 50±4 |
| 平均孔径/nm | 截留分子量/kDa | 孔隙率/% | 透水性/L·m-2·Pa-1·h-1 | 接触角/(°) | 膜厚度/μm |
|---|---|---|---|---|---|
| 13.46±0.49 | 239.57±1.64 | 72.9±1.0 | (275±40)×10-5 | 80.5±3.5 | 50±4 |
| 序号 | 膜名称 | 水相 | 有机相 | |||
|---|---|---|---|---|---|---|
| MPD质量分数/% | β-CD质量分数/% | TEA质量分数/% | CSA质量分数/% | TMC质量分数/% | ||
| 1 | TFC | 3.4 | — | — | — | 0.15 |
| 2 | TFC-β-CD(0.5) | 3.4 | 0.5 | 1 | 0.43 | 0.15 |
| 3 | TFC-β-CD(1.0) | 3.4 | 1.0 | 1 | 0.43 | 0.15 |
| 4 | TFC-β-CD(1.5) | 3.4 | 1.5 | 1 | 0.43 | 0.15 |
| 5 | TFC-β-CD(2.0) | 3.4 | 2.0 | 1 | 0.43 | 0.15 |
| 序号 | 膜名称 | 水相 | 有机相 | |||
|---|---|---|---|---|---|---|
| MPD质量分数/% | β-CD质量分数/% | TEA质量分数/% | CSA质量分数/% | TMC质量分数/% | ||
| 1 | TFC | 3.4 | — | — | — | 0.15 |
| 2 | TFC-β-CD(0.5) | 3.4 | 0.5 | 1 | 0.43 | 0.15 |
| 3 | TFC-β-CD(1.0) | 3.4 | 1.0 | 1 | 0.43 | 0.15 |
| 4 | TFC-β-CD(1.5) | 3.4 | 1.5 | 1 | 0.43 | 0.15 |
| 5 | TFC-β-CD(2.0) | 3.4 | 2.0 | 1 | 0.43 | 0.15 |
| 阶段 | 运行 模式 | 运行 时长 | 错流 速率 | 原料液 (1L) | 汲取液 (2L) |
|---|---|---|---|---|---|
| 1 | 活性层朝向原料液(AL-FS) | 1h | 8cm/s | 去离子水 | 0.5mol/LNaCl溶液 |
| 2 | 1mol/LNaCl溶液 | ||||
| 3 | 1.5mol/LNaCl溶液 | ||||
| 4 | 2mol/LNaCl溶液 |
| 阶段 | 运行 模式 | 运行 时长 | 错流 速率 | 原料液 (1L) | 汲取液 (2L) |
|---|---|---|---|---|---|
| 1 | 活性层朝向原料液(AL-FS) | 1h | 8cm/s | 去离子水 | 0.5mol/LNaCl溶液 |
| 2 | 1mol/LNaCl溶液 | ||||
| 3 | 1.5mol/LNaCl溶液 | ||||
| 4 | 2mol/LNaCl溶液 |
| [1] | DSILVA WINFRED RUFUSS D, KAPOOR V, ARULVEL S, et al. Advances in forward osmosis (FO) technology for enhanced efficiency and output: A critical review[J]. Journal of Cleaner Production, 2022, 356: 131769. |
| [2] | THARAYIL Jeevan Mathew, CHINNAIYAN Prakash, JOHN Daphne Mary, et al. Environmental sustainability of FO membrane separation applications—Bibliometric analysis and state-of-the-art review[J]. Results in Engineering, 2024, 21: 101677. |
| [3] | CHANG ZHEN Hong, Jing Yao SUM, LAU Woei Jye, et al. Current state-of-the-art of non-reverse osmosis-like forward osmosis technology[J]. Journal of Membrane Science, 2024, 711: 123209. |
| [4] | WANG Jianlong, LIU Xiaojing. Forward osmosis technology for water treatment: Recent advances and future perspectives[J]. Journal of Cleaner Production, 2021, 280: 124354. |
| [5] | ABOUNAHIA Nada, IBRAR Ibrar, KAZWINI Tayma, et al. Desalination by the forward osmosis: Advancement and challenges[J]. Science of the Total Environment, 2023, 886: 163901. |
| [6] | JAFARINEJAD Shahryar. Forward osmosis membrane technology for nutrient removal/recovery from wastewater: Recent advances, proposed designs, and future directions[J]. Chemosphere, 2021, 263: 128116. |
| [7] | 朱腾义, 曹再植. 正渗透-膜蒸馏耦合工艺在高难度废水处理中的应用研究进展[J]. 化工进展, 2021, 40(11): 5894-5906. |
| ZHU Tengyi, CAO Zaizhi. Application research progress of forward osmosis-membrane distillation coupling process in the treatment of highly difficult wastewater[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 5894-5906. | |
| [8] | RAHMAN Sumaita Nawar, SALEEM Haleema, ZAIDI Syed Javaid. Progress in membranes for pressure retarded osmosis application[J]. Desalination, 2023, 549: 116347. |
| [9] | BLANDIN Gaetan, FERRARI Federico, LESAGE Geoffroy, et al. Forward osmosis as concentration process: Review of opportunities and challenges[J]. Membranes, 2020, 10(10): 284. |
| [10] | Keng Siang GOH, CHEN Yunfeng, Daniel Yee Fan NG, et al. Organic solvent forward osmosis membranes for pharmaceutical concentration[J]. Journal of Membrane Science, 2022, 642: 119965. |
| [11] | ZHU Linwei, DING Chun, ZHU Tengyang, et al. A review on the forward osmosis applications and fouling control strategies for wastewater treatment[J]. Frontiers of Chemical Science and Engineering, 2022, 16(5): 661-680. |
| [12] | FARAHBAKHSH Javad, GOLGOLI Mitra, KHIADANI Mehdi, et al. Recent advances in surface tailoring of thin film forward osmosis membranes: A review[J]. Chemosphere, 2024, 346: 140493. |
| [13] | IBRAHEEM Bakr M, AANI Saif AL, ALSARAYREH Alanood A, et al. Forward osmosis membrane: Review of fabrication, modification, challenges and potential[J]. Membranes, 2023, 13(4): 379. |
| [14] | TIAN Miao, MA Tao, Kunli GOH, et al. Forward osmosis membranes: The significant roles of selective layer[J]. Membranes, 2022, 12(10): 955. |
| [15] | KAHRIZI Mohammad, GONZALES Ralph Rolly, KONG Lingxue, et al. Significant roles of substrate properties in forward osmosis membrane performance: A review[J]. Desalination, 2022, 528: 115615. |
| [16] | 赵珍珍, 郑喜, 王雪琪, 等. 聚酰胺复合膜微孔支撑基底的研究进展[J]. 化工进展, 2023, 42(4): 1917-1933. |
| ZHAO Zhenzhen, ZHENG Xi, WANG Xueqi, et al. Research progress on microporous supporting substrate of polyamide composite membrane[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1917-1933. | |
| [17] | 张赛晖, 李校阳, 高慧, 等. 制备聚酰胺复合膜中界面聚合反应添加剂研究进展[J]. 化工进展, 2022, 41(9): 4884-4894. |
| ZHANG Saihui, LI Xiaoyang, GAO Hui, et al. Recent progress in additives in interfacial polymerization for the preparation of polyamide composite membrane[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4884-4894. | |
| [18] | KANAGARAJ Palsamy, SHANMUGARAJA Masilamani, RANA Dipak, et al. Development of high performance thin-film (nano) composite membranes for forward osmosis desalination applications—A review [J]. Materials Science and Engineering: B, 2024, 299: 116966. |
| [19] | JAIN Harshita, GARG Manoj Chandra. Fabrication of polymeric nanocomposite forward osmosis membranes for water desalination—A review[J]. Environmental Technology & Innovation, 2021, 23: 101561. |
| [20] | LI Xu, WANG Zhi, HAN Xianglei, et al. Regulating the interfacial polymerization process toward high-performance polyamide thin-film composite reverse osmosis and nanofiltration membranes: A review[J]. Journal of Membrane Science, 2021, 640: 119765. |
| [21] | LIAO Zhipeng, ZHU Junyong, LI Xin, et al. Regulating composition and structure of nanofillers in thin film nanocomposite (TFN) membranes for enhanced separation performance: A critical review[J]. Separation and Purification Technology, 2021, 266: 118567. |
| [22] | HAY Man Saung Hnin Soe, Phyo Darli MAW, LOFTSSON Thorsteinn, et al. A current overview of cyclodextrin-based nanocarriers for enhanced antifungal delivery[J]. Pharmaceuticals, 2022, 15(12): 1447. |
| [23] | 孙燕, 冯倩颖, 谢晓阳, 等. 基于环糊精构筑薄膜复合膜的研究进展[J]. 化工进展, 2024, 43(8): 4464-4476. |
| SUN Yan, FENG Qianying, XIE Xiaoyang, et al. Research progress on the cyclodextrin-based thin film composite membranes[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4464-4476. | |
| [24] | ZHU Bo, SHAO Ruiqi, LI Nan, et al. Progress of cyclodextrin based-membranes in water treatment: Special 3D bowl-like structure to achieve excellent separation[J]. Chemical Engineering Journal, 2022, 449: 137013. |
| [25] | TANG Yongjian, SHEN Bingjie, HUANG Benqing, et al. High permselectivity thin-film composite nanofiltration membranes with 3D microstructure fabricated by incorporation of beta cyclodextrin[J]. Separation and Purification Technology, 2019, 227: 115718. |
| [26] | YU Zongxue, PAN Yang, HE Yi, et al. Preparation of a novel anti-fouling β-cyclodextrin-PVDF membrane[J]. RSC Advances, 2015, 5(63): 51364-51370. |
| [27] | YASSARI Mehrasa, SHAKERI Alireza. Nature based forward osmosis membranes: A novel approach for improved anti-fouling properties of thin film composite membranes[J]. Chemical Engineering Research and Design, 2022, 184: 137-151. |
| [28] | JEON Sungkwon, PARK Chan Hyung, SHIN Seung Su, et al. Fabrication and structural tailoring of reverse osmosis membranes using β-cyclodextrin-cored star polymers[J]. Journal of Membrane Science, 2020, 611: 118415. |
| [29] | 郝秀娟. Ca2+原位改性对TFC正渗透膜污染的控制效能与机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
| HAO Xiujuan. Research on controlling efficiency and mechanism of tfc forward osmosis membrane fouling by Ca2+ in-situ modification[D]. Harbin: Harbin Institute of Technology, 2020. | |
| [30] | 刘婷丽. 相转化法制备聚合物滤膜的大数据研究[D]. 合肥: 中国科学技术大学, 2022. |
| LIU Tingli. A big data study of polymeric filtration membranes prepared by phase inversion method[D]. Hefei: University of Science and Technology of China, 2022. | |
| [31] | TIRAFERRI Alberto, Ngai Yin YIP, STRAUB Anthony P, et al. A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes[J]. Journal of Membrane Science, 2013, 444: 523-538. |
| [32] | WU Xing, FANG Fang, ZHANG Bifeng, et al. Biogenic silver nanoparticles-modified forward osmosis membranes with mitigated internal concentration polarization and enhanced antibacterial properties[J]. NPJ Clean Water, 2022, 5: 41. |
| [33] | ZHAO Haiyang, QIU Shi, WU Liguang, et al. Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes[J]. Journal of Membrane Science, 2014, 450: 249-256. |
| [34] | TANG Chuyang Y, KWON Young-Nam, LECKIE James O. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes[J]. Desalination, 2009, 242(1/2/3): 149-167. |
| [35] | REN Dan, Jet Ing Ngie YEO, LIU Tianyin, et al. Time-dependent FTIR microscopy for mechanism investigations and kinetic measurements in interfacial polymerisation: A microporous polymer film study[J]. Polymer Chemistry, 2019, 10(22): 2769-2773. |
| [36] | JIANG Zhiwei, KARAN Santanu, LIVINGSTON Andrew G. Water transport through ultrathin polyamide nanofilms used for reverse osmosis[J]. Advanced Materials, 2018, 30(15): e1705973. |
| [37] | PENG Shaoyin, WANG Zhenbei, QI Fei, et al. Novel insights into the interaction reactive components and synergistic fouling mechanisms of ultrafiltration by natural organic matter fractions and Kaolin[J]. Environmental Research, 2022, 212: 113285. |
| [38] | ESFAHANI Milad Rabbani, AKTIJ Sadegh Aghapour, DABAGHIAN Zoheir, et al. Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications[J]. Separation and Purification Technology, 2019, 213: 465-499. |
| [39] | HAO Xiujuan, GAO Shanshan, TIAN Jiayu, et al. Calcium-carboxyl intrabridging during interfacial polymerization: A novel strategy to improve antifouling performance of thin film composite membranes[J]. Environmental Science & Technology, 2019, 53(8): 4371-4379. |
| [40] | GHORBANI Farnaz, SHAKERI Alireza, VAFAEI Mohammad ALI, et al. Polyoxometalate-cored supramolecular star polymers as a novel crosslinker for graphene oxide-based forward osmosis membranes: Anti-fouling, super hydrophilic and high water permeable[J]. Separation and Purification Technology, 2021, 267:118578. |
| [41] | BAGHERZADEH Mojtaba, BAYRAMI Arshad, SHEKARI Zahra, et al. High-performance thin-film nanocomposite (TFN) forward osmosis (FO) membranes incorporated with porous hydrophobic-core/hydrophilic-shell nanoparticles[J]. Desalination, 2021, 515: 115181. |
| [42] | EGHBALAZAR Tala, SHAKERI Alireza. High-Performance thin-film nanocomposite forward osmosis membranes modified with poly(dopamine) coated UiO66-(COOH)2 [J]. Separation and Purification Technology, 2021, 277: 119438. |
| [1] | ZHANG Lei, ZHANG Xinru, WANG Yonghong, LI Jinping, LIU Chunbo. Research progress of two-dimensional nanomaterial-based mixed matrix membranes in organic pervaporation separation [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3324-3335. |
| [2] | FU Yuanfeng, FAN Zhenzhong, ZANG Xin, TONG Qilei, LIU Jingang. Preparation of superhydrophilic underwater superoleophobic composite SSM and its application in oil-water separation [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3659-3670. |
| [3] | LUO Yiwen, ZHAO Liang, ZHANG Yuhao, LIU Dongyang, GAO Jinsen, XU Chunming. Progress on separation materials and mechanisms of light hydrocarbons [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2938-2954. |
| [4] | HE Xiaolong, KANG Yutang, ZOU Dong, ZHONG Zhaoxiang. Electrospun nanofiber membrane masks for respiratory protection: A review [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1496-1504. |
| [5] | CHEN Xiaole, LI Na, CHEN Linyu, ZHOU Qulan. Preparation of ZIFs/PDMDES mixed matrix membranes for ethanol recovery from aqueous solutions via pervaporation [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 407-414. |
| [6] | GENG Xiumei, ZHANG Feng, ZHANG Xiang, SHAN Meixia, ZHANG Yatao. Research progress on the stability of Pebax-based mixed matrix membranes for CO2 separation [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4996-5012. |
| [7] | SUN Yan, XIE Xiaoyang, FENG Qianying, ZHENG Lu, HE Jiaojie, YANG Liwei, BAI Bo. Preparation of forward osmosis membrane modified by tannic acid-iron (Ⅲ) and its antifouling performance [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5309-5319. |
| [8] | ZHANG Rui, JIANG Jing, XU Hongfei, YANG Shengkai, LI Yahong, ZHOU Jingyuan, ZENG Jianxian, HUANG Xiaoping, LIU Pengfei, ZHANG Mingming, LI Zhiqiang. Progress of ceramic membrane separation technology and its application in bio-manufacturing field [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4550-4561. |
| [9] | TANG Anqi, WEI Xin, DING Liming, WANG Yujie, XU Yixiao, LIU Yiqun. Discussing physical aging phenomenon of polyimide gas separation membranes [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3923-3933. |
| [10] | LI Haipeng, WU Tong, WANG Qi, GAO Shiwang, WANG Xiaolong, LI Xu, GAO Xinhua, NIAN Pei, WEI Yibin. Effective methanol production by CO2 hydrogenation using water-permeable NaA zeolite membrane [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2834-2842. |
| [11] | HE Jin, LAI Yuwen, LI Yanchun, ZHOU Shilin, ZHOU Yong, GAO Congjie. DES changed the diffusion rate of amine monomer to prepare high-performance composite reverse osmosis membrane [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1972-1980. |
| [12] | QIAN Junming, GUO Meng, REN Xiuxiu, YU Liang, ZHONG Jing, XU Rong. Fabrication of aromatic functionalized organosilica membranes and gas separation performance [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1428-1435. |
| [13] | LIN Mingjie, LI Shiyang, MA Junmei, GAO Congjie, XUE Lixin. Preparation of polyamide/cellulose acetate thin-film composite forward osmosis membranes and optimization of phase inversion process parameters [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1418-1427. |
| [14] | XU Zewen, WANG Ming, WANG Qiang, HOU Yingfei. Recent advances in amine-rich membrane for CO2 separation [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1374-1386. |
| [15] | ZHAO Guoke, ZHANG Yang, LIU Yiqun. Membrane technologies for monovalent/divalent cation separation [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1363-1373. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |