Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (6): 3046-3057.DOI: 10.16085/j.issn.1000-6613.2020-2496
• Column: New Energy Chemical Industry • Previous Articles Next Articles
CAI Shiyi1(), LI Jinyu1(), WU Lixia1, XIE Xiangjuan1, WU Liqing1, GAO Xingyuan1,2(), YANG Naitao3()
Received:
2020-12-14
Revised:
2021-01-16
Online:
2021-06-22
Published:
2021-06-06
Contact:
GAO Xingyuan,YANG Naitao
蔡诗怡1(), 李津瑜1(), 吴丽霞1, 谢湘娟1, 伍丽卿1, 高兴远1,2(), 杨乃涛3()
通讯作者:
高兴远,杨乃涛
作者简介:
蔡诗怡(1999—),女,本科生,研究方向为二次电池正极材料。E-mail:基金资助:
CLC Number:
CAI Shiyi, LI Jinyu, WU Lixia, XIE Xiangjuan, WU Liqing, GAO Xingyuan, YANG Naitao. Progress of MOF materials applied in Li-S batteries[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3046-3057.
蔡诗怡, 李津瑜, 吴丽霞, 谢湘娟, 伍丽卿, 高兴远, 杨乃涛. 金属有机框架材料在锂硫电池的应用前沿进展[J]. 化工进展, 2021, 40(6): 3046-3057.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-2496
1 | 孙皓, 宋程威, 庞越鹏, 等. 锂硫电池隔膜功能化设计[J]. 化学进展, 2020, 32(9): 1402-1411. |
SUN Hao, SONG Chengwei, PANG Yuepeng, et al. Functional design of separator for Li-S batteries[J]. Progress in Chemistry, 2020, 32(9): 1402-1411. | |
2 | PANG Q, LIANG X, KWOK C Y, et al. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes[J]. Nature Energy, 2016, 1: 16132. |
3 | CHEN J Z, HENDERSON W A, PAN H L, et al. Improving lithium-sulfur battery performance under lean electrolyte through nanoscale confinement in soft swellable gels[J]. Nano Letters, 2017, 17(5): 3061-3067. |
4 | XUE W J, SHI Z, SUO L M, et al. Intercalation-conversion hybrid cathodes enabling Li-S full-cell architectures with jointly superior gravimetric and volumetric energy densities[J]. Nature Energy, 2019, 4(5): 374-382. |
5 | SHIN W, ZHU L D, JIANG H, et al. Fluorinated co-solvent promises Li-S batteries under lean-electrolyte conditions[J]. Materials Today, 2020, 40: 63-71. |
6 | LI M, ZHANG Y, BAI Z, et al. A lithium-sulfur battery using a 2D current collector architecture with a large-sized sulfur host operated under high areal loading and low E/S ratio[J]. Advanced Materials, 2018, 30(46): e1804271. |
7 | 王杰, 孙晓刚, 陈珑, 等. 多壁碳纳米管夹层抑制锂硫电池穿梭效应[J]. 化工进展, 2018, 37(3): 1070-1075. |
WANG Jie, SUN Xiaogang, CHEN Long, et al. Multi-walled carbon nanotube interlayer for checking of the shuttle effect of lithium-sulphur battery[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 1070-1075. | |
8 | YAGHI O M, LI H L. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels[J]. Journal of the American Chemical Society, 1995, 117(41): 10401-10402. |
9 | 阮艳莉, 查煜澄, 张萌. 有机金属框架衍生物的制备及其在锂硫电池隔膜改性中的应用[J]. 天津工业大学学报, 2020, 39(5): 56-60. |
RUAN Yanli, ZHA Yucheng, ZHANG Meng. Preparation of organometallic framework derivatives and its application in separator modification of lithium-sulfur batteries[J]. Journal of Tiangong University, 2020, 39(5): 56-60. | |
10 | ZHAO R, LIANG Z B, ZOU R Q, et al. Metal-organic frameworks for batteries[J]. Joule, 2018, 2(11): 2235-2259. |
11 | WANG Z Q, HUANG W Y, HUA J C, et al. An anionic-MOF-based bifunctional separator for regulating lithium deposition and suppressing polysulfides shuttle in Li-S batteries[J]. Small Methods, 2020, 4(7): 2000082. |
12 | ZHAO Z X, WANG S, LIANG R, et al. Graphene-wrapped chromium-MOF(MIL-101)/sulfur composite for performance improvement of high-rate rechargeable Li-S batteries[J]. J. Mater. Chem. A, 2014, 2(33): 13509-13512. |
13 | BAI S Y, LIU X Z, ZHU K, et al. Metal-organic framework-based separator for lithium-sulfur batteries[J]. Nature Energy, 2016, 1: 16094. |
14 | HONG X J, SONG C L, YANG Y, et al. Cerium based metal-organic frameworks as an efficient separator coating catalyzing the conversion of polysulfides for high performance lithium-sulfur batteries[J]. ACS Nano, 2019, 13(2): 1923-1931. |
15 | 邵姣婧, 吴旭, 龙翔, 等. 硫-纳米碳复合柔性正极材料的制备及其在锂硫电池中的应用[J]. 贵州大学学报(自然科学版), 2020, 37(5): 67-77. |
SHAO Jiaojing, WU Xu, LONG Xiang, et al. Preparation of freestanding sulfur-nanocarbon composites as the cathodes of flexible lithium-sulfur batteries[J]. Journal of Guizhou University (Natural Sciences), 2020, 37(5): 67-77. | |
16 | HE Yibo, CHANG Zhi, WU Shichao, et al. Simultaneously inhibiting lithium dendrites growth and polysulfides shuttle by a flexible MOF-based membrane in Li-S batteries[J]. Advanced Energy Materials, 2018, 8(34): 1802130.1-1802130.9. |
17 | JIANG H Q, LIU X C, WU Y S, et al. Metal-organic frameworks for high charge-discharge rates in lithium-sulfur batteries[J]. Angewandte Chemie (International Ed in English), 2018, 57(15): 3916-3921. |
18 | ZHOU C, HE Q, LI Z H, et al. A robust electrospun separator modified with in situ grown metal-organic frameworks for lithium-sulfur batteries[J]. Chemical Engineering Journal, 2020, 395: 124979. |
19 | HAO Guangping, TANG Cheng, ZHANG En, et al. Thermal exfoliation of layered metal-organic frameworks into ultrahydrophilic graphene stacks and their applications in Li-S batteries[J]. Advanced Materials, 2017, 29(37): 1702829.1. |
20 | YANG M J, HU X H, FANG Z S, et al. Bifunctional MOF-derived carbon photonic crystal architectures for advanced Zn-air and Li-S batteries: highly exposed graphitic nitrogen matters[J]. Advanced Functional Materials, 2017, 27(36): 1701971. |
21 | HONG X J, TANG X Y, WEI Q, et al. Efficient encapsulation of small S2-4 molecules in MOF-derived flowerlike nitrogen-doped microporous carbon nanosheets for high-performance Li-S batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(11): 9435-9443. |
22 | CAI J S, SONG Y Z, CHEN X, et al. MOF-derived conductive carbon nitrides for separator-modified Li-S batteries and flexible supercapacitors[J]. Journal of Materials Chemistry A, 2020, 8(4): 1757-1766. |
23 | JIANG G Y, ZHENG N, CHEN X, et al. In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries[J]. Chemical Engineering Journal, 2019, 373: 1309-1318. |
24 | GAO X, DU Y, ZHOU J W, et al. Large-scale production of MOF-derived coatings for functional interlayers in high-performance Li-S batteries[J]. ACS Applied Energy Materials, 2018, 1(12): 6986-6991. |
25 | JIN W W, ZOU J Z, ZENG S Z, et al. Tailoring the structure of clew-like carbon skeleton with 2D Co-MOF for advanced Li-S cells[J]. Applied Surface Science, 2019, 469: 404-413. |
26 | SONG C L, LI G H, YANG Y, et al. 3D catalytic MOF-based nanocomposite as separator coatings for high-performance Li-S battery[J]. Chemical Engineering Journal, 2020, 381: 122701. |
27 | ZHANG N, YANG Y, FENG X R, et al. Sulfur encapsulation by MOF-derived CoS2 embedded in carbon hosts for high-performance Li-S batteries[J]. Journal of Materials Chemistry A, 2019, 7(37): 21128-21139. |
28 | LI W, QIAN J, ZHAO T, et al. Boosting high-rate Li-S batteries by an MOF-derived catalytic electrode with a layer-by-layer structure[J]. Advanced Scienc, 2019, 6(16): 1802362. |
29 | ZHANG H, MA J, HUANG M L, et al. MOF-derived Co9S8/C hollow polyhedra grown on 3D graphene aerogel as efficient polysulfide mediator for long-life Li-S batteries[J]. Materials Letters, 2020, 277: 128331. |
30 | WANG Z, WANG B, YANG Y, et al. Mixed-metal-organic framework with effective Lewis acidic sites for sulfur confinement in high-performance lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(37): 20999-21004. |
31 | SALUNKHE R R, KANETI Y V, KIM J, et al. Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications[J]. Accounts of Chemical Research, 2016, 49(12): 2796-2806. |
32 | YU J, MU C, YAN B Y, et al. Nanoparticle/MOF composites: preparations and applications[J]. Materials Horizons, 2017, 4(4): 557-569. |
33 | XU G Y, NIE P, DOU H, et al. Exploring metal organic frameworks for energy storage in batteries and supercapacitors[J]. Materials Today, 2017, 20(4): 191-209. |
34 | LI X X, ZHENG S S, JIN L, et al. Metal-organic framework-derived carbons for battery applications[J]. Advanced Energy Materials, 2018, 8(23): 1800716. |
35 | HU M, REBOUL J, FURUKAWA S, et al. Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon[J]. Journal of the American Chemical Society, 2012, 134(6): 2864-2867. |
36 | XU H, DENG Y F, SHI Z C, et al. Graphene-encapsulated sulfur (GES) composites with a core-shell structure as superior cathode materials for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2013, 1(47): 15142. |
37 | HUANG J Q, LIU X F, ZHANG Q, et al. Entrapment of sulfur in hierarchical porous graphene for lithium-sulfur batteries with high rate performance from -40 to 60℃[J]. Nano Energy, 2013, 2(2): 314-321. |
38 | 刘悦, 富家伟, 洪晓东. 导电高分子材料在锂硫电池中的应用研究进展[J]. 工程塑料应用, 2020, 48(8): 144-148, 152. |
LIU Yue, FU Jiawei, HONG Xiaodong. Progress in application of conductive polymers in lithium-sulfur batteries[J]. Engineering Plastics Application, 2020, 48(8): 144-148, 152. | |
39 | 李执灏, 曾鹏, 陈曼芳, 等. 锂硫电池用金属基催化材料的研究进展[J]. 电池, 2020, 50(5): 492-495. |
LI Zhihao, ZENG Peng, CHEN Manfang, et al. Research progress in metal-based catalytic materials for lithium-sulfur battery[J]. Battery Bimonthly, 2020, 50(5): 492-495. | |
40 | HAO Guangping, TANG Cheng, ZHANG En, et al.Thermal exfoliation of layered metal-organic frameworks into ultrahydrophilic graphene stacks and their applications in Li-S batteries[J]. Advanced Materials, 2017, 29(37): 1702829. |
41 | SUN J K, XU Q. From metal-organic framework to carbon: toward controlled hierarchical pore structures via a double-template approach[J]. Chemical Communications, 2014, 50(88): 13502-13505. |
42 | LI J, ZHU Q L, XU Q. Pd nanoparticles supported on hierarchically porous carbons derived from assembled nanoparticles of a zeolitic imidazolate framework (ZIF-8) for methanol electrooxidation[J]. Chemical Communications, 2015, 51(54): 10827-10830. |
43 | DUTTA S, BHAUMIK A, WU K C W. Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications[J]. Energy Environ. Sci., 2014, 7(11): 3574-3592. |
44 | MI K, JIANG Y, FENG J K, et al. Hierarchical carbon nanotubes with a thick microporous wall and inner channel as efficient scaffolds for lithium-sulfur batteries[J]. Advanced Functional Materials, 2016, 26(10): 1571-1579. |
45 | ESTEVEZ L, DUA R, BHANDARI N, et al. A facile approach for the synthesis of monolithic hierarchical porous carbons - high performance materials for amine based CO2 capture and supercapacitor electrode[J]. Energy & Environmental Science, 2013, 6(6): 1785. |
46 | LI Z, WU H B, LOU X W. Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium-sulfur batteries[J]. Energy & Environmental Science, 2016, 9(10): 3061-3070. |
47 | XING W N, TU W G, HAN Z H, et al. Template-induced high-crystalline g-C3N4 nanosheets for enhanced photocatalytic H2 evolution[J]. ACS Energy Letters, 2018, 3(3): 514-519. |
48 | CAI J, HUANG J, WANG S, et al. Crafting mussel-inspired metal nanoparticle-decorated ultrathin graphitic carbon nitride for the degradation of chemical pollutants and production of chemical resources[J]. Advanced Materials, 2019, 31(15): e1806314. |
49 | JI J, WEN J, SHEN Y, et al. Simultaneous noncovalent modification and exfoliation of 2D carbon nitride for enhanced electrochemiluminescent biosensing[J]. Journal of the American Chemical Society, 2017, 139(34): 11698-11701. |
50 | WU G, HU Y, LIU Y, et al. Graphitic carbon nitride nanosheet electrode-based high-performance ionic actuator[J]. Nature Communications, 2015, 6: 7258. |
51 | 唐钰茭, 田东旭, 燕希强. COF-42: 一种理想的锂硫电池锚定材料[J]. 原子与分子物理学报, 2021, 38(1): 118-124. |
TANG Yujiao, TIAN Dongxu, YAN Xiqiang. COF-42: an ideal anchoring material for lithium-sulfur batteries[J]. Journal of Atomic and Molecular Physics, 2021, 38(1): 118-124. | |
52 | LIU H, CHENG X B, XU R, et al. Plating/stripping behavior of actual lithium metal anode[J]. Advanced Energy Materials, 2019, 9(44): 1902254. |
53 | KOO D, KWON B, LEE J, et al. Asymmetric behaviour of Li/Li symmetric cells for Li metal batteries[J]. Chemical Communications, 2019, 55(65): 9637-9640. |
54 | 王维坤, 王安邦, 金朝庆. 锂硫电池的实用化挑战[J]. 储能科学与技术, 2020, 9(2): 593-597. |
WANG Weikun, WANG Anbang, JIN Zhaoqing. Challenges on practicalization of lithium sulfur batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 593-597. | |
55 | 孙宇恒, 高铭达, 李慧, 等. 金属有机骨架材料在金属锂电池界面的应用[J]. 物理化学学报, 2021, 37(1): 45-60. |
SUN Yuheng, GAO Mingda, LI Hui, et al. Application of metal-organic frameworks to the interface of lithium metal batteries[J]. Acta Physico-Chimica Sinica, 2021, 37(1): 45-60. | |
56 | LYU Z Y, LIM G J H, GUO R, et al. 3D-printed electrodes for lithium metal batteries with high areal capacity and high-rate capability[J]. Energy Storage Materials, 2020, 24: 336-342. |
57 | WANG T S, LIU X B, ZHAO X D, et al. Regulating uniform Li plating/stripping via dual-conductive metal-organic frameworks for high-rate lithium metal batteries[J]. Advanced Functional Materials, 2020, 30(16): 2000786. |
58 | JIANG G Y, JIANG N, ZHENG N, et al. MOF-derived porous Co3O4-NC nanoflake arrays on carbon fiber cloth as stable hosts for dendrite-free Li metal anodes[J]. Energy Storage Materials, 2019, 23: 181-189. |
59 | DENG N P, WANG L Y, FENG Y, et al. Co-based and Cu-based MOFs modified separators to strengthen the kinetics of redox reaction and inhibit lithium-dendrite for long-life lithium-sulfur batteries[J]. Chemical Engineering Journal, 2020, 388: 124241. |
60 | 郭志坤. 人造SEI膜界面调控金属锂负极及电化学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
GUO Zhikun. Study on artificial SEI films interfacial contral for lithium metal anode and electrochemical properties[D]. Harbin: Harbin Institute of Technology, 2019. |
[1] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[2] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[3] | XU Peiyao, CHEN Biaoqi, KANKALA Ranjith Kumar, WANG Shibin, CHEN Aizheng. Research progress of nanomaterials for synergistic ferroptosis anticancer therapy [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3684-3694. |
[4] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Effects of graphene oxide/carbon nanotubes on the properties of several typical polymer materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3012-3028. |
[5] | SONG Minhang, ZHAO Lixin, XU Baorui, LIU Lin, ZHANG Shuang. Research progress of cyclone-enhanced separation based on disperse phase rearrangement at the inlet [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2219-2232. |
[6] | ZHANG Chenyu, WANG Ning, XU Hongtao, LUO Zhuqing. Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2332-2342. |
[7] | CHEN Shaohua, WANG Yihua, HU Qiangfei, HU Kun, CHEN Li’ai, LI Jie. Research progress on detection of Cr(Ⅵ) by electrochemically modified electrode [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2429-2438. |
[8] | CHEN Fei, LIU Chengbao, CHEN Feng, QIAN Junchao, QIU Yongbin, MENG Xianrong, CHEN Zhigang. Research progress on graphitic carbon nitride based materials for supercapacitor [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2566-2576. |
[9] | YU Jie, ZHANG Wenlong. Development status and progress of lithium ion battery separator [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1760-1768. |
[10] | YIN Ming, GUO Jin, PANG Jifeng, WU Pengfei, ZHENG Mingyuan. Deactivation mechanisms and stabilizing strategies for Cu based catalysts in reactions with hydrogen [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1860-1868. |
[11] | GE Weitong, LIAO Yalong, LI Mingyuan, JI Guangxiong, XI Jiajun. Preparation and dechlorination kinetics of Pd-Fe/MWCNTs bimetallic catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1885-1894. |
[12] | WAN Maohua, ZHANG Xiaohong, AN Xingye, LONG Yinying, LIU Liqin, GUAN Min, CHENG Zhengbai, CAO Haibing, LIU Hongbin. Research progress on the applications of MXene in the fields of biomass based energy storage nanomaterials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1944-1960. |
[13] | SI Yinfang, HU Yujie, ZHANG Fan, DONG Hao, SHE Yuehui. Biosynthesis of zinc oxide nanoparticles and its application to antibacterial [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2013-2023. |
[14] | XUE Bo, YANG Tingting, WANG Xuefeng. Research progress of polyaniline/carbon nanotube gas sensing materials [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1448-1456. |
[15] | CHEN Yi, GUO Yaoli, YE Haixing, LI Yuxuan, NIU Q.Jason. Application of two-dimensional nanomaterials in pervaporation desalination membrane [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1437-1447. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |