Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (2): 928-940.DOI: 10.16085/j.issn.1000-6613.2024-0202
• Materials science and technology • Previous Articles Next Articles
WANG Xueli(), YANG Weiya, ZHANG Huicheng, WANG Shaojun, LING Fengxiang
Received:
2024-01-26
Revised:
2024-03-19
Online:
2025-03-10
Published:
2025-02-25
Contact:
WANG Xueli
通讯作者:
王雪莉
作者简介:
王雪莉(1996—),女,硕士,助理工程师,研究方向为气体膜分离。E-mail:wangxueli.fshy@sinopec.com。
基金资助:
CLC Number:
WANG Xueli, YANG Weiya, ZHANG Huicheng, WANG Shaojun, LING Fengxiang. Interfacial modification method of MOF-based mixed matrix membrane and its gas separation performance[J]. Chemical Industry and Engineering Progress, 2025, 44(2): 928-940.
王雪莉, 杨卫亚, 张会成, 王少军, 凌凤香. 金属有机框架(MOF)基混合基质膜界面改性方法及其气体分离性能[J]. 化工进展, 2025, 44(2): 928-940.
1 | WANG Shaofei, LI Xueqin, WU Hong, et al. Advances in high permeability polymer-based membrane materials for CO2 separations[J]. Energy & Environmental Science, 2016, 9(6): 1863-1890. |
2 | MOGHADAM Farhad, KAMIO Eiji, YOSHIOKA Tomohisa, et al. New approach for the fabrication of double-network ion-gel membranes with high CO2/N2 separation performance based on facilitated transport[J]. Journal of Membrane Science, 2017, 530: 166-175. |
3 | HE Xuezhong, KIM Taek-Joong, May-Britt HÄGG. Hybrid fixed-site-carrier membranes for CO2 removal from high pressure natural gas: Membrane optimization and process condition investigation[J]. Journal of Membrane Science, 2014, 470: 266-274. |
4 | REIJERKERK Sander R, KNOEF Michel H, NIJMEIJER Kitty, et al. Poly(ethylene glycol) and poly(dimethyl siloxane): Combining their advantages into efficient CO2 gas separation membranes[J]. Journal of Membrane Science, 2010, 352(1/2): 126-135. |
5 | HE Yuan, BENEDETTI Francesco M, LIN Sharon, et al. Polymers with side chain porosity for ultrapermeable and plasticization resistant materials for gas separations[J]. Advanced Materials, 2019, 31(21): e1807871. |
6 | SHAHID Salman, NIJMEIJER Kitty, NEHACHE Sabrina, et al. MOF-mixed matrix membranes: Precise dispersion of MOF particles with better compatibility via a particle fusion approach for enhanced gas separation properties[J]. Journal of Membrane Science, 2015, 492: 21-31. |
7 | FAN Yanfang, LI Cong, ZHANG Xiaosa, et al. Tröger's base mixed matrix membranes for gas separation incorporating NH2-MIL-53(Al) nanocrystals[J]. Journal of Membrane Science, 2019, 573: 359-369. |
8 | WANG Jingyi, ZHOU Yilun, LIU Xiaolu, et al. Design and application of metal-organic framework membranes for gas and liquid separations[J]. Separation and Purification Technology, 2024, 329: 125178. |
9 | ULBRICHT Mathias. Design and synthesis of organic polymers for molecular separation membranes[J]. Current Opinion in Chemical Engineering, 2020, 28: 60-65. |
10 | PENG Fubing, LU Lianyu, SUN Honglei, et al. Hybrid organic-inorganic membrane: Solving the tradeoff between permeability and selectivity[J]. Chemistry of Materials, 2005, 17(26): 6790-6796. |
11 | ROBESON Lloyd M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400. |
12 | ROBESON Lloyd M. Correlation of separation factor versus permeability for polymeric membranes[J]. Journal of Membrane Science, 1991, 62(2): 165-185. |
13 | MUBASHIR Muhammad, FONG Yeong Yin, LENG Chew Thiam, et al. Issues and current trends of hollow-fiber mixed-matrix membranes for CO2 separation from N2 and CH4 [J]. Chemical Engineering & Technology, 2018, 41(2): 235-252. |
14 | SIAGIAN Utjok W R, RAKSAJATI Anggit, HIMMA Nurul F, et al. Membrane-based carbon capture technologies: Membrane gas separation vs. membrane contactor[J]. Journal of Natural Gas Science and Engineering, 2019, 67: 172-195. |
15 | YANG Ziqi, WU Zhongjie, Shing Bo PEH, et al. Mixed-matrix membranes containing porous materials for gas separation: From metal-organic frameworks to discrete molecular cages[J]. Engineering, 2023, 23: 40-55. |
16 | SHI Yapeng, WU Shanshan, WANG Zhenggong, et al. Mixed matrix membranes with highly dispersed MOF nanoparticles for improved gas separation[J]. Separation and Purification Technology, 2021, 277: 119449. |
17 | KANG Dun-Yen, LEE Jong Suk. Challenges in developing MOF-based membranes for gas separation[J]. Langmuir, 2023, 39(8): 2871-2880. |
18 | ZHU Xiang, TIAN Chengcheng, Chi-Linh DO-THANH, et al. Two-dimensional materials as prospective scaffolds for mixed-matrix membrane-based CO2 separation[J]. ChemSusChem, 2017, 10(17): 3304-3316. |
19 | LI Jianrong, KUPPLER Ryan J, ZHOU Hongcai. Selective gas adsorption and separation in metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1477-1504. |
20 | SHI Yanshu, LIANG Bin, LIN Ruibiao, et al. Gas separation via hybrid metal-organic framework/polymer membranes[J]. Trends in Chemistry, 2020, 2(3): 254-269. |
21 | LIU Gongping, CHERNIKOVA Valeriya, LIU Yang, et al. Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations[J]. Nature Materials, 2018, 17(3): 283-289. |
22 | MA Canghai, URBAN Jeffrey J. Hydrogen-bonded polyimide/metal-organic framework hybrid membranes for ultrafast separations of multiple gas pairs[J]. Advanced Functional Materials, 2019, 29(32): 1903243. |
23 | Jin Hui JO, LEE Chang Oh, Gun Young RYU, et al. Hierarchical amine-functionalized ZIF-8 mixed-matrix membranes with an engineered interface and transport pathway for efficient gas separation[J]. ACS Applied Polymer Materials, 2022, 4(9): 6426-6439. |
24 | Miren ETXEBERRIA-BENAVIDES, DAVID Oana, JOHNSON Timothy, et al. High performance mixed matrix membranes (MMMs) composed of ZIF-94 filler and 6FDA-DAM polymer[J]. Journal of Membrane Science, 2018, 550: 198-207. |
25 | HUANG Dandan, XIN Qingping, NI Yazhou, et al. Synergistic effects of zeolite imidazole framework@graphene oxide composites in humidified mixed matrix membranes on CO2 separation[J]. RSC Advances, 2018, 8(11): 6099-6109. |
26 | Carlos ECHAIDE-GÓRRIZ, NAVARRO Marta, Carlos TÉLLEZ, et al. Simultaneous use of MOFs MIL-101(Cr) and ZIF-11 in thin film nanocomposite membranes for organic solvent nanofiltration[J]. Dalton Transactions, 2017, 46(19): 6244-6252. |
27 | XU Yuan, GAO Xueli, WANG Xiaojuan, et al. Highly and stably water permeable thin film nanocomposite membranes doped with MIL-101 (Cr) nanoparticles for reverse osmosis application[J]. Materials, 2016, 9(11): 870. |
28 | XU Yuan, GAO Xueli, WANG Qun, et al. Highly stable MIL-101(Cr) doped water permeable thin film nanocomposite membranes for water treatment[J]. RSC Advances, 2016, 6(86): 82669-82675. |
29 | MARTI Anne M, VENNA Surendar R, ROTH Elliot A, et al. Simple fabrication method for mixed matrix membranes with in situ MOF growth for gas separation[J]. ACS Applied Materials & Interfaces, 2018, 10(29): 24784-24790. |
30 | LIU Xinlei. Metal-organic framework UiO-66 membranes[J]. Frontiers of Chemical Science and Engineering, 2020, 14(2): 216-232. |
31 | JIANG Yunzhe, LIU Chuanyao, Jürgen CARO, et al. A new UiO-66-NH2 based mixed-matrix membranes with high CO2/CH4 separation performance[J]. Microporous and Mesoporous Materials, 2019, 274: 203-211. |
32 | PARKES Marie V, GREATHOUSE Jeffery A, HART David B, et al. Ab initio molecular dynamics determination of competitive O2 vs. N2 adsorption at open metal sites of M2(dobdc)[J]. Physical Chemistry Chemical Physics, 2016, 18(16): 11528-11538. |
33 | BROWN Craig M, RAMIREZ-CUESTA Anibal Javier, Jae-Hyuk HER, et al. Structure and spectroscopy of hydrogen adsorbed in a nickel metal-organic framework[J]. Chemical Physics, 2013, 427: 3-8. |
34 | PARKES Marie V, SAVA GALLIS Dorina F, GREATHOUSE Jeffery A, et al. Effect of metal in M3(btc)2 and M2(dobdc) MOFs for O2/N2 separations: A combined density functional theory and experimental study[J]. The Journal of Physical Chemistry C, 2015, 119(12): 6556-6567. |
35 | DOROSTI Fatereh, OMIDKHAH Mohammadreza, ABEDINI Reza. Enhanced CO2/CH4 separation properties of asymmetric mixed matrix membrane by incorporating nano-porous ZSM-5 and MIL-53 particles into Matrimid®5218[J]. Journal of Natural Gas Science and Engineering, 2015, 25: 88-102. |
36 | AROON M A, ISMAIL A F, MATSUURA T, et al. Performance studies of mixed matrix membranes for gas separation: A review[J]. Separation and Purification Technology, 2010, 75(3): 229-242. |
37 | DONG Guangxi, LI Hongyu, CHEN Vicki. Challenges and opportunities for mixed-matrix membranes for gas separation[J]. Journal of Materials Chemistry A, 2013, 1(15): 4610-4630. |
38 | KITAO Takashi, ZHANG Yuanyuan, KITAGAWA Susumu, et al. Hybridization of MOFs and polymers[J]. Chemical Society Reviews, 2017, 46(11): 3108-3133. |
39 | NOBLE Richard D. Perspectives on mixed matrix membranes[J]. Journal of Membrane Science, 2011, 378(1/2): 393-397. |
40 | 冯雨轩, 耿康, 曹凯鹏. 混合基质膜在CO2气体分离中的研究进展[J]. 高分子通报, 2018(8): 105-111. |
FENG Yuxuan, GENG Kang, CAO Kaipeng. Recent advances of mixed matrix membranes in CO2 separation[J]. Polymer Bulletin, 2018(8): 105-111. | |
41 | RODENAS Tania, Ignacio LUZ, PRIETO Gonzalo, et al. Metal-organic framework nanosheets in polymer composite materials for gas separation[J]. Nature Materials, 2015, 14(1): 48-55. |
42 | JUSOH Norwahyu, YEONG Yin Fong, CHEW Thiam Leng, et al. Current development and challenges of mixed matrix membranes for CO2/CH4 Separation[J]. Separation & Purification Reviews, 2016, 45(4): 321-344. |
43 | MOORE Theodore T, KOROS William J. Non-ideal effects in organic-inorganic materials for gas separation membranes[J]. Journal of Molecular Structure, 2005, 739(1/2/3): 87-98. |
44 | DUAN Cuijia, Xingming JIE, LIU Dandan, et al. Post-treatment effect on gas separation property of mixed matrix membranes containing metal organic frameworks[J]. Journal of Membrane Science, 2014, 466: 92-102. |
45 | Nguyen TIEN-BINH, Hoang VINH-THANG, CHEN Xiaoyuan, et al. Crosslinked MOF-polymer to enhance gas separation of mixed matrix membranes[J]. Journal of Membrane Science, 2016, 520: 941-950. |
46 | GHALEI Behnam, SAKURAI Kento, KINOSHITA Yosuke, et al. Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles[J]. Nature Energy, 2017, 2(7): 17086. |
47 | MESHKAT Shadi, KALIAGUINE Serge, RODRIGUE Denis. Mixed matrix membranes based on amine and non-amine MIL-53(Al) in Pebax® MH-1657 for CO2 separation[J]. Separation and Purification Technology, 2018, 200: 177-190. |
48 | YU Shuwen, LI Shichun, HUANG Shiliang, et al. Covalently bonded zeolitic imidazolate frameworks and polymers with enhanced compatibility in thin film nanocomposite membranes for gas separation[J]. Journal of Membrane Science, 2017, 540: 155-164. |
49 | CHI Won Seok, HWANG Sinyoung, LEE Seung-Joon, et al. Mixed matrix membranes consisting of SEBS block copolymers and size-controlled ZIF-8 nanoparticles for CO2 capture[J]. Journal of Membrane Science, 2015, 495: 479-488. |
50 | Javier SÁNCHEZ-LAÍNEZ, ZORNOZA Beatriz, FRIEBE Sebastian, et al. Influence of ZIF-8 particle size in the performance of polybenzimidazole mixed matrix membranes for pre-combustion CO2 capture and its validation through interlaboratory test[J]. Journal of Membrane Science, 2016, 515: 45-53. |
51 | YAHIA Mohamed, PHAN LE Quynh Nhu, ISMAIL Norafiqah, et al. Effect of incorporating different ZIF-8 crystal sizes in the polymer of intrinsic microporosity, PIM-1, for CO2/CH4 separation[J]. Microporous and Mesoporous Materials, 2021, 312: 110761. |
52 | SABETGHADAM Anahid, SEOANE Beatriz, KESKIN Damla, et al. Metal organic framework crystals in mixed-matrix membranes: Impact of the filler morphology on the gas separation performance[J]. Advanced Functional Materials, 2016, 26(18): 3154-3163. |
53 | ZHOU Yichen, JIA Mingmin, ZHANG Xiongfei, et al. Etched ZIF-8 as a filler in mixed-matrix membranes for enhanced CO2/N2 separation[J]. Chemistry-A European Journal, 2020, 26(35): 7918-7922. |
54 | FENG Shou, BU Mengqi, PANG Jia, et al. Hydrothermal stable ZIF-67 nanosheets via morphology regulation strategy to construct mixed-matrix membrane for gas separation[J]. Journal of Membrane Science, 2020, 593: 117404. |
55 | KANG Zixi, PENG Yongwu, HU Zhigang, et al. Mixed matrix membranes composed of two-dimensional metal-organic framework nanosheets for pre-combustion CO2 capture: A relationship study of filler morphology versus membrane performance[J]. Journal of Materials Chemistry A, 2015, 3(41): 20801-20810. |
56 | YANG Yanqin, Kunli GOH, WANG Rong, et al. High-performance nanocomposite membranes realized by efficient molecular sieving with CuBDC nanosheets[J]. Chemical Communications, 2017, 53(30): 4254-4257. |
57 | Nguyen TIEN-BINH, RODRIGUE Denis, KALIAGUINE Serge. In-situ cross interface linking of PIM-1 polymer and UiO-66-NH2 for outstanding gas separation and physical aging control[J]. Journal of Membrane Science, 2018, 548: 429-438. |
58 | Waqas ANJUM M, VERMOORTELE Frederik, KHAN Asim Laeeq, et al. Modulated UiO-66-based mixed-matrix membranes for CO2 separation[J]. ACS Applied Materials & Interfaces, 2015, 7(45): 25193-25201. |
59 | SHEN Jie, LIU Gongping, HUANG Kang, et al. UiO-66-polyether block amide mixed matrix membranes for CO2 separation[J]. Journal of Membrane Science, 2016, 513: 155-165. |
60 | SONG Chunfeng, LI Run, FAN Zhichao, et al. CO2/N2 separation performance of Pebax/MIL-101 and Pebax/NH2-MIL-101 mixed matrix membranes and intensification via sub-ambient operation[J]. Separation and Purification Technology, 2020, 238: 116500. |
61 | Raymond THÜR, VAN VELTHOVEN Niels, SLOOTMAEKERS Sam, et al. Bipyridine-based UiO-67 as novel filler in mixed-matrix membranes for CO2-selective gas separation[J]. Journal of Membrane Science, 2019, 576: 78-87. |
62 | REHMAN Ayesha, JAHAN Zaib, KHAN NIAZI Muhammad Bilal, et al. Graphene-grafted bimetallic MOF membranes for hazardous & toxic contaminants treatment[J]. Chemosphere, 2023, 340: 139721. |
63 | YU Caijiao, LIANG Yueyao, GUO Xiangyu, et al. Fabrication of metal-organic framework-mixed matrix membranes with abundant open metal sites through dual-induction mechanism[J]. Separation and Purification Technology, 2022, 290: 120850. |
64 | BAN Yujie, LI Yanshuo, PENG Yuan, et al. Metal-substituted zeolitic imidazolate framework ZIF-108: Gas-sorption and membrane-separation properties[J]. Chemistry, 2014, 20(36): 11402-11409. |
65 | XIN Qingping, OUYANG Jingyi, LIU Tianyu, et al. Enhanced interfacial interaction and CO2 separation performance of mixed matrix membrane by incorporating polyethylenimine-decorated metal-organic frameworks[J]. ACS Applied Materials & Interfaces, 2015, 7(2): 1065-1077. |
66 | XIE Ke, FU Qiang, KIM Jinguk, et al. Increasing both selectivity and permeability of mixed-matrix membranes: Sealing the external surface of porous MOF nanoparticles[J]. Journal of Membrane Science, 2017, 535: 350-356. |
67 | LIN Rijia, GE Lei, DIAO Hui, et al. Ionic liquids as the MOFs/polymer interfacial binder for efficient membrane separation[J]. ACS Applied Materials & Interfaces, 2016, 8(46): 32041-32049. |
68 | LI Hao, Linghan TUO, YANG Kai, et al. Simultaneous enhancement of mechanical properties and CO2 selectivity of ZIF-8 mixed matrix membranes: Interfacial toughening effect of ionic liquid[J]. Journal of Membrane Science, 2016, 511: 130-142. |
69 | HAN Jiuli, BAI Lu, JIANG Haiyan, et al. Task-specific ionic liquids tuning ZIF-67/PIM-1 mixed matrix membranes for efficient CO2 separation[J]. Industrial & Engineering Chemistry Research, 2021, 60(1): 593-603. |
70 | WANG Xueli, WU Lei, LI Nanwen, et al. Sealing Tröger base/ZIF-8 mixed matrix membranes defects for improved gas separation performance[J]. Journal of Membrane Science, 2021, 636: 119582. |
71 | DONG Liangliang, CHEN Mingqing, WU Xiaohui, et al. Multi-functional polydopamine coating: Simultaneous enhancement of interfacial adhesion and CO2 separation performance of mixed matrix membranes[J]. New Journal of Chemistry, 2016, 40(11): 9148-9159. |
72 | WU Wufeng, LI Zhanjun, CHEN Yu, et al. Polydopamine-modified metal-organic framework membrane with enhanced selectivity for carbon capture[J]. Environmental Science & Technology, 2019, 53(7): 3764-3772. |
73 | DONG Guanying, ZHANG Jingjing, WANG Zheng, et al. Interfacial property modulation of PIM-1 through polydopamine-derived submicrospheres for enhanced CO2/N2 separation performance[J]. ACS Applied Materials & Interfaces, 2019, 11(21): 19613-19622. |
74 | WANG Zhenggong, WANG Dong, ZHANG Shenxiang, et al. Interfacial design of mixed matrix membranes for improved gas separation performance[J]. Advanced Materials, 2016, 28(17): 3399-3405. |
75 | AHMADIPOUYA Salman, AHMADIJOKANI Farhad, MOLAVI Hossein, et al. CO2/CH4 separation by mixed-matrix membranes holding functionalized NH2-MIL-101(Al) nanoparticles: Effect of amino-silane functionalization[J]. Chemical Engineering Research and Design, 2021, 176: 49-59. |
76 | WANG Hongliang, HE Sanfeng, QIN Xuedi, et al. Interfacial engineering in metal-organic framework-based mixed matrix membranes using covalently grafted polyimide brushes[J]. Journal of the American Chemical Society, 2018, 140(49): 17203-17210. |
77 | KIM Ju Sung, MOON Sun Ju, WANG Ho Hyun, et al. Mixed matrix membranes with a thermally rearranged polymer and ZIF-8 for hydrogen separation[J]. Journal of Membrane Science, 2019, 582: 381-390. |
78 | MA Xiaohua, SWAIDAN Ramy J, WANG Yingge, et al. Highly compatible hydroxyl-functionalized microporous polyimide-ZIF-8 mixed matrix membranes for energy efficient propylene/propane separation[J]. ACS Applied Nano Materials, 2018, 1(7): 3541-3547. |
79 | SHAHID Salman, NIJMEIJER Kitty. Matrimid®/polysulfone blend mixed matrix membranes containing ZIF-8 nanoparticles for high pressure stability in natural gas separation[J]. Separation and Purification Technology, 2017, 189: 90-100. |
80 | SMITH Zachary P, BACHMAN Jonathan E, LI Tao, et al. Increasing M2(dobdc) loading in selective mixed-matrix membranes: A rubber toughening approach[J]. Chemistry of Materials, 2018, 30(5): 1484-1495. |
81 | ASKARI Mohammad, CHUNG Tai-Shung. Natural gas purification and olefin/paraffin separation using thermal cross-linkable co-polyimide/ZIF-8 mixed matrix membranes[J]. Journal of Membrane Science, 2013, 444: 173-183. |
82 | KERTIK Aylin, Lik H WEE, Martin PFANNMÖLLER, et al. Highly selective gas separation membrane using in situ amorphised metal-organic frameworks[J]. Energy & Environmental Science, 2017, 10(11): 2342-2351. |
83 | JAPIP Susilo, LIAO Kuo-Sung, XIAO Youchang, et al. Enhancement of molecular-sieving properties by constructing surface nano-metric layer via vapor cross-linking[J]. Journal of Membrane Science, 2016, 497: 248-258. |
84 | FAN Yanfang, YU Huiya, XU Shan, et al. Zn(Ⅱ)-modified imidazole containing polyimide/ZIF-8 mixed matrix membranes for gas separations[J]. Journal of Membrane Science, 2020, 597: 117775. |
[1] | SU Xuanhe, MENG Shida, KE Jiekun, LU Wei. Analyses of performance and energy consumption for a multistage gas separation system based on molecular exchange flow [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 109-120. |
[2] | GENG Xiumei, ZHANG Feng, ZHANG Xiang, SHAN Meixia, ZHANG Yatao. Research progress on the stability of Pebax-based mixed matrix membranes for CO2 separation [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4996-5012. |
[3] | WANG Tao, GAO Xiang, GAO Jifeng, DENG Haiquan, YU Xianyong, ZHOU Zhenhua, TANG Ling, LYU Hang. Application of modified Cu-BTC-based mixed matrix membrane in CO2 separation [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3240-3246. |
[4] | FAN Wenxuan, XU Shuangping, JIA Hongge, ZHANG Mingyu, QU Yanqing. Research progress on polymeric membranes containing fluorenyl, imide and naphthyl groups for gas separation [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1897-1911. |
[5] | WANG Jiaqing, SONG Guangwei, LI Qiang, GUO Shuaicheng, DAI Qingli. Rubber-concrete interface modification method and performance enhancement path [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 328-343. |
[6] | LOU Baohui, WU Xianhao, ZHANG Chi, CHEN Zhen, FENG Xiangdong. Advances in nanofluid for CO2 absorption and separation [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3802-3815. |
[7] | CHANG Xiaoqing, PENG Donglai, LI Dongyang, ZHANG Yanwu, WANG Jing, ZHANG Yatao. Recent progress on mixed matrix membrane for efficient C3H6/C3H8 separation [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1961-1973. |
[8] | LI Dongyan, ZHOU Jian, JIANG Qian, MIAO Kai, NI Shiying, ZOU Dong. Progress in preparations and applications of silicon carbide ceramic membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6399-6408. |
[9] | CAI Mingwei, WANG Zhi, LU Xiaochuang, ZHUANG Junwei, WU Jiahao, ZHANG Shiyang, MIN Yonggang. Polyimide membranes for hydrogen separation: A review [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5232-5248. |
[10] | FANG Longlong, ZHENG Wenji, NING Mengjia, ZHANG Mingyang, YANG Yuqing, DAI Yan, HE Gaohong. Enhanced CO2 separation of mixed matrix membranes by functionalized Zr-MOF [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4954-4962. |
[11] | GAO Yifei, YI Qun, QI Kai, GAO Lili, LI Xuelian. Research status and application in H2/CH4 separation of MOFs-based membrane [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6395-6407. |
[12] | ZHAO Guoke, PAN Guoyuan, ZHANG Yang, YU Hao, ZHAO Muhua, TANG Gongqing, LIU Yiqun. Recent advances in graphene-based membranes for CO2 separation [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5896-5911. |
[13] | Qian XUE, Xiaolin WANG, Zunzhao LI, Mingrui LIU, Wei ZHAO. Research progresses in hydrate based technologies and processes [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 722-735. |
[14] | GUO Haiyan, PENG Donglai, FENG Xiaoquan, JIN Yehao, TIAN Zhihong, WANG Jing, ZHANG Yatao. Progress in the membranes of polymers of intrinsic micro-porosity PIM-1 for gas separation [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5577-5589. |
[15] | NING Mengjia, DAI Yan, XI Yuan, ZHANG Xing, LIU Hongjing, HE Gaohong. CO2 separation of Pebax-based mixed matrix membranes promoted by Cu(Qc)2 [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5652-5659. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 32
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 48
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |