1 |
邢宝林, 黄光许, 谌伦建, 等. 超级电容器电极材料的研究现状与展望[J]. 材料导报, 2012, 26(19): 21-25.
|
|
XING Baolin, HUANG Guangxu, CHEN Lunjian, et al. Current situation and prospect of research on electrode materials for supercapacitor[J]. Materials Review, 2012, 26(19): 21-25.
|
2 |
LI Xin, WEI Bingqing. Supercapacitors based on nanostructured carbon[J]. Nano Energy, 2013, 2(2): 159-173.
|
3 |
Tian LYU, LIU Mingxian, ZHU Dazhang, et al. Nanocarbon-based materials for flexible all-solid-state supercapacitors[J]. Advanced Materials, 2018, 30(17): 1705489.
|
4 |
François BÉGUIN, PRESSER Volker, BALDUCCI Andrea, et al. Carbons and electrolytes for advanced supercapacitors[J]. Advanced Materials, 2014, 26(14): 2219-2251.
|
5 |
ZHANG Lili, ZHAO X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews, 2009, 38(9): 2520-2531.
|
6 |
PANDOLFO A G, HOLLENKAMP A F. Carbon properties and their role in supercapacitors[J]. Journal of Power Sources, 2006, 157(1): 11-27.
|
7 |
FRACKOWIAK Elzbieta, François BÉGUIN. Carbon materials for the electrochemical storage of energy in capacitors[J]. Carbon, 2001, 39(6): 937-950.
|
8 |
张诚. 基于复合纳米材料的超级电容器的设计、制备和电化学性能研究[D]. 南京: 南京大学, 2018.
|
|
ZHANG Cheng. Design, preparation and electrochemical performance of supercapacitors based on composite nanomaterials[D]. Nanjing: Nanjing University, 2018.
|
9 |
阮英鹏. 超级电容器用石墨烯/聚丙烯腈同轴纤维电极的制备与性能研究[D]. 上海: 东华大学, 2021.
|
|
RUAN Yingpeng. Preparation and properties of graphene/polyacrylonitrile coaxial fiber electrode for supercapacitors[D]. Shanghai: Donghua University, 2021.
|
10 |
CAI Shengying, HUANG Tieqi, CHEN Hao, et al. Wet-spinning of ternary synergistic coaxial fibers for high performance yarn supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5(43): 22489-22494.
|
11 |
胡文鑫. 用于超级电容器的基于木质素基生物质碳/石墨烯基纤维电极结构与电化学性能研究[D]. 上海: 东华大学, 2021.
|
|
HU Wenxin. Study on structure and electrochemical performance of lignin-based biomass carbon/graphene-based fiber electrode for supercapacitors[D]. Shanghai: Donghua University, 2021.
|
12 |
成丽媛, 代国亮, 屈芸, 等. PAN/MXene复合纤维电极制备及性能研究[J]. 功能材料, 2023, 54(6): 6146-6154.
|
|
CHENG Liyuan, DAI Guoliang, QU Yun, et al. Preparation and properties of PAN/MXene composite fiber electrode[J]. Journal of Functional Materials, 2023, 54(6): 6146-6154.
|
13 |
SONG Yanping, ZHANG Jixiang, LI Nian, et al. Design of a high performance electrode composed of porous nickel-cobalt layered double hydroxide nanosheets supported on vertical graphene fibers for flexible supercapacitors[J]. New Journal of Chemistry, 2020, 44: 6623-6634.
|
14 |
YU Feng, PANG Le, WANG Hongxia. Preparation of mulberry-like RuO2 electrode material for supercapacitors[J]. Rare Metals, 2021, 40(2): 440-447.
|
15 |
EL-DEEN Ahmed G, MOHAMED El-Newehy, CHEOL Sang Kim, et al. Nitrogen-doped, FeNi alloy nanoparticle-decorated graphene as an efficient and stable electrode for electrochemical supercapacitors in acid medium[J]. Nanoscale Research Letters, 2015, 10(1): 104.
|
16 |
WANG Dawei, LI Feng, YIN Lichang, et al. Nitrogen-doped carbon monolith for alkaline supercapacitors and understanding nitrogen-induced redox transitions[J]. Chemistry—A European Journal, 2012, 18(17): 5345-5351.
|
17 |
唐承贵. 氮掺杂多孔碳材料的制备及其在超级电容器中的应用[D]. 湘潭: 湘潭大学, 2017.
|
|
TANG Chenggui. Preparation of nitrogen-doped porous carbon materials and its application in supercapacitors[D]. Xiangtan: Xiangtan University, 2017.
|
18 |
刘茵沁. 氮掺杂碳电极材料的制备及其超级电容器应用研究[D]. 重庆: 西南大学, 2016.
|
|
LIU Yinqin. Preparation of nitrogen-doped carbon electrode materials and its application in supercapacitors[D]. Chongqing: Southwest University, 2016.
|
19 |
GUAN Wei, JI Fangying, CHEN Qingkong, et al. Synthesis and enhanced phosphate recovery property of porous calcium silicate hydrate using polyethyleneglycol as pore-generation agent[J]. Materials, 2013, 6(7): 2846-2861.
|
20 |
SARMA Pranab Jyoti, MOHANTY Kaustubha. Epipremnum aureum and Dracaena braunii as indoor plants for enhanced bio-electricity generation in a plant microbial fuel cell with electrochemically modified carbon fiber brush anode[J]. Journal of Bioscience and Bioengineering, 2018, 126(3): 404-410.
|
21 |
LI Youbing, ZHOU Xiaobing, WANG Jing, et al. Facile preparation of in situ coated Ti3C2T x /Ni0.5Zn0.5Fe2O4 composites and their electromagnetic performance[J]. RSC Advances, 2017, 7(40): 24698-24708.
|
22 |
MAHMOOD Majid, RASHEED Aamir, AYMAN Imtisal, et al. Synthesis of ultrathin MnO2 nanowire-intercalated 2D-MXenes for high-performance hybrid supercapacitors[J]. Energy & Fuels, 2021, 35(4): 3469-3478.
|
23 |
CYGAN Tomasz, WOZNIAK Jaroslaw, PETRUS Mateusz, et al. Microstructure and mechanical properties of alumina composites with addition of structurally modified 2D Ti3C2 (MXene) phase[J]. Materials, 2021, 14(4): 829.
|
24 |
BOKOBZA Liliane, BRUNEEL Jean-Luc, COUZI Michel. Raman spectroscopy as a tool for the analysis of carbon-based materials (highly oriented pyrolitic graphite, multilayer graphene and multiwall carbon nanotubes) and of some of their elastomeric composites[J]. Vibrational Spectroscopy, 2014(74): 57-63.
|
25 |
LI Zhengyang, WANG Libo, SUN Dandan, et al. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2 [J]. Materials Science and Engineering: B, 2015(191): 33-40.
|
26 |
FUKUMORI Taishi, NAKAOKI Takahiko. High-tensile-strength polyvinyl alcohol films prepared from freeze/thaw cycled gels[J]. Journal of Applied Polymer Science, 2014, 131(15): 40578.
|
27 |
MAINKA Julia, GAO Wei, HE Nanfei, et al. A General equivalent electrical circuit model for the characterization of MXene/graphene oxide hybrid-fiber supercapacitors by electrochemical impedance spectroscopy—Impact of fiber length[J]. Electrochimica Acta, 2022(404): 139740.
|
28 |
NAVALPOTRO Paula, ANDERSON Marc, MARCILLA Rebeca, et al. Insights into the energy storage mechanism of hybrid supercapacitors with redox electrolytes by electrochemical impedance spectroscopy[J]. Electrochimica Acta, 2018(263): 110-117.
|