Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (6): 3034-3045.DOI: 10.16085/j.issn.1000-6613.2020-1958
• Column: New Energy Chemical Industry • Previous Articles Next Articles
CHEN Huanhao1(), FAN Xiaolei2()
Received:
2020-09-25
Revised:
2021-01-01
Online:
2021-06-22
Published:
2021-06-06
Contact:
CHEN Huanhao
通讯作者:
陈焕浩
作者简介:
范晓雷,博士,教授,博士生导师,研究方向为低温等离子体催化。基金资助:
CLC Number:
CHEN Huanhao, FAN Xiaolei. Review on non-thermal plasma (NTP) catalytic conversion of C1 molecules and its catalysts[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3034-3045.
陈焕浩, 范晓雷. 非热等离子体催化转化C1分子及其催化剂研究进展[J]. 化工进展, 2021, 40(6): 3034-3045.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1958
1 | WANG W, WANG S P, MA X B, et al. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chemical Society Reviews, 2011, 40(7): 3703-3727. |
2 | ZHOU W, CHENG K, KANG J C, et al. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chemical Society Reviews, 2019, 48(12): 3193-3228. |
3 | ZHANG Q, YU J H, CORMA A. Applications of zeolites to C1 chemistry: recent advances, challenges, and opportunities[J]. Advanced Materials, 2020, 32(44): 2002927. |
4 | DURME J VAN, DEWULF J, LEYS C, et al. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: a review[J]. Applied Catalysis B: Environmental, 2008, 78(3/4): 324-333. |
5 | NEYTS E C, OSTRIKOV K K, SUNKARA M K, et al. Plasma catalysis: synergistic effects at the nanoscale[J]. Chemical Reviews, 2015, 115(24): 13408-13446. |
6 | WHITEHEAD J C. Plasma catalysis: challenges and future perspectives[M]. Plasma Catalysis. Berlin: Springer, 2019: 343-348. |
7 | WHITEHEAD J C. Plasma-catalysis: is it just a question of scale?[J]. Frontiers of Chemical Science and Engineering, 2019, 13(2): 264-273. |
8 | 王爱华. 等离子体协同催化技术处理挥发性有机物的研究[D]. 北京: 北京工业大学, 2015. |
WANG Aihua. Removal of volatile organic compounds by plasma coupled with catalyst[D]. Beijing: BeijingUniversity of Technology, 2015. | |
9 | 陈鹏, 陶雷, 谢怡冰, 等. 低温等离子体协同催化降解挥发性有机物的研究进展[J]. 化工进展, 2019, 38(9): 4284-4294. |
CHEN Peng, TAO Lei, XIE Yibing, et al. Non-thermal plasma cooperating catalyst degradation of the volatile organic compounds: a review[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4284-4294. | |
10 | 梁文俊, 李坚, 李依丽, 等. 低温等离子体技术处理挥发性有机物的研究进展[J]. 电站系统工程, 2005, 21(3): 7-9. |
LIANG Wenjun, LI Jian, LI Yili, et al. Progress in decomposition of VOCs by nonthermal plasma technology[J]. Power System Engineering, 2005, 21(3): 7-9. | |
11 | 王健壮, 贾春玲, 吴爽, 等. 低温等离子体技术在恶臭治理方面的研究进展[J]. 环境科技, 2013, 26(3): 74-78. |
WANG Jianzhuang, JIA Chunling, WU Shuang, et al. The research progress of non-thermal plasma in dealing with odor pollution[J]. Environmental Science and Technology, 2013, 26(3): 74-78. | |
12 | MA S M, ZHAO Y C, YANG J P, et al. Research progress of pollutants removal from coal-fired flue gas using non-thermal plasma[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 791-810. |
13 | GEORGE A, SHEN B X, CRAVEN M, et al. A review of non-thermal plasma technology: a novel solution for CO2 conversion and utilization[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 109702. |
14 | NIKOO K M, AMIN N A S, NOSHADI I. A review of methanol production from methane oxidation via non-thermal plasma reactor[J]. World Academy of Science: Engineering and Technology, 2010, 62: 354-358. |
15 | CUI W G, ZHANG G Y, HU T L, et al. Metal-organic framework-based heterogeneous catalysts for the conversion of C1 chemistry: CO, CO2 and CH4[J]. Coordination Chemistry Reviews, 2019, 387: 79-120. |
16 | FRONTERA P, MACARIO A, FERRARO M, et al. Supported catalysts for CO2 methanation: a review[J]. Catalysts, 2017, 7(12): 59. |
17 | WANG W, DUONG-VIET C, XU Z X, et al. CO2 methanation under dynamic operational mode using nickel nanoparticles decorated carbon felt (Ni/OCF) combined with inductive heating[J]. Catalysis Today, 2020, 357: 214-220. |
18 | DE MASI D, ASENSIO J M, FAZZINI P F, et al. Engineering iron-nickel nanoparticles for magnetically induced CO2 methanation in continuous flow[J]. Angewandte Chemie: International Edition, 2020, 59(15): 6187-6191. |
19 | BUELENS L C, GALVITA V V, POELMAN H, et al. Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier’s principle[J]. Science, 2016, 354(6311): 449-452. |
20 | SONG Y, OZDEMIR E, RAMESH S, et al. Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO[J]. Science, 2020, 367(6479): 777-781. |
21 | LIU Z, ZHANG F, RUI N, et al. Highly active ceria-supported Ru catalyst for the dry reforming of methane: in situ identification of Ruδ+-Ce3+ interactions for enhanced conversion[J]. ACS Catalysis, 2019, 9(4): 3349-3359. |
22 | STERE C E, ANDERSON J A, CHANSAI S, et al. Non-thermal plasma activation of gold-based catalysts for low-temperature water-gas shift catalysis[J]. Angewandte Chemie: International Edition, 2017, 56(20): 5579-5583. |
23 | XU S J, CHANSAI S, STERE C, et al. Sustaining metal-organic frameworks for water-gas shift catalysis by non-thermal plasma[J]. Nature Catalysis, 2019, 2(2): 142-148. |
24 | LEE D H, KIM T. Plasma-catalyst hybrid methanol-steam reforming for hydrogen production[J]. International Journal of Hydrogen Energy, 2013, 38(14): 6039-6043. |
25 | MARTIN O, MARTÍN A J, MONDELLI C, et al. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation[J]. Angewandte Chemie: International Edition, 2016, 55(21): 6261-6265. |
26 | ZHANG Z H, WANG S S, SONG R, et al. The most active Cu facet for low-temperature water gas shift reaction[J]. Nature Communications, 2017, 8: 488. |
27 | CHEN H H, MU Y B, SHAO Y, et al. Nonthermal plasma (NTP) activated metal-organic frameworks (MOFs) catalyst for catalytic CO2 hydrogenation[J]. AIChE Journal, 2020, 66(4): e16853. |
28 | CHEN H H, MU Y B, SHAO Y, et al. Coupling non-thermal plasma with Ni catalysts supported on BETA zeolite for catalytic CO2 methanation[J]. Catalysis Science & Technology, 2019, 9(15): 4135-4145. |
29 | WANG L, YI Y H, GUO H C, et al. Atmospheric pressure and room temperature synthesis of methanol through plasma-catalytic hydrogenation of CO2[J]. ACS Catalysis, 2018, 8(1): 90-100. |
30 | ELIASSON B, SIMON F G, EGLI W. Hydrogenation of CO2 in a silent discharge[M]. Non-Thermal Plasma Techniques for Pollution Control. Berlin: Springer, 1993: 321-337. |
31 | ELIASSON B, KOGELSCHATZ U, XUE B Z, et al. Hydrogenation of carbon dioxide to methanol with a discharge-activated catalyst[J]. Industrial & Engineering Chemistry Research, 1998, 37(8): 3350-3357. |
32 | KONDRATENKO E V, PEPPEL T, SEEBURG D, et al. Methane conversion into different hydrocarbons or oxygenates: current status and future perspectives in catalyst development and reactor operation[J]. Catalysis Science & Technology, 2017, 7(2): 366-381. |
33 | MOREJUDO S H, ZANÓN R, ESCOLÁSTICO S, et al. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor[J]. Science, 2016, 353(6299): 563-566. |
34 | TAIFAN W, BALTRUSAITIS J. CH4 conversion to value added products: potential, limitations and extensions of a single step heterogeneous catalysis[J]. Applied Catalysis B: Environmental, 2016, 198: 525-547. |
35 | GIBSON E K, STERE C E, CURRAN-MCATEER B, et al. Probing the role of a non-thermal plasma (NTP) in the hybrid NTP catalytic oxidation of methane[J]. Angewandte Chemie: International Edition, 2017, 56(32): 9351-9355. |
36 | KIM J, GO D B, HICKS J C. Synergistic effects of plasma-catalyst interactions for CH4 activation[J]. Physical Chemistry Chemical Physics, 2017, 19(20): 13010-13021. |
37 | AGHAMIR F M, MATIN N S, JALILI A H, et al. Conversion of methane to methanol in an ac dielectric barrier discharge[J]. Plasma Sources Science and Technology, 2004, 13(4): 707-711. |
38 | INDARTO A. A review of direct methane conversion to methanol by dielectric barrier discharge[C]//IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(4): 1038-1043. |
39 | INDARTO A, CHOI J W, LEE H, et al. The kinetic studies of direct methane oxidation to methanol in the plasma process[J]. Chinese Science Bulletin, 2008, 53(18): 2783-2792. |
40 | CHEN L, ZHANG X W, HUANG L, et al. Partial oxidation of methane with air for methanol production in a post-plasma catalytic system[J]. Chemical Engineering and Processing: Process Intensification, 2009, 48(8): 1333-1340. |
41 | HUANG L, ZHANG X W, CHEN L, et al. Direct oxidation of methane to methanol over Cu-based catalyst in an AC dielectric barrier discharge[J]. Plasma Chemistry and Plasma Processing, 2011, 31(1): 67-77. |
42 | VAKILI R, GHOLAMI R, STERE C E, et al. Plasma-assisted catalytic dry reforming of methane (DRM) over metal-organic frameworks (MOFs)-based catalysts[J]. Applied Catalysis B: Environmental, 2020, 260: 118195. |
43 | KHOJA A H, TAHIR M, AMIN N A S. Recent developments in non-thermal catalytic DBD plasma reactor for dry reforming of methane[J]. Energy Conversion and Management, 2019, 183: 529-560. |
44 | RAY D, NEPAK D, JANAMPELLI S, et al. Dry reforming of methane in DBD plasma over Ni-based catalysts: influence of process conditions and support on performance and durability[J]. Energy Technology, 2019, 7(4): 1801008. |
45 | WANG Q, YAN B H, JIN Y, et al. Dry reforming of methane in a dielectric barrier discharge reactor with Ni/Al2O3 catalyst: interaction of catalyst and plasma[J]. Energy & Fuels, 2009, 23(8): 4196-4201. |
46 | MAHAMMADUNNISA S, MANOJ KUMAR REDDY P, RAMARAJU B, et al. Catalytic nonthermal plasma reactor for dry reforming of methane[J]. Energy & Fuels, 2013, 27(8): 4441-4447. |
47 | LEE H, LEE D H, HA J M, et al. Plasma assisted oxidative coupling of methane (OCM) over Ag/SiO2 and subsequent regeneration at low temperature[J]. Applied Catalysis A: General, 2018, 557: 39-45. |
48 | KASINATHAN P, PARK S, CHOI W C, et al. Plasma-enhanced methane direct conversion over particle-size adjusted MOx/Al2O3 (M=Ti and Mg) catalysts[J]. Plasma Chemistry and Plasma Processing, 2014, 34(6): 1317-1330. |
49 | LIU C J, XUE B Z, ELIASSON B, et al. Methane conversion to higher hydrocarbons in the presence of carbon dioxide using dielectric-barrier discharge plasmas[J]. Plasma Chemistry and Plasma Processing, 2001, 21(3): 301-310. |
50 | KIM S S, LEE H, CHOI J W, et al. Methane conversion to higher hydrocarbons in a dielectric-barrier discharge reactor with Pt/γ-Al2O3 catalyst[J]. Catalysis Communications, 2007, 8(9): 1438-1442. |
51 | SEYED MATIN N, SAVADKOOHI H A, FEIZABADI S Y. Methane conversion to C2 hydrocarbons using dielectric-barrier discharge reactor: effects of system variables[J]. Plasma Chemistry and Plasma Processing, 2008, 28(2): 189-202. |
52 | LI X S, ZHU A M, WANG K J, et al. Methane conversion to C2 hydrocarbons and hydrogen in atmospheric non-thermal plasmas generated by different electric discharge techniques[J]. Catalysis Today, 2004, 98(4): 617-624. |
53 | ELIASSON B, LIU C J, KOGELSCHATZ U. Direct conversion of methane and carbon dioxide to higher hydrocarbons using catalytic dielectric-barrier discharges with zeolites[J]. Industrial & Engineering Chemistry Research, 2000, 39(5): 1221-1227. |
54 | PHAM M H, GOUJARD V, TATIBOUËT J M, et al. Activation of methane and carbon dioxide in a dielectric-barrier discharge-plasma reactor to produce hydrocarbons—Influence of La2O3/γ-Al2O3 catalyst[J]. Catalysis Today, 2011, 171(1): 67-71. |
55 | WANG L, YI Y, WU C, et al. One-step reforming of CO2 and CH4 into high-value liquid chemicals and fuels at room temperature by plasma-driven catalysis[J]. Angewandte Chemie: International Edition, 2017, 56(44): 13679-13683. |
56 | LI Y, LIU C J, ELIASSON B, et al. Synthesis of oxygenates and higher hydrocarbons directly from methane and carbon dioxide using dielectric-barrier discharges: product distribution[J]. Energy & Fuels, 2002, 16(4): 864-870. |
57 | CHEN H H, CAO M Y, ZHAO L H, et al. Experimental study of an intensified water-gas shift reaction process using a membrane reactor/adsorptive reactor sequence[J]. Industrial & Engineering Chemistry Research, 2018, 57(41): 13650-13660. |
58 | XIA S J, FANG L, MENG Y, et al. Water-gas shift reaction catalyzed by layered double hydroxides supported Au-Ni/Cu/Pt bimetallic alloys[J]. Applied Catalysis B: Environmental, 2020, 272: 118949. |
59 | YAO S Y, ZHANG X, ZHOU W, et al. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction[J]. Science, 2017, 357(6349): 389-393. |
60 | RICO V J, HUESO J L, COTRINO J, et al. Hybrid catalytic-DBD plasma reactor for the production of hydrogen and preferential CO oxidation (CO-PROX) at reduced temperatures[J]. Chemical Communications, 2009(41): 6192-6194. |
61 | TU X, WHITEHEAD J C. Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: understanding the synergistic effect at low temperature[J]. Applied Catalysis B: Environmental, 2012, 125: 439-448. |
62 | LIAN H Y, LI X S, LIU J L, et al. Methanol steam reforming by heat-insulated warm plasma catalysis for efficient hydrogen production[J]. Catalysis Today, 2019, 337: 76-82. |
63 | LI X S, WANG L Y, GONG X L, et al. Evaluation of plasma-derived heat and synergistic effect for in-plasma catalytic steam reforming of methanol[J]. Journal of Physics D: Applied Physics, 2020, 53(10): 104003. |
64 | NIZIO M, ALBARAZI A, CAVADIAS S, et al. Hybrid plasma-catalytic methanation of CO2 at low temperature over ceria zirconia supported Ni catalysts[J]. International Journal of Hydrogen Energy, 2016, 41(27): 11584-11592. |
65 | NIZIO M, BENRABBAH R, KRZAK M, et al. Low temperature hybrid plasma-catalytic methanation over Ni-Ce-Zr hydrotalcite-derived catalysts[J]. Catalysis Communications, 2016, 83: 14-17. |
66 | KHOJA A H, TAHIR M, SAIDINA AMIN N A. Process optimization of DBD plasma dry reforming of methane over Ni/La2O3MgAl2O4 using multiple response surface methodology[J]. International Journal of Hydrogen Energy, 2019, 44(23): 11774-11787. |
67 | WANGKAWONG K, PHANICHPHANT S, INCEESUNGVORN B, et al. Kinetics of water gas shift reaction on Au/CeZrO4: a comparison between conventional heating and dielectric barrier discharge (DBD) plasma activation[J]. Topics in Catalysis, 2020, 63(3/4): 363-369. |
68 | 冯爱虎, 于洋, 于云, 等. 沸石分子筛及其负载型催化剂去除VOCs研究进展[J]. 化学学报, 2018, 76(10): 757-773. |
FENG Aihu, YU Yang, YU Yun, et al. Recent progress in the removal of volatile organic compounds by zeolite and its supported catalysts[J]. Acta Chimica Sinica, 2018, 76(10): 757-773. | |
69 | BACARIZA M C, BISET-PEIRÓ M, GRAÇA I, et al. DBD plasma-assisted CO2 methanation using zeolite-based catalysts: structure composition-reactivity approach and effect of Ce as promoter[J]. Journal of CO2 Utilization, 2018, 26: 202-211. |
70 | CHEN H H, GOODARZI F, MU Y B, et al. Effect of metal dispersion and support structure of Ni/silicalite-1 catalysts on non-thermal plasma (NTP) activated CO2 hydrogenation[J]. Applied Catalysis B: Environmental, 2020, 272: 119013. |
71 | JWA E, LEE S B, LEE H W, et al. Plasma-assisted catalytic methanation of CO and CO2 over Ni-zeolite catalysts[J]. Fuel Processing Technology, 2013, 108: 89-93. |
72 | 张维中, 温月丽, 宋镕鹏, 等. 金属有机骨架材料应用于二氧化碳加氢催化反应的研究进展[J]. 天然气化工(C1化学与化工), 2020, 45(1): 113-119, 128. |
ZHANG Weizhong, WEN Yueli, SONG Rongpeng, et al. Research progress of metal-organic framework materials in catalytic reaction of carbon dioxide hydrogenation[J]. Natural Gas Chemical Industry, 2020, 45(1): 113-119, 128. | |
73 | TANAKA Y, UTAKA T, KIKUCHI R, et al. Water gas shift reaction over Cu-based mixed oxides for CO removal from the reformed fuels[J]. Applied Catalysis A: General, 2003, 242(2): 287-295. |
74 | XU W W, DONG M Y, DI L B, et al. A facile method for preparing UiO-66 encapsulated Ru catalyst and its application in plasma-assisted CO2 methanation[J]. Nanomaterials, 2019, 9(10): E1432. |
75 | 杨懿. 低温等离子体催化降解甲苯的原位红外研究[D]. 广州: 华南理工大学, 2013. |
YANG Yi. In situ infrared spectroscopic studies of non-thermal plasma-catalytic degradation of toluene[D]. Guangzhou: South China University of Technology, 2013. | |
76 | 竹涛, 万艳东, 李坚, 等. 低温等离子体-催化耦合降解甲苯的研究及机理探讨[J]. 高校化学工程学报, 2011, 25(1): 161-167. |
ZHU Tao, WAN Yandong, LI Jian, et al. Study on decomposition mechanism of toluene by non-thermal plasma coupled with catalysis[J]. Journal of Chemical Engineering of Chinese Universities, 2011, 25(1): 161-167. | |
77 | 孙杨, 丁豆豆, 林昌, 等. 动态现场原位(operando)表征技术在多相催化反应中的应用与进展[J]. 化工进展, 2019, 38(1): 260-277. |
SUN Yang, DING Doudou, LIN Chang, et al. Advances in operando techniques for the heterogeneous catalytic reactions[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 260-277. | |
78 | 徐锋, 朱丽华, 李创. 低温等离子体活化转化煤层甲烷机理的光谱诊断[J]. 发光学报, 2017, 38(3): 372-379. |
XU Feng, ZHU Lihua, LI Chuang. Mechanism of activation and conversion of coalbed methane under cold plasma by optical emission spectroscopy[J]. Chinese Journal of Luminescence, 2017, 38(3): 372-379. | |
79 | 张家良. 低温等离子体发射光谱学研究[D]. 大连: 大连理工大学, 2002. |
ZHANG Jialiang. Emission spectroscopy methodology for low temperature discharge plasma of low pressure gas[D]. Dalian: Dalian University of Technology, 2002. | |
80 | 罗利霞, 吴卫东, 孙卫国, 等. 低压甲烷等离子体发射光谱诊断[J]. 真空科学与技术学报, 2007, 27(3): 203-207. |
LUO Lixia, WU Weidong, SUN Weiguo, et al. Diagnosis of low-pressure methane plasma by optical emission spectroscopy[J]. Chinese Journal of Vacuum Science and Technology, 2007, 27(3): 203-207. | |
81 | AHMAD F, LOVELL E C, MASOOD H, et al. Low-temperature CO2 methanation: synergistic effects in plasma-Ni hybrid catalytic system[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(4): 1888-1898. |
82 | XU S S, CHANSAI S, SHAO Y, et al. Mechanistic study of non-thermal plasma assisted CO2 hydrogenation over Ru supported on MgAl layered double hydroxide[J]. Applied Catalysis B: Environmental, 2020, 268: 118752. |
83 | STERE C, CHANSAI S, GHOLAMI R, et al. A design of a fixed bed plasma DRIFTS cell for studying the NTP-assisted heterogeneously catalysed reactions[J]. Catalysis Science & Technology, 2020, 10(5): 1458-1466. |
84 | MU Y B, XU S J, SHAO Y, et al. Kinetic study of nonthermal plasma activated catalytic CO2 hydrogenation over Ni supported on silica catalyst[J]. Industrial & Engineering Chemistry Research, 2020, 59(20): 9478-9487. |
85 | SHENG Z R, WATANABE Y, KIM H H, et al. Plasma-enabled mode-selective activation of CH4 for dry reforming: first touch on the kinetic analysis[J]. Chemical Engineering Journal, 2020, 399: 125751. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[14] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[15] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |