Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (6): 3020-3033.DOI: 10.16085/j.issn.1000-6613.2020-2433
• Column: New Energy Chemical Industry • Previous Articles Next Articles
HOU Lu(), HU Youren, LI Wencui, DONG Xiaoling, LU Anhui()
Received:
2020-12-03
Revised:
2020-01-20
Online:
2021-06-22
Published:
2021-06-06
Contact:
LU Anhui
通讯作者:
陆安慧
作者简介:
侯璐(1995—),女,硕士研究生,研究方向为炭基储能电极材料。E-mail:基金资助:
CLC Number:
HOU Lu, HU Youren, LI Wencui, DONG Xiaoling, LU Anhui. Synthesis and electrochemical energy storage effect of oxygen-rich porous carbon[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3020-3033.
侯璐, 胡友仁, 李文翠, 董晓玲, 陆安慧. 富氧多孔炭的合成及其在电化学储能中的作用[J]. 化工进展, 2021, 40(6): 3020-3033.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-2433
1 | ZHAI Y, DOU Y, ZHAO D, et al. Carbon materials for chemical capacitive energy storage[J]. Advanced Materials, 2011, 23(42): 4828-4850. |
2 | HAN P X, XU G J, HAN X Q, et al. Lithium ion capacitors in organic electrolyte system: scientific problems, material development, and key technologies[J]. Advanced Energy Materials, 2018, 8(26): 1801243. |
3 | KANG D M, LIU Q L, GU J J, et al. “Egg-box” -assisted fabrication of porous carbon with small mesopores for high-rate electric double layer capacitors[J]. ACS Nano, 2015, 9(11): 11225-11233. |
4 | LI Z N, GADIPELLI S, LI H C, et al. Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage[J]. Nature Energy, 2020, 5(2): 160-168. |
5 | DUTTA S, BHAUMIK A, WU K C W. Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications[J]. Energy Environ. Sci., 2014, 7(11): 3574-3592. |
6 | ZHI J, ZHAO W, LIU X Y, et al. Highly conductive ordered mesoporous carbon based electrodes decorated by 3D graphene and 1D silver nanowire for flexible supercapacitor[J]. Advanced Functional Materials, 2014, 24(14): 2013-2019. |
7 | SUN F, LIU X Y, WU H B, et al. In situ high-level nitrogen doping into carbon nanospheres and boosting of capacitive charge storage in both anode and cathode for a high-energy 4.5V full-carbon lithium-ion capacitor[J]. Nano Letters, 2018, 18(6): 3368-3376. |
8 | BYON H R, GALLANT B M, LEE S W, et al. Role of oxygen functional groups in carbon nanotube/graphene freestanding electrodes for high performance lithium batteries[J]. Advanced Functional Materials, 2013, 23(8): 1037-1045. |
9 | YUAN S T, HUANG X H, WANG H, et al. Structure evolution of oxygen removal from porous carbon for optimizing supercapacitor performance[J]. Journal of Energy Chemistry, 2020, 51: 396-404. |
10 | LU Y, HOU X, MIAO L, et al. Cyclohexanehexone with ultrahigh capacity as cathode materials for lithium-ion batteries[J]. Angewandte Chemie: International Edition, 2019, 58(21): 7020-7024. |
11 | KUNDU S, WANG Y M, XIA W, et al. Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces: a quantitative high-resolution XPS and TPD/TPR study[J]. The Journal of Physical Chemistry C, 2008, 112(43): 16869-16878. |
12 | 张苏. 基于液相氧化法的石墨烯基功能材料的设计[D]. 北京: 北京化工大学, 2016. |
ZHANG Su. Preparation of graphene-based functional materials by liquid phase chemical oxidation[D]. Beijing: Beijing University of Chemical Technology, 2016. | |
13 | ZHAO G Y, CHEN C, YU D F, et al. One-step production of O-N-S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors[J]. Nano Energy, 2018, 47: 547-555. |
14 | DIMIEV A M, ALEMANY L B, TOUR J M. Graphene oxide. Origin of acidity, its instability in water, and a new dynamic structural model[J]. ACS Nano, 2013, 7(1): 576-588. |
15 | LEE S W, GALLANT B M, LEE Y, et al. Self-standing positive electrodes of oxidized few-walled carbon nanotubes for light-weight and high-power lithium batteries[J]. Energy Environ. Sci., 2012, 5(1): 5437-5444. |
16 | KANGASNIEMI K H, CONDIT D A, JARVI T D. Characterization of Vulcan electrochemically oxidized under simulated PEM fuel cell conditions[J]. Journal of the Electrochemical Society, 2004, 151(4): 125-132. |
17 | KRISHNAMOORTHY K, VEERAPANDIAN M, YUN K, et al. The chemical and structural analysis of graphene oxide with different degrees of oxidation[J]. Carbon, 2013, 53: 38-49. |
18 | BRENDER P, GADIOU R, RIETSCH J C, et al. Characterization of carbon surface chemistry by combined temperature programmed desorption with in situ X-ray photoelectron spectrometry and temperature programmed desorption with mass spectrometry analysis[J]. Analytical Chemistry, 2012, 84(5): 2147-2153. |
19 | ZHOU J H, SUI Z J, ZHU J, et al. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR[J]. Carbon, 2007, 45(4): 785-796. |
20 | 李娜, 朱健, 查庆芳. 活性炭表面基团的定性和定量分析[J]. 高等学校化学学报, 2012, 33(3): 548-554. |
LI Na, ZHU Jian, ZHA Qingfang. Quantitative and qualitative analyses of oxygen-containing surface functional groups on activated carbon[J]. Chemical Journal of Chinese Universities, 2012, 33(3): 548-554. | |
21 | BOEHM H P. Surface oxides on carbon and their analysis: a critical assessment[J]. Carbon, 2002, 40(2): 145-149. |
22 | 毛磊, 童仕唐, 王宇. 对用于活性炭表面含氧官能团分析的Boehm滴定法的几点讨论[J]. 炭素技术, 2011, 30(2): 17-19. |
MAO Lei, TONG Shitang, WANG Yu. Discussion on the Boehm titration method used in analysis of surface oxygen functional groups on activated carbon[J]. Carbon Techniques, 2011, 30(2): 17-19. | |
23 | TANAKA S, FUJIMOTO H, DENAYER J F M, et al. Surface modification of soft-templated ordered mesoporous carbon for electrochemical supercapacitors[J]. Microporous and Mesoporous Materials, 2015, 217: 141-149. |
24 | LEE B, LEE C, LIU T Y, et al. Hierarchical networks of redox-active reduced crumpled graphene oxide and functionalized few-walled carbon nanotubes for rapid electrochemical energy storage[J]. Nanoscale, 2016, 8(24): 12330-12338. |
25 | LIU T Y, DAVIJANI A A B, SUN J Y, et al. Hydrothermally oxidized single-walled carbon nanotube networks for high volumetric electrochemical energy storage[J]. Small, 2016, 12(25): 3423-3431. |
26 | LOTA G, KRAWCZYK P, LOTA K, et al. The application of activated carbon modified by ozone treatment for energy storage[J]. Journal of Solid State Electrochemistry, 2016, 20(10): 2857-2864. |
27 | LIU T, KAVIAN R, KIM I, et al. Self-assembled, redox-active graphene electrodes for high-performance energy storage devices[J]. The Journal of Physical Chemistry Letters, 2014, 5(24): 4324-4330. |
28 | TABTI Z, RUIZ-ROSAS R, QUIJADA C, et al. Tailoring the surface chemistry of activated carbon cloth by electrochemical methods[J]. ACS Applied Materials & Interfaces, 2014, 6(14): 11682-11691. |
29 | WANG W, LIU W, ZENG Y, et al. A novel exfoliation strategy to significantly boost the energy storage capability of commercial carbon cloth[J]. Advanced Materials, 2015, 27(23): 3572-3578. |
30 | WANG Y, CHANG Z, ZHANG Z, et al. A facile approach to improve electrochemical capacitance of carbons by in situ electrochemical oxidation[J]. ACS Applied Materials & Interfaces, 2019, 11(6): 5999-6008. |
31 | LIU B, LIU Y J, CHEN H B, et al. Oxygen and nitrogen co-doped porous carbon nanosheets derived from Perilla frutescens for high volumetric performance supercapacitors[J]. Journal of Power Sources, 2017, 341: 309-317. |
32 | WANG Can, WANG Dianyu, ZHENG Shuang, et al. Facile self-templating melting route preparation of biomass-derived hierarchical porous carbon for advanced supercapacitors[J]. Chemical Research in Chinese Universities, 2018, 34(6): 983-988. |
33 | LIN Y, CHEN Z Y, YU C Y, et al. Heteroatom-doped sheet-like and hierarchical porous carbon based on natural biomass small molecule peach gum for high-performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 3389-3403. |
34 | SANCHEZ-SANCHEZ A, IZQUIERDO M T, MATHIEU S, et al. Outstanding electrochemical performance of highly N- and O-doped carbons derived from pine tannin[J]. Green Chemistry, 2017, 19(11): 2653-2665. |
35 | LIU T Y, LEE B, LEE M J, et al. Improved capacity of redox-active functional carbon cathodes by dimension reduction for hybrid supercapacitors[J]. Journal of Materials Chemistry A, 2018, 6(8): 3367-3375. |
36 | ZHANG L, SHEN X Y, AI K L, et al. sp2 C-dominant O-doped hierarchical porous carbon for supercapacitor electrodes[J]. ACS Applied Energy Materials, 2019, 2(10): 7009-7018. |
37 | ZHANG Y, QU T T, XIANG K, et al. In situ formation/carbonization of quinone-amine polymers towards hierarchical porous carbon foam with high faradaic activity for energy storage[J]. Journal of Materials Chemistry A, 2018, 6(5): 2353-2359. |
38 | SONG Z Y, MIAO L, LI L C, et al. A universal strategy to obtain highly redox-active porous carbons for efficient energy storage[J]. Journal of Materials Chemistry A, 2020, 8(7): 3717-3725. |
39 | OH Y J, YOO J J, KIM Y I, et al. Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor[J]. Electrochimica Acta, 2014, 116: 118-128. |
40 | CHEN Z, CAO R, GE Y H, et al. N- and O-doped hollow carbonaceous spheres with hierarchical porous structure for potential application in high-performance capacitance[J]. Journal of Power Sources, 2017, 363: 356-364. |
41 | WEI W, LIU W, CHEN Z J, et al. Template-assisted construction of N, O-doped mesoporous carbon nanosheet from hydroxyquinoline-Zn complex for high-performance aqueous symmetric supercapacitor[J]. Applied Surface Science, 2020, 509: 144921. |
42 | TANG C G, LIU Y J, YANG D G, et al. Oxygen and nitrogen co-doped porous carbons with finely-layered schistose structure for high-rate-performance supercapacitors[J]. Carbon, 2017, 122: 538-546. |
43 | WANG C J, WU D P, WANG H J, et al. A green and scalable route to yield porous carbon sheets from biomass for supercapacitors with high capacity[J]. Journal of Materials Chemistry A, 2018, 6(3): 1244-1254. |
44 | GUO C X, LI N, JI L L, et al. N- and O-doped carbonaceous nanotubes from polypyrrole for potential application in high-performance capacitance[J]. Journal of Power Sources, 2014, 247: 660-666. |
45 | LIANG Z, ZHANG L, LIU H, et al. Formation of monodisperse carbon spheres with tunable size via triblock copolymer-assisted synthesis and their capacitor properties[J]. Nanoscale Res. Lett., 2019, 14(1): 124. |
46 | LU H, ZHUANG L Z, GADDAM R R, et al. Microcrystalline cellulose-derived porous carbons with defective sites for electrochemical applications[J]. Journal of Materials Chemistry A, 2019, 7(39): 22579-22587. |
47 | CHEN C, WANG H Y, XIAO Q G, et al. Porous carbon hollow rod for supercapacitors with high energy density[J]. Industrial & Engineering Chemistry Research, 2019, 58(48): 22124-22132. |
48 | DAI J D, WANG L L, XIE A, et al. A reactive template and confined self-activation strategy: 3D interconnected hierarchically porous N/O-doped carbon foam for enhanced supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2020, 8: 739-748. |
49 | LI J T, XIAO R, LI M, et al. Template-synthesized hierarchical porous carbons from bio-oil with high performance for supercapacitor electrodes[J]. Fuel Processing Technology, 2019, 192: 239-249. |
50 | ZHOU M, LI X Y, ZHAO H, et al. Combined effect of nitrogen and oxygen heteroatoms and micropores of porous carbon frameworks from Schiff-base networks on their high supercapacitance[J]. Journal of Materials Chemistry A, 2018, 6(4): 1621-1629. |
51 | LIU M R, ZHANG K J, SI M Y, et al. Three-dimensional carbon nanosheets derived from micro-morphologically regulated biomass for ultrahigh-performance supercapacitors[J]. Carbon, 2019, 153: 707-716. |
52 | YUAN C Q, LIU X H, JIA M Y, et al. Facile preparation of N- and O-doped hollow carbon spheres derived from poly(o-phenylenediamine) for supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(7): 3409-3415. |
53 | LEE S W, YABUUCHI N, GALLANT B M, et al. High-power lithium batteries from functionalized carbon-nanotube electrodes[J]. Nature Nanotechnology, 2010, 5(7): 531-537. |
54 | HA S H, JEONG Y S, LEE Y J. Free standing reduced graphene oxide film cathodes for lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2013, 5(23): 12295-12303. |
55 | XIONG D B, LI X F, SHAN H, et al. Controllable oxygenic functional groups of metal-free cathodes for high performance lithium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(21): 11376-11386. |
56 | WANG D W, SUN C H, ZHOU G M, et al. The examination of graphene oxide for rechargeable lithium storage as a novel cathode material[J]. Journal of Materials Chemistry A, 2013, 1(11): 3607-3612. |
57 | LIU T Y, KIM K C, KAVIAN R, et al. High-density lithium-ion energy storage utilizing the surface redox reactions in folded graphene films[J]. Chemistry of Materials, 2015, 27(9): 3291-3298. |
58 | KIM S, KIM K C, LEE S W, et al. Thermodynamic and redox properties of graphene oxides for lithium-ion battery applications: a first principles density functional theory modeling approach[J]. Physical Chemistry Chemical Physics, 2016, 18(30): 20600-20606. |
59 | LIU T Y, KIM K C, LEE B, et al. Self-polymerized dopamine as an organic cathode for Li- and Na-ion batteries[J]. Energy & Environmental Science, 2017, 10(1): 205-215. |
60 | LIU T, LEE B, KIM B G, et al. In situ polymerization of dopamine on graphene framework for charge storage applications[J]. Small, 2018, 14(34): e1801236. |
61 | PARK J H, LEE H J, CHO J Y, et al. Highly exfoliated and functionalized single-walled carbon nanotubes as fast-charging, high-capacity cathodes for rechargeable lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1322-1329. |
62 | BACHMAN J C, KAVIAN R, GRAHAM D J, et al. Electrochemical polymerization of pyrene derivatives on functionalized carbon nanotubes for pseudocapacitive electrodes[J]. Nat. Commun., 2015, 6: 7040. |
[1] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[2] | ZHU Wei, QI Penggang, SU Yinhai, ZHANG Shuping, XIONG Yuanquan. Preparation and properties of bio-oil hierarchical porous carbon electrode materials for supercapacitor [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3077-3086. |
[3] | CHEN Fei, LIU Chengbao, CHEN Feng, QIAN Junchao, QIU Yongbin, MENG Xianrong, CHEN Zhigang. Research progress on graphitic carbon nitride based materials for supercapacitor [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2566-2576. |
[4] | LIU Jing, LIN Lin, ZHANG Jian, ZHAO Feng. Research progress in pore size regulation and electrochemical performance of biomass-based carbon materials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1907-1916. |
[5] | CAI Jiangtao, HOU Liuhua, LAN Yujin, ZHANG Chenchen, LIU Guoyang, ZHU Youyu, ZHANG Jianlan, ZHAO Shiyong, ZHANG Yating. Preparation of pitch-based porous carbon materials and application in supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1895-1906. |
[6] | LIU Dan, FAN Yunjie, WANG Huimin, YAN Zheng, LI Pengfei, LI Jiacheng, CAO Xuebo. High value-added functional porous carbon materials from waste PET and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 969-984. |
[7] | ZHUO Zuyou, SONG Shengnan, HUANG Mingjie, YANG Xuan, LU Beili, CHEN Yandan. Preparation of wheat flour-based hierarchical porous carbon with ultra large specific surface area by synergistic activation of potassium oxalate-urea and its electrochemical energy storage performance [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 925-933. |
[8] | TIAN Tian, LEI Xiping, YU Ting, FAN Kai, SONG Xiaoqi, ZHU Hang. Research progress in carbon materials for flexible supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 884-896. |
[9] | LIU Peihui, LIU Yuzhe, LI Lin, WANG Shaohui, WANG Tonghua. Activation strategies of the porous carbon with high specific surface area and hierarchical pore structure and its VOCs adsorption performance [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 613-621. |
[10] | LONG Yinying, YANG Jian, GUAN Min, YANG Yiluo, CHENG Zhengbai, CAO Haibing, LIU Hongbin, AN Xingye. Research progress of lignin-based materials in electrode materials for hybrid supercapacitors [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4855-4865. |
[11] | JIN Wei. Microporous carbon modified separator for high performance lithium sulfur batteries [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4386-4396. |
[12] | XU Hu, GUO Hongkai, CHAI Changsheng, HAO Xiangzhong, YANG Ziyuan, XU Weijun. Carbon fiber materials used for the electrode of electro-Fenton system: a critical review [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3707-3718. |
[13] | LOU Rui, LIU Yu, TIAN Jie, ZHANG Yanan. Preparation of LNP-based hierarchical porous carbon and its electrochemical properties [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3170-3177. |
[14] | DI Guancheng, ZHOU Qiang, TAO Xin, SHANG Yu, SONG Tao, LU Ping, XU Guiling. Preparation of sulfur-doped mesoporous carbon and its mercury removal [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2761-2769. |
[15] | WANG Luyuan, JIN Chunjiang, CHEN Huimin, CHENG Xingxing, AN Donghai, ZHANG Xingyu, SUN Rongfeng, GENG Wenguang. Preparation of nano-lignin-based porous carbon materials by one-step pyrolysis activation method [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2582-2592. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |