Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (9): 5035-5048.DOI: 10.16085/j.issn.1000-6613.2023-1308
• Materials science and technology • Previous Articles
LI Zhenwu1(), PU Di2,3, XIONG Yachun3, WU Dingying1, JIN Cheng1,2, GUO Yongjun1,2,3()
Received:
2023-07-30
Revised:
2023-10-25
Online:
2024-09-30
Published:
2024-09-15
Contact:
GUO Yongjun
李镇武1(), 蒲迪2,3, 熊亚春3, 吴定莹1, 金诚1,2, 郭拥军1,2,3()
通讯作者:
郭拥军
作者简介:
李镇武(1997—),男,硕士研究生,研究方向为油田功能化学剂。E-mail:202222000336@stu.swpu.edu.cn。
CLC Number:
LI Zhenwu, PU Di, XIONG Yachun, WU Dingying, JIN Cheng, GUO Yongjun. Research progress of nanomaterials for oil displacement in enhancing oil recovery[J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5035-5048.
李镇武, 蒲迪, 熊亚春, 吴定莹, 金诚, 郭拥军. 驱油用纳米材料在提高采收率方面研究进展[J]. 化工进展, 2024, 43(9): 5035-5048.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1308
作用 | 材料 | 引用文献 |
---|---|---|
降低表/ 界面张力 | 纳米复合材料(二氧化硅、蒙脱石和黄原胶) 二氧化钛 二氧化硅 Au-Fe3O4 Janus纳米颗粒 二氧化硅、二氧化钛、多壁碳纳米管 二硫化钼 | [ [ [ [ [ [ |
结构分离压力 | 二氧化硅 | [ |
改变 润湿性 | 二氧化硅 二氧化锆 氧化锆和氧化镍 二硫化钼 | [ [ [ [ |
增强乳液稳定性 | 二氧化硅 二硫化钼 | [ [ |
增强泡沫稳定性 | 二氧化硅 二硫化钼 | [ [ |
改善 流度比 | 二氧化硅 二氧化硅、氧化铝和二氧化钛 | [ [ |
稠油降黏 | 二氧化钛 四氧化三铁、氧化镍、氧化铝 四氧化三铁 氧化锌和碳纳米管 氧化铝 纳米镍 二氧化硅、氧化铝、四氧化三铁 金属镍 铜 二氧化硅和氧化铝 | [ [ [ [ [ [ [ [ [ [ |
抑制颗粒运移 | 氧化镁、二氧化硅、氧化铝 氧化铝 二氧化硅 | [ [ [ |
作用 | 材料 | 引用文献 |
---|---|---|
降低表/ 界面张力 | 纳米复合材料(二氧化硅、蒙脱石和黄原胶) 二氧化钛 二氧化硅 Au-Fe3O4 Janus纳米颗粒 二氧化硅、二氧化钛、多壁碳纳米管 二硫化钼 | [ [ [ [ [ [ |
结构分离压力 | 二氧化硅 | [ |
改变 润湿性 | 二氧化硅 二氧化锆 氧化锆和氧化镍 二硫化钼 | [ [ [ [ |
增强乳液稳定性 | 二氧化硅 二硫化钼 | [ [ |
增强泡沫稳定性 | 二氧化硅 二硫化钼 | [ [ |
改善 流度比 | 二氧化硅 二氧化硅、氧化铝和二氧化钛 | [ [ |
稠油降黏 | 二氧化钛 四氧化三铁、氧化镍、氧化铝 四氧化三铁 氧化锌和碳纳米管 氧化铝 纳米镍 二氧化硅、氧化铝、四氧化三铁 金属镍 铜 二氧化硅和氧化铝 | [ [ [ [ [ [ [ [ [ [ |
抑制颗粒运移 | 氧化镁、二氧化硅、氧化铝 氧化铝 二氧化硅 | [ [ [ |
1 | 国家统计局. 中华人民共和国2023年国民经济和社会发展统计公报[N]. 人民日报, 2024-03-01(10). |
National Bureau of Statistics. Statistical Bulletin of People’s Republic of China (PRC)’s National Economic and Social Development in 2023[N]. People’s Daily, 2024-03-01(10). | |
2 | 袁士义, 王强, 李军诗, 等. 提高采收率技术创新支撑我国原油产量长期稳产[J]. 石油科技论坛, 2021, 40(3): 24-32. |
YUAN Shiyi, WANG Qiang, LI Junshi, et al. EOR technological innovation keeps China’s crude oil production stable on long-term basis[J]. Petroleum Science and Technology Forum, 2021, 40(3): 24-32. | |
3 | 康毅力, 田键, 罗平亚, 等. 致密油藏提高采收率技术瓶颈与发展策略[J]. 石油学报, 2020, 41(4): 467-477. |
KANG Yili, TIAN Jian, LUO Pingya, et al. Technical bottlenecks and development strategies of enhancing recovery for tight oil reservoirs[J]. Acta Petrolei Sinica, 2020, 41(4): 467-477. | |
4 | 袁士义, 王强. 中国油田开发主体技术新进展与展望[J]. 石油勘探与开发, 2018, 45(4): 657-668. |
YUAN Shiyi, WANG Qiang. New progress and prospect of oilfields development technologies in China[J]. Petroleum Exploration and Development, 2018, 45(4): 657-668. | |
5 | 邹才能, 陶士振, 白斌, 等. 论非常规油气与常规油气的区别和联系[J]. 中国石油勘探, 2015, 20(1): 1-16. |
ZOU Caineng, TAO Shizhen, BAI Bin, et al. Differences and relations between unconventional and conventional oil and gas[J]. China Petroleum Exploration, 2015, 20(1): 1-16. | |
6 | 张中太, 林元华, 唐子龙, 等. 纳米材料及其技术的应用前景[J]. 材料工程, 2000, 28(3): 42-48. |
ZHANG Zhongtai, LIN Yuanhua, TANG Zilong, et al. Nanometer materials & nanotechology and their application prospect[J]. Journal of Materials Engineering, 2000, 28(3): 42-48. | |
7 | MURTY B S, SHANKAR P, BALDEV R, et al. 纳米科学与纳米技术[M]. 谢娟, 王虎, 张晗凌, 译. 北京: 科学出版社, 2014. |
MURTY B S, SHANKAR P, BALDEV R, et al. Nanoscience and Nanotechnology[M]. XIE Juan, WANG Hu, ZHANG Hanling, trans. Beijing: Science Press, 2014. | |
8 | BERA Achinta, BELHAJ Hadi. Application of nanotechnology by means of nanoparticles and nanodispersions in oil recovery—A comprehensive review[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 1284-1309. |
9 | MA Lan, LUO Pingya, HE Yi, et al. Improving the stability of multi-walled carbon nano-tubes in extremely environments: Applications as nano-plugging additives in drilling fluids[J]. Journal of Natural Gas Science and Engineering, 2020, 74: 103082. |
10 | LIU He, JIN Xu, DING Bin. Application of nanotechnology in petroleum exploration and development[J]. Petroleum Exploration and Development, 2016, 43(6): 1107-1115. |
11 | NGATA Mbega Ramadhani, YANG Baolin, AMINU Mohammed Dahiru, et al. Review of developments in nanotechnology application for formation damage control[J]. Energy & Fuels, 2022, 36(1): 80-97. |
12 | ELTOUM Hilmy, YANG Yulong, HOU Jirui. The effect of nanoparticles on reservoir wettability alteration: A critical review[J]. Petroleum Science, 2021, 18(1): 136-153. |
13 | 叶仲斌. 提高采收率原理[M]. 2版. 北京: 石油工业出版社, 2007. |
YE Zhongbin. Principle of enhanced oil recovery[M]. 2nd ed. Beijing: Petroleum Industry Press, 2007. | |
14 | 王友启, 于洪敏, 聂俊, 等. 基于扩展毛管数理论的化学驱相渗曲线研究[J]. 石油与天然气地质, 2017, 38(2): 379-384. |
WANG Youqi, YU Hongmin, NIE Jun, et al. Study on chemical flooding relative permeability curves based on the extended capillary number theory[J]. Oil & Gas Geology, 2017, 38(2): 379-384. | |
15 | BERA A, KUMAR T, OJHA K, et al. Adsorption of surfactants on sand surface in enhanced oil recovery: Isotherms, kinetics and thermodynamic studies[J]. Applied Surface Science, 2013, 284: 87-99. |
16 | AUGUSTINE Agi, RADZUAN Junin, AFEEZ Gbadamosi. Mechanism governing nanoparticle flow behaviour in porous media: Insight for enhanced oil recovery applications[J]. International Nano Letters, 2018, 8(2): 49-77. |
17 | PUERTO Maura, HIRASAKI George J, MILLER Clarence A, et al. Surfactant systems for EOR in high-temperature, high-salinity environments[J]. SPE Journal, 2012, 17(1): 11-19. |
18 | NAZARAHARI Mohammad Javad, MANSHAD Abbas Khaksar, Muhammad ALI, et al. Impact of a novel biosynthesized nanocomposite (SiO2@montmorilant@xanthan) on wettability shift and interfacial tension: Applications for enhanced oil recovery[J]. Fuel, 2021, 298: 120773. |
19 | IMAN Nowrouzi, ABBAS Khaksar Manshad, MOHAMMADI Amir H. Effects of concentration and size of TiO2 nano-particles on the performance of smart water in wettability alteration and oil production under spontaneous imbibition[J]. Journal of Petroleum Science and Engineering, 2019, 183: 106357. |
20 | FAN Heng, STRIOLO Alberto. Nanoparticle effects on the water-oil interfacial tension[J]. Physical Review E, 2012, 86(5): 051610. |
21 | WEN Boyao, SUN Chengzhen, BAI Bofeng. Nanoparticle-induced ion-sensitive reduction in decane-water interfacial tension[J]. Physical Chemistry Chemical Physics, 2018, 20(35): 22796-22804. |
22 | GLASER Nicole, ADAMS Dave J, Alexander BÖKER, et al. Janus particles at liquid-liquid interfaces[J]. Langmuir, 2006, 22(12): 5227-5229. |
23 | MA Huan, LUO Mingxiang, DAI Lenore L. Influences of surfactant and nanoparticle assembly on effective interfacial tensions[J]. Physical Chemistry Chemical Physics, 2008, 10(16): 2207-2213. |
24 | SAIEN Javad, BAHRAMI Mahdis. Understanding the effect of different size silica nanoparticles and SDS surfactant mixtures on interfacial tension of n-hexane-water[J]. Journal of Molecular Liquids, 2016, 224: 158-164. |
25 | YEKEEN Nurudeen, PADMANABHAN Eswaran, IDRIS Ahmad Kamal. Synergistic effects of nanoparticles and surfactants on n-decane-water interfacial tension and bulk foam stability at high temperature[J]. Journal of Petroleum Science and Engineering, 2019, 179: 814-830. |
26 | KONDIPARTY Kirtiprakash, NIKOLOV Alex D, WASAN Darsh, et al. Dynamic spreading of nanofluids on solids. part Ⅰ: Experimental[J]. Langmuir, 2012, 28(41): 14618-14623. |
27 | WASAN Darsh T, NIKOLOV Alex D. Spreading of nanofluids on solids[J]. Nature, 2003, 423(6936): 156-159. |
28 | LIU Kuanliang, KONDIPARTY Kirtiprakash, NIKOLOV Alex D, et al. Dynamic spreading of nanofluids on solids part Ⅱ: Modeling[J]. Langmuir, 2012, 28(47): 16274-16284. |
29 | Sangwook LIM, ZHANG Hua, WU Pingkeng, et al. The dynamic spreading of nanofluids on solid surfaces—Role of the nanofilm structural disjoining pressure[J]. Journal of Colloid and Interface Science, 2016, 470: 22-30. |
30 | KAO R L, WASAN D T, NIKOLOV A D, et al. Mechanisms of oil removal from a solid surface in the presence of anionic micellar solutions[J]. Colloids and Surfaces, 1988, 34(4): 389-398. |
31 | NIKOLOV Alex, KONDIPARTY Kirti, WASAN Darsh. Nanoparticle self-structuring in a nanofluid film spreading on a solid surface[J]. Langmuir, 2010, 26(11): 7665-7670. |
32 | KONDIPARTY Kirti, NIKOLOV Alex, WU Stanley, et al. Wetting and spreading of nanofluids on solid surfaces driven by the structural disjoining pressure: Statics analysis and experiments[J]. Langmuir, 2011, 27(7): 3324-3335. |
33 | 赵振国. 接触角及其在表面化学研究中的应用[J]. 化学研究与应用, 2000, 12(4): 370-374. |
ZHAO Zhenguo. Contact angle and its application in surface chemistry research[J]. Chemical Research and Application, 2000, 12(4): 370-374. | |
34 | ROUSTAEI Abbas, SAFFARZADEH Sadegh, MOHAMMADI Milad. An evaluation of modified silica nanoparticles’ efficiency in enhancing oil recovery of light and intermediate oil reservoirs[J]. Egyptian Journal of Petroleum, 2013, 22(3): 427-433. |
35 | 蔡建超. 多孔介质自发渗吸关键问题与思考[J]. 计算物理, 2021, 38(5): 505-512. |
CAI Jianchao. Some key issues and thoughts on spontaneous imbibition in porous media[J]. Chinese Journal of Computational Physics, 2021, 38(5): 505-512. | |
36 | 李原, 狄勤丰, 华帅, 等. 纳米流体对储层润湿性反转提高石油采收率研究进展[J]. 化工进展, 2019, 38(8): 3612-3620. |
LI Yuan, DI Qinfeng, HUA Shuai, et al. Research progress of reservoirs wettability alteration by using nanofluids for enhancing oil recovery[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3612-3620. | |
37 | NASRALLA Ramez A, BATAWEEL Abdullah Mohammed, NASR-El-DIN Hisham A. Investigation of wettability alteration by low salinity water[C]//Society of Petroleum Engineers—Offshore Europe Oil and Gas Conference and Exhibition, 2011. |
38 | SHENG James J. What type of surfactants should be used to enhance spontaneous imbibition in shale and tight reservoirs?[J]. Journal of Petroleum Science and Engineering, 2017, 159: 635-643. |
39 | CHEN Peila, MOHANTY Kishore K. Surfactant-enhanced oil recovery from fractured oil-wet carbonates: Effects of low IFT and wettability alteration[C]//International Symposium on Oilfield Chemistry. Woodlands, USA: SPE, 2015: 1225-1248. |
40 | 付美龙, 周玉霞. 润湿性的改变对提高原油采收率的影响研究[J]. 石油天然气学报, 2012, 34(12): 128-132, 9. |
FU Meilong, ZHOU Yuxia. Research on the influence of wettability alteration upon enhanced oil recovery[J]. Journal of Oil and Gas Technology, 2012, 34(12): 128-132, 9. | |
41 | 王鑫, 曾溅辉, 孔祥晔, 等. 页岩孔隙润湿性对自发渗吸的控制作用[J]. 中南大学学报(自然科学版), 2022, 53(9): 3323-3336. |
WANG Xin, ZENG Jianhui, KONG Xiangye, et al. Controlling effect of shale pore wettability on spontaneous imbibition[J]. Journal of Central South University (Science and Technology), 2022, 53(9): 3323-3336. | |
42 | JARRAHIAN Kh, SEIEDI O, SHEYKHAN M, et al. Wettability alteration of carbonate rocks by surfactants: A mechanistic study[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 410: 1-10. |
43 | 徐赋海, 赵立强, 肖建宏, 等. 分子沉积膜驱油技术研究现状[J]. 油气地质与采收率, 2006, 13(1): 95-98, 112. |
XU Fuhai, ZHAO Liqiang, XIAO Jianhong, et al. The present research situation of oil displacement technology by the molecular depositional membrane[J]. Petroleum Geology and Recovery Efficiency, 2006, 13(1): 95-98, 112. | |
44 | 赵凤敏. 微生物代谢作用对油藏物性的影响[D]. 南充: 西南石油学院, 2004. |
ZHAO Fengmin. Effect of microbial metabolism on reservoir physical properties[D]. Nanchong: Southwest Petroleum University, 2004. | |
45 | 肖娜, 李实, 林梅钦, 等. CO2-水-岩石相互作用对砂岩储集层润湿性影响机理[J]. 新疆石油地质, 2017, 38(4): 460-465. |
XIAO Na, LI Shi, LIN Meiqin, et al. Influence of CO2-water-rock interactions on wettability of sandstone reservoirs[J]. Xinjiang Petroleum Geology, 2017, 38(4): 460-465. | |
46 | Sarmad AL-ANSSARI, BARIFCANI Ahmed, WANG Shaobin, et al. Wettability alteration of oil-wet carbonate by silica nanofluid[J]. Journal of Colloid and Interface Science, 2016, 461: 435-442. |
47 | ZABALA R, FRANCO C A, CORTÉS F B. Application of nanofluids for improving oil mobility in heavy oil and extra-heavy oil: A field test[C]//SPE Improved Oil Recovery Conference. Tulsa, USA: SPE, 2016. |
48 | Sangwook LIM, HORIUCHI Hiroki, NIKOLOV Alex D, et al. Nanofluids alter the surface wettability of solids[J]. Langmuir, 2015, 31(21): 5827-5835. |
49 | SEFIANE Khellil, SKILLING Jennifer, MACGILLIVRAY Jamie. Contact line motion and dynamic wetting of nanofluid solutions[J]. Advances in Colloid and Interface Science, 2008, 138(2): 101-120. |
50 | BURROWS Lauren C, HAERI Foad, CVETIC Patricia, et al. A literature review of CO2, natural gas, and water-based fluids for enhanced oil recovery in unconventional reservoirs[J]. Energy & Fuels, 2020, 34(5): 5331-5380. |
51 | KARIMI Ali, FAKHROUEIAN Zahra, BAHRAMIAN Alireza, et al. Wettability alteration in carbonates using zirconium oxide nanofluids: EOR implications[J]. Energy & Fuels, 2012, 26(2): 1028-1036. |
52 | NWIDEE Lezorgia N, Sarmad AL-ANSSARI, BARIFCANI Ahmed, et al. Nanoparticles influence on wetting behaviour of fractured limestone formation[J]. Journal of Petroleum Science and Engineering, 2017, 149: 782-788. |
53 | Sarmad AL-ANSSARI, WANG Shaobin, BARIFCANI Ahmed, et al. Effect of temperature and SiO2 nanoparticle size on wettability alteration of oil-wet calcite[J]. Fuel, 2017, 206: 34-42. |
54 | WOLTHERS M, CHARLET L, VAN CAPPELLEN P. The surface chemistry of divalent metal carbonate minerals; a critical assessment of surface charge and potential data using the charge distribution multi-site ion complexation model[J]. American Journal of Science, 2008, 308(8): 905-941. |
55 | Infant RAJ, QU Ming, XIAO Lizhi, et al. Ultralow concentration of molybdenum disulfide nanosheets for enhanced oil recovery[J]. Fuel, 2019, 251: 514-522. |
56 | QU Ming, HOU Jirui, LIANG Tuo, et al. Amphiphilic rhamnolipid molybdenum disulfide nanosheets for oil recovery[J]. ACS Applied Nano Materials, 2021, 4(3): 2963-2972. |
57 | ZHANG Fengfan, LIANG Wei, DONG Z, et al. Dispersion stability and interfacial properties of modified MoS2 nanosheets for enhanced oil recovery[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2023, 675: 132013. |
58 | QU Ming, LIANG Tuo, HOU Jirui, et al. Laboratory study and field application of amphiphilic molybdenum disulfide nanosheets for enhanced oil recovery[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109695. |
59 | ZHU Tongyu, KANG Wanli, YANG Hongbin, et al. Advances of microemulsion and its applications for improved oil recovery[J]. Advances in Colloid and Interface Science, 2022, 299: 102527. |
60 | SANTANNA V C, SILVA A C M, LOPES H M, et al. Microemulsion flow in porous medium for enhanced oil recovery[J]. Journal of Petroleum Science and Engineering, 2013, 105: 116-120. |
61 | 冷开齐, 刘卫东, 丛苏男, 等. 微乳液驱提高采收率研究进展[J]. 应用化工, 2022, 51(8): 2390-2395. |
LENG Kaiqi, LIU Weidong, CONG Sunan, et al. Research progress of enhanced oil recovery by microemulsion flooding[J]. Applied Chemical Industry, 2022, 51(8): 2390-2395. | |
62 | YANG Yunqi, FANG Zhiwei, CHEN Xuan, et al. An overview of Pickering emulsions: Solid-particle materials, classification, morphology, and applications[J]. Frontiers in Pharmacology, 2017, 8: 287. |
63 | BINKS Bernard P. Particles as surfactants—Similarities and differences[J]. Current Opinion in Colloid & Interface Science, 2002, 7(1/2): 21-41. |
64 | TANG Juntao, QUINLAN Patrick James, Kam Chiu TAM. Stimuli-responsive Pickering emulsions: Recent advances and potential applications[J]. Soft Matter, 2015, 11(18): 3512-3529. |
65 | ZHANG Tiantian, DAVIDSON A, BRYANT Steven L, et al. Nanoparticle-stabilized emulsions for applications in enhanced oil recovery[J]. SPE-DOE Improved Oil Recovery Symposium Proceedings, 2010, 2: 1009-1026. |
66 | AVEYARD Robert, BINKS Bernard P, CLINT John H. Emulsions stabilised solely by colloidal particles[J]. Advances in Colloid and Interface Science, 2003(100/101/102): 503-546. |
67 | 裴海华, 单景玲, 曹旭, 等. 纳米颗粒稳定乳状液提高原油采收率研究进展[J]. 材料导报, 2021, 35(13): 13227-13231. |
PEI Haihua, SHAN Jingling, CAO Xu, et al. Research progresses on nanoparticle-stabilized emulsions for enhanced oil recovery[J]. Materials Reports, 2021, 35(13): 13227-13231. | |
68 | HOROZOV Tommy S, BINKS Bernard P. Particle-stabilized emulsions: A bilayer or a bridging monolayer?[J]. Angewandte Chemie International Edition, 2006, 45(5): 773-776. |
69 | BALLARD Nicholas, Stefan A F BON. Equilibrium orientations of non-spherical and chemically anisotropic particles at liquid-liquid interfaces and the effect on emulsion stability[J]. Journal of Colloid and Interface Science, 2015, 448: 533-544. |
70 | BINKS Bernard P, RODRIGUES Jhonny A, FRITH William J. Synergistic interaction in emulsions stabilized by a mixture of silica nanoparticles and cationic surfactant[J]. Langmuir, 2007, 23(7): 3626-3636. |
71 | 陈倚霄. 纳米颗粒协同表面活性剂稳定CO2/水乳液的研究[D]. 上海: 华东理工大学, 2021. |
CHEN Yixiao. CO2/water emulsions stabilized by nanoparticles and surfactants[D]. Shanghai: East China University of Science and Technology, 2021. | |
72 | SHARMA Tushar, Suresh KUMAR G, CHON Bo Hyun, et al. Thermal stability of oil-in-water Pickering emulsion in the presence of nanoparticle, surfactant, and polymer[J]. Journal of Industrial and Engineering Chemistry, 2015, 22: 324-334. |
73 | BINKS Bernard P, RODRIGUES Jhonny A. Enhanced stabilization of emulsions due to surfactant-induced nanoparticle flocculation[J]. Langmuir, 2007, 23(14): 7436-7439. |
74 | CHEVALIER Yves, BOLZINGER Marie-Alexandrine. Emulsions stabilized with solid nanoparticles: Pickering emulsions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 439: 23-34. |
75 | YAN Wei, MILLER Clarence A, HIRASAKI George J. Foam sweep in fractures for enhanced oil recovery[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006(282/283): 348-359. |
76 | 李兆敏, 徐正晓, 李宾飞, 等. 泡沫驱技术研究与应用进展[J]. 中国石油大学学报(自然科学版), 2019, 43(5): 118-127. |
LI Zhaomin, XU Zhengxiao, LI Binfei, et al. Advances in research and application of foam flooding technology[J]. Journal of China University of Petroleum (Edition of Natural Science), 2019, 43(5): 118-127. | |
77 | 王维波, 陈龙龙, 李超跃, 等. 泡沫驱提高采收率技术研究新进展[J]. 应用化工, 2020, 49(7): 1829-1834. |
WANG Weibo, CHEN Longlong, LI Chaoyue, et al. The new research progress on enhanced oil recovery technology by foam flooding[J]. Applied Chemical Industry, 2020, 49(7): 1829-1834. | |
78 | SUN Qian, LI Zhaomin, LI Songyan, et al. Utilization of surfactant-stabilized foam for enhanced oil recovery by adding nanoparticles[J]. Energy & Fuels, 2014, 28(4): 2384-2394. |
79 | MURRAY Brent S, ETTELAIE Rammile. Foam stability: Proteins and nanoparticles[J]. Current Opinion in Colloid & Interface Science, 2004, 9(5): 314-320. |
80 | 杨兆中, 朱静怡, 李小刚, 等. 纳米颗粒稳定泡沫在油气开采中的研究进展[J]. 化工进展, 2017, 36(5): 1675-1681. |
YANG Zhaozhong, ZHU Jingyi, LI Xiaogang, et al. Research progresses on nanoparticle-stabilized foams in oil and gas production[J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1675-1681. | |
81 | HOROZOV Tommy S. Foams and foam films stabilised by solid particles[J]. Current Opinion in Colloid & Interface Science, 2008, 13(3): 134-140. |
82 | BINKS Bernard P, HOROZOV Tommy S. Aqueous foams stabilized solely by silica nanoparticles[J]. Angewandte Chemie International Edition, 2005, 44(24): 3722-3725. |
83 | YU Jianjia, KHALIL Munawar, LIU Ning, et al. Effect of particle hydrophobicity on CO2 foam generation and foam flow behavior in porous media[J]. Fuel, 2014, 126: 104-108. |
84 | Infant RAJ, LIANG Tuo, QU Ming, et al. An experimental investigation of MoS2 nanosheets stabilized foams for enhanced oil recovery application[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 606: 125420. |
85 | BINKS Bernard P, KIRKLAND Mark, RODRIGUES Jhonny A. Origin of stabilisation of aqueous foams in nanoparticle-surfactant mixtures[J]. Soft Matter, 2008, 4(12): 2373-2382. |
86 | WANG Huanrong, GONG Yong, LU Weichang, et al. Influence of nano-SiO2 on dilational viscoelasticity of liquid/air interface of cetyltrimethyl ammonium bromide[J]. Applied Surface Science, 2008, 254(11): 3380-3384. |
87 | MOHAMED Tarek. Investigating nano-fluid mixture effects to enhance oil recovery[C]//SPE Annual Technical Conference and Exhibition. Houston, USA, 2015: 6803-6813. |
88 | 曹绪龙, 季岩峰, 祝仰文, 等. 聚合物驱研究进展及技术展望[J]. 油气藏评价与开发, 2020, 10(6): 8-16. |
CAO Xulong, JI Yanfeng, ZHU Yangwen, et al. Research advance and technology outlook of polymer flooding[J]. Reservoir Evaluation and Development, 2020, 10(6): 8-16. | |
89 | MAGHZI Ali, KHARRAT Riyaz, MOHEBBI Ali, et al. The impact of silica nanoparticles on the performance of polymer solution in presence of salts in polymer flooding for heavy oil recovery[J]. Fuel, 2014, 123: 123-132. |
90 | GBADAMOSI Afeez O, JUNIN Radzuan, MANAN Muhammad A, et al. Hybrid suspension of polymer and nanoparticles for enhanced oil recovery[J]. Polymer Bulletin, 2019, 76(12): 6193-6230. |
91 | HU Zhongliang, HARUNA Maje, GAO Hui, et al. Rheological properties of partially hydrolyzed polyacrylamide seeded by nanoparticles[J]. Industrial & Engineering Chemistry Research, 2017, 56(12): 3456-3463. |
92 | BASHIR ABDULLAHI Mohammed, RAJAEI Kourosh, JUNIN Radzuan, et al. Appraising the impact of metal-oxide nanoparticles on rheological properties of HPAM in different electrolyte solutions for enhanced oil recovery[J]. Journal of Petroleum Science and Engineering, 2019, 172: 1057-1068. |
93 | 陈渊, 孙玉青, 李飞鹏, 等. 纳米微球深部调驱技术在河南油田的应用[J]. 石油钻采工艺, 2012, 34(3): 87-90. |
CHEN Yuan, SUN Yuqing, LI Feipeng, et al. Application of nanosphere deep profile control and displacement technology in Henan oilfield[J]. Oil Drilling & Production Technology, 2012, 34(3): 87-90. | |
94 | 何吉波, 王策, 严阿永, 等. 华庆油田纳米聚合物微球调驱性能评价及应用[J]. 石油化工应用, 2022, 41(12): 26-31. |
HE Jibo, WANG Ce, YAN Ayong, et al. Performance evaluation and application of nano-polymer microspheres for profile-controlling in Huaqing oilfield[J]. Petrochemical Industry Application, 2022, 41(12): 26-31. | |
95 | 李虎, 李翔, 郑举, 等. 蓬莱19-3油田纳米驱油技术研究与应用[J]. 石油化工应用, 2020, 39(8): 4-8. |
LI Hu, LI Xiang, ZHENG Ju, et al. Research and application of nano oil displacement technology in PL19-3 oilfield[J]. Petrochemical Industry Application, 2020, 39(8): 4-8. | |
96 | 王金铸, 龚雪峰, 刘发根, 等. 高效自适应纳米乳液调驱技术在东北油田的应用[J]. 中国石油大学胜利学院学报, 2021, 35(4): 50-57. |
WANG Jinzhu, GONG Xuefeng, LIU Fagen, et al. Application of high efficiency adaptive nano emulsion profile control and oil displacement technology in Northeast Oilfield[J]. Journal of Shengli College China University of Petroleum, 2021, 35(4): 50-57. | |
97 | 石磊. 致密砂岩油藏CO2吞吐沥青质沉积对储层的伤害特征[J]. 油田化学, 2022, 39(2): 343-348. |
SHI Lei. Damage characteristics of asphaltene deposition during CO2 huff and puff in tight sandstone reservoir[J]. Oilfield Chemistry, 2022, 39(2): 343-348. | |
98 | AZIZKHANI Ashkan, GANDOMKAR Asghar. A novel method for application of nanoparticles as direct asphaltene inhibitors during miscible CO2 injection[J]. Journal of Petroleum Science and Engineering, 2020, 185: 106661. |
99 | HOSSEINPOUR Negahdar, KHODADADI Abbas ALI, BAHRAMIAN Alireza, et al. Asphaltene adsorption onto acidic/basic metal oxide nanoparticles toward in situ upgrading of reservoir oils by nanotechnology[J]. Langmuir, 2013, 29(46): 14135-14146. |
100 | WANG Chenhui, GAO Lingyu, LIU Menghui, et al. Viscosity reduction mechanism of functionalized silica nanoparticles in heavy oil-water system[J]. Fuel Processing Technology, 2022, 237: 107454. |
101 | MOHAMMADI Mohsen, AKBARI Mahdi, FAKHROUEIAN Zahra, et al. Inhibition of asphaltene precipitation by TiO2, SiO2, and ZrO2 nanofluids[J]. Energy & Fuels, 2011, 25(7): 3150-3156. |
102 | SHOJAATI Faryar, RIAZI Masoud, MOUSAVI Seyed Hamed, et al. Experimental investigation of the inhibitory behavior of metal oxides nanoparticles on asphaltene precipitation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 531: 99-110. |
103 | HOSEIN Rezvani, YOUSEF Kazemzadeh, MOHAMMAD Sharifi, et al. A new insight into Fe3O4-based nanocomposites for adsorption of asphaltene at the oil/water interface: An experimental interfacial study[J]. Journal of Petroleum Science and Engineering, 2019, 177: 786-797. |
104 | AHOEE Mohammad Majidi, FAKHROUEIAN Zahra, SADEGHI Mohammad Taghi, et al. Impact of amine@ZnO/CNT and fatty acid@ZnO/CNT as hydrophilic functionalized nanocomposites on reduction of heavy oil viscosity[J]. Journal of Petroleum Science and Engineering, 2019, 172: 199-208. |
105 | 杜安琪, 毛金成, 王鼎立, 等. 中深层稠油化学降黏技术研究进展[J]. 天然气工业, 2022, 42(2): 110-122. |
DU Anqi, MAO Jincheng, WANG Dingli, et al. Research progress in chemical viscosity reduction technologies used for medium and deep heavy oil[J]. Natural Gas Industry, 2022, 42(2): 110-122. | |
106 | 冯阳阳, 赵众从, 杨文博, 等. 微生物合成金属纳米颗粒及在稠油催化降黏中的应用研究进展[J]. 化工进展, 2021, 40(4): 2215-2226. |
FENG Yangyang, ZHAO Zhongcong, YANG Wenbo, et al. Microbial natural synthetic metal nanoparticles and the application in heavy oil catalytic viscosity reduction[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2215-2226. | |
107 | OGOLO Naomi, OLAFUYI Olalekan Adisa, ONYEKONWN Mike Obi. Enhanced oil recovery using nanoparticles[C]//SPE Saudi Arabia Section Technical Symposium and Exhibition. Al-khobar, Saudi Arabia, 2012: 276-284. |
108 | HAMEDI SHOKRLU Yousef, BABADAGLI Tayfun. Kinetics of the in-situ upgrading of heavy oil by nickel nanoparticle catalysts and its effect on cyclic-steam-stimulation recovery factor[J]. SPE Reservoir Evaluation & Engineering, 2014, 17(3): 355-364. |
109 | HAMEDI SHOKRLU Yousef, BABADAGLI Tayfun. In-situ upgrading of heavy oil/bitumen during steam injection by use of metal nanoparticles: A study on in-situ catalysis and catalyst transportation[J]. SPE Reservoir Evaluation & Engineering, 2013, 16(3): 333-344. |
110 | TABORDA Esteban A, ALVARADO Vladimir, CORTÉS Farid B. Experimental and theoretical study of viscosity reduction in heavy crude oils by addition of nanoparticles[J]. Energy & Fuels, 2017, 31(2): 1329-1338. |
111 | 杨景斌, 侯吉瑞, 屈鸣, 等. 2-D智能纳米黑卡在低渗透油藏中的驱油性能评价[J]. 油田化学, 2020, 37(2): 305-310. |
YANG Jingbin, HOU Jirui, QU Ming, et al. Evaluation of oil displacement performance of two-dimensional smart black nano-card in low permeability reservoir[J]. Oilfield Chemistry, 2020, 37(2): 305-310. | |
112 | WU C, SU J, ZHANG R, et al. The use of a nano-nickel catalyst for upgrading extra-heavy oil by an aquathermolysis treatment under steam injection conditions[J]. Petroleum Science and Technology, 2013, 31(21): 2211-2218. |
113 | HENDRANINGRAT Luky, SOURAKI Yaser, TORSOETER Ole. Experimental investigation of decalin and metal nanoparticles-assisted bitumen upgrading during catalytic aquathermolysis[C]//SPE/EAGE European Unconventional Resources Conference and Exhibition. Vienna, Austria, 2014. |
114 | ANTO Rincy, DESHMUKH Sameerjit, SANYAL Saheli, et al. Nanoparticles as flow improver of petroleum crudes: Study on temperature-dependent steady-state and dynamic rheological behavior of crude oils[J]. Fuel, 2020, 275: 117873. |
115 | 宋奇, 时维才, 纪艳娟. 纳米材料复合CO2吞吐在稠油油藏的矿场试验[J]. 石油化工应用, 2021, 40(11): 25-27. |
SONG Qi, SHI Weicai, JI Yanjuan. Application of nanomaterials and CO2 compound huff and puff in heavy oil production wells[J]. Petrochemical Industry Application, 2021, 40(11): 25-27. | |
116 | SHIRATORI K, YAMASHITA Y, ADACHI Y. Deposition and subsequent release of Na-kaolinite particles by adjusting pH in the column packed with Toyoura sand[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 306(1/2/3): 137-141. |
117 | HASANNEJADA Reza, POURAFSHARY Peyman, VATANI Ali, 等. 二氧化硅纳米流体在储集层微粒运移控制中的应用[J]. 石油勘探与开发, 2017, 44(5): 802-810. |
HASANNEJADA Reza, POURAFSHARY Peyman, VATANI Ali, et al. Application of silica nanofluid to control initiation of fines migration[J]. Petroleum Exploration and Development, 2017, 44(5): 802-810. | |
118 | MUSHAROVA Darya A, MOHAMED Ibrahim M, NASRELDIN Hisham A. Detrimental effect of temperature on fines migration in sandstone formations[C]//SPE International Symposium on Formation Damage Control. Lafayette, Louisiana, USA, 2012: 201-222. |
119 | 邱正松, 高健, 赵欣, 等. 深水疏松砂岩储层微粒运移损害的控制方法[J]. 石油学报, 2022, 43(7): 1016-1025. |
QIU Zhengsong, GAO Jian, ZHAO Xin, et al. Control methods for fines migration damage in deepwater unconsolidated sandstone reservoirs[J]. Acta Petrolei Sinica, 2022, 43(7): 1016-1025. | |
120 | AHMADI M, HABIBI A, POURAFSHARY P, et al. Zeta-potential investigation and experimental study of nanoparticles deposited on rock surface to reduce fines migration[J]. SPE Journal, 2013, 18(3): 534-544. |
121 | ZHAO Xin, QIU Zhengsong, GAO Jian, et al. Mechanism and effect of nanoparticles on controlling fines migration in unconsolidated sandstone formations[J]. SPE Journal, 2021, 26(6): 3819-3831. |
122 | MANSOURI Mehrshad, NAKHAEE Ali, POURAFSHARY Peyman. Effect of SiO2 nanoparticles on fines stabilization during low salinity water flooding in sandstones[J]. Journal of Petroleum Science and Engineering, 2019, 174: 637-648. |
123 | YUAN Bin, MOGHANLOO Rouzbeh Ghanbarnezhad, WANG Wendong. Using nanofluids to control fines migration for oil recovery: Nanofluids co-injection or nanofluids pre-flush?—A comprehensive answer[J]. Fuel, 2018, 215: 474-483. |
124 | YUAN Bin, MOGHANLOO R, ZHENG D. Analytical evaluation of nanoparticle application to mitigate fines migration in porous media[J]. SPE Journal. 2016, 21(06): 2317-2332. |
[1] | LUO Shifa, WANG Kan, ZHANG Bingjian, CHEN Qinglin. Analysis and evaluation of heat integration schemes for crude oil distillation unit [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4810-4816. |
[2] | SHEN Chunyu, LI Cuili, TANG Jianwei, LIU Yong, LIU Pengfei, DING Junxiang, SHEN Bo, WANG Baoming. Progress in preparation and flame retardant application of nano magnesium hydroxide [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4980-4995. |
[3] | REN Guoyu, TUO Yun, ZHENG Wenjie, QIAO Zeting, REN Zhuangzhuang, ZHAO Yali, SHANG Junfei, CHEN Xiaodong, GAO Xianghu. Research progress and application of superhydrophobic nano-coating technology [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4450-4463. |
[4] | SHI Jiabo, ZHANG Yuxuan, CHEN Xuefeng, TAN Jiaojun. Preparation and oil-water separation property of tannic acid-nanoclay synergistically modified collagen fiber-based porous materials [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4624-4629. |
[5] | LIU Jingang, LIU Qingwang, FAN Zhenzhong, WANG Yangyang, ZHOU Ming. Evaluation of flocculation effect of hyperbranched flocculant on waste oil-based drilling fluid [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4738-4747. |
[6] | LIU Wenjin, ZHANG Yuming, LI Jiazhou, ZHANG Wei, CHEN Zhewen. State of the art and prospect of typical petroleum thermal processing technology [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3534-3550. |
[7] | WEN Guiye, JIAO Feng, HE Yongqing. Analysis of ferrofluids-nonferrofluids interface instability in microchannels under magnetic field [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3787-3797. |
[8] | WANG Lina, WU Jinsheng. Research progress of synthesis and application of covalent organic frameworks [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3834-3856. |
[9] | ZHANG Dongxu, LIU Cheng, SONG Lechun, HUANG Qiyu, WANG Wei. Nucleation process of gas hydrates in the emulsion system: A review [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3007-3020. |
[10] | JI Xiaoyan, XU Rui, WANG Fei, LI Xun. Direct immobilization of Thermomyces lanuginosus lipase mediated by VKT-peptide for efficient biodiesel production from Jatropha curcas oil [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3285-3292. |
[11] | YAO Xue, WU Shuhui, YANG Yang, WANG Xiao, FENG Lei, FENG Xuedong, MA Yanfei. Treatment of oily wastewater by oily sludge-based biochar [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3398-3409. |
[12] | LU Xinxin, CAI Dongren, ZHAN Guowu. Research progress in the construction of integrated catalysts based on solid precursors and their application in CO2 hydrogenation [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2786-2802. |
[13] | DING Sijia, JIANG Shujiao, YANG Zhanlin, PENG Shaozhong, JIANG Qianmin. Design of heavy oil hydrodenitrogenation catalysts based on hydrogenation performance determined by structure of nitrogen compounds [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2436-2448. |
[14] | ZHANG Rui, KOU Yue, SUN He, WANG Chenyu, LI Zhuoyu, WANG Qinghong, CHEN Chunmao. Transfer behaviors of dissolved organic matter along stripping purified water reusing crude oil electric desalting process [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2153-2160. |
[15] | LIU Zhaoyang, JIA Guotao, ZHU Zhizhong, YIN Quanyu, FU Hongzhe, ZHAO Xiangyu, LI Dingjun, YANG Xinling, ZHANG Mingyue. Technological conditions and optimization of near-critical water treatment of waste tobacco leaves [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1720-1730. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |