Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (6): 3058-3071.DOI: 10.16085/j.issn.1000-6613.2020-1384
• Chemical processes and equipment • Previous Articles Next Articles
MA Zhibin(), ZHANG Xueli, GUO Yanxia, CHENG Fangqin()
Received:
2020-07-20
Revised:
2021-01-12
Online:
2021-06-22
Published:
2021-06-06
Contact:
CHENG Fangqin
通讯作者:
程芳琴
作者简介:
马志斌(1987—),男,副教授,硕士生导师,研究方向为工业固废资源化利用。E-mail:基金资助:
CLC Number:
MA Zhibin, ZHANG Xueli, GUO Yanxia, CHENG Fangqin. Research progress on characteristics and element dissolution behaviors of circulating gluidized bed-derived fly ash[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3058-3071.
马志斌, 张学里, 郭彦霞, 程芳琴. 循环流化床粉煤灰理化特性及元素溶出行为研究进展[J]. 化工进展, 2021, 40(6): 3058-3071.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1384
1 | 彭苏萍. 中国煤炭资源开发与环境保护[J]. 科技导报, 2009, 27(17): 3. |
PENG Suping, China coal resource exploitation and environmental protection[J]. Science & Technology Review, 2009, 27(17): 3. | |
2 | 刘文华. 能源总量供需平稳能源结构继续优化[EB/OL]. , 2020. |
LIU W H. Supply and demand of total energy are steady energy structure continue to optimize[EB/OL]. , 2020. | |
3 | ZHAO Jihui, WANG Dongmin, LIAO Shucong. Effect of mechanical grinding on physical and chemical characteristics of circulating fluidized bed fly ash from coal gangue power plant[J]. Construction and Building Materials, 2015, 101: 851-860. |
4 | 煤矸石综合利用管理办法(2014年修订版) [EB/OL]. 煤矸石综合利用管理办法. |
Management measures for comprehensive utilization of coal gangue (revised edition in2014) [EB/OL]. | |
煤矸石综合利用管理办法. | |
5 | 单雪媛, 马志斌, 郭彦霞, 等. 不同粒径循环流化床粉煤灰组成特性研究[J]. 煤炭科学技术, 2018, 46(11): 232-238. |
SHAN Xueyuan, MA Zhibin, GUO Yanxia, et al. Study on characteristics of circulating fluidized bed pulverized fuel ash with different particle sizes[J]. Coal Science and Technology, 2018, 46(11): 232-238. | |
6 | 刘芳, 顾国维, 韩作振. 锅炉类型与粉煤灰的物相特征[J]. 同济大学学报(自然科学版), 2003, 31(8): 990-994. |
LIU Fang, GU Guowei, HAN Zuozhen. Type of boilers and characteristic of crystalline phases of fly ash[J]. Journal of Tongji University, 2003, 31(8): 990-994. | |
7 | MA Zhibin, SHAN Xueyuan, CHENG Fangqin. Distribution characteristics of valuable elements, Al, Li, and Ga, and rare earth elements in feed coal, fly ash, and bottom ash from a 300MW circulating fluidized bed boiler[J]. ACS Omega, 2019, 4(4): 6854-6863. |
8 | 郭强. 粉煤灰酸法提取氧化铝的工艺研究进展[J]. 洁净煤技术, 2015, 21(5): 118-121. |
GUO Qiang. Development on leach of alumina from fly ash by acid method[J]. Clean Coal Technology, 2015, 21(5): 118-121. | |
9 | ZHOU Mingkai, CHEN Peng, CHEN Xiao, et al. Study on hydration characteristics of circulating fluidized bed combustion fly ash (CFBCA)[J]. Construction and Building Materials, 2020, 251: 118993. |
10 | 张学里, 燕可洲, 马志斌, 等. 不同炉型潞安煤灰理化及酸/碱溶解特性[J]. 煤炭转化, 2020, 43(1): 81-88. |
ZHANG Xueli, YAN Kezhou, MA Zhibin, et al. Physicochemical and acid/alkali dissolution characteristics of Lu’an coal ash from different types of furnace[J]. Coal Conversion, 2020, 43(1): 81-88. | |
11 | 李辉, 商博明, 冯绍航, 等. 粉煤灰理化性质及微观颗粒形貌研究[J]. 粉煤灰, 2006, 18(5): 18-20. |
LI Hui, SHANG Boming, FENG Shaohang, et al. Research on physical and chemical properties and microstructure of fly ash grain[J]. Coal Ash, 2006, 18(5): 18-20. | |
12 | 王辉. 流化床粉煤灰与煤粉炉粉煤灰理化性质研究[J]. 能源与节能, 2017(9): 72-74. |
WANG Hui. Research on the physical and chemical properties of fluidized bed fly ash and fly ash of pulverized coal boiler[J]. Energy and Energy Conservation, 2017(9): 72-74. | |
13 | 王恩. 煤粉炉粉煤灰与循环流化床粉煤灰矿物学性质比较[J]. 洁净煤技术, 2016, 22(4): 26-29. |
WANG En. Mineralogy properties comparison of PC fly ash and CFB fly ash[J]. Clean Coal Technology, 2016, 22(4): 26-29. | |
14 | ZHANG Jianbo, LI Huiquan, LI Shaopeng, et al. Mechanism of mechanical-chemical synergistic activation for preparation of mullite ceramics from high-alumina coal fly ash[J]. Ceramics International, 2018, 44(4): 3884-3892. |
15 | MA Zhibin, ZHANG Sen, ZHANG Huirong, et al. Novel extraction of valuable metals from circulating fluidized bed-derived high-alumina fly ash by acid-alkali-based alternate method[J]. Journal of Cleaner Production, 2019, 230: 302-313. |
16 | GAO X, YU Q L, BROUWERS H J H. Apply 29Si, 27Al MAS NMR and selective dissolution in identifying the reaction degree of alkali activated slag-fly ash composites[J]. Ceramics International, 2017, 43: 12408-12419. |
17 | 薛群虎, 杨源, 袁广亮. 粉煤灰理化性质及形态学研究[J]. 粉煤灰综合利用, 2008, 21(3): 3-6. |
XUE Qunhu, YANG Yuan, YUAN Guangliang. Research on the physical、chemical properties and morphology of fly ash[J]. Fly Ash Comprehensive Utilization, 2008, 21(3): 3-6. | |
18 | MANURUNG H, ROSITA W, ANGGARA F, et al. Leaching of REY from non-magnetic coal fly ash with acetic acid[J]. IOP Conference Series: Materials Science and Engineering, 2020, 778: 012005-012014. |
19 | KUMAR A, AGRAWAL S, DHAWAN N. Processing of coal fly ash for the extraction of alumina values[J]. Journal of Sustainable Metallurgy, 2020, 6(2): 294-306. |
20 | YANG Chennian, ZHANG Jianbo, LI Shaopeng, et al. Mechanisms of mechanochemical activation during comprehensive utilization of high-alumina coal fly ash[J]. Waste Management, 2020, 116: 190-195. |
21 | ZHANG Zhikun, WANG Jing, LIU Lina, et al. Preparation of additive-free glass-ceramics from MSW incineration bottom ash and coal fly ash[J]. Construction and Building Materials, 2020, 254: 119345-119354. |
22 | GUO Chunbin, ZHAO Lu, YANG Jianlin, et al. A novel perspective process for alumina extraction from coal fly ash via potassium pyrosulfate calcination activation method[J]. Journal of Cleaner Production, 2020, 271: 122703-122714. |
23 | OKOYE F N, PRAKASH S, SINGH N B. Durability of fly ash based geopolymer concrete in the presence of silica fume[J]. Journal of Cleaner Production, 2017, 149: 1062-1067. |
24 | DUAN Ping, YAN Chunjie, ZHOU Wei, et al. Compressive strength and microstructure of fly ash based geopolymer blended with silica fume under thermal cycle[J]. Cement and Concrete Composites, 2017, 78: 108-119. |
25 | DUAN Ping, YAN Chunjie, ZHOU Wei, et al. An investigation of the microstructure and durability of a fluidized bed fly ash-metakaolin geopolymer after heat and acid exposure[J]. Materials & Design, 2015, 74: 125-137. |
26 | ZHANG W Y, CHOI H, SAGAWA T, et al. Compressive strength development and durability of an environmental load-reduction material manufactured using circulating fluidized bed ash and blast-furnace slag[J]. Construction & Building Materials, 2017, 146: 102-113. |
27 | CHEN Xuemei, GAO Jianming, YAN Yun, et al. Investigation of expansion properties of cement paste with circulating fluidized bed fly ash[J]. Construction and Building Materials, 2017, 157: 1154-1162. |
28 | 边炳鑫, 曹敏, 艾淑艳, 等. 粉煤灰理化性质及其综合利用[J]. 煤矿环境保护, 1997, 11(3): 44-47. |
BIAN Bingxin, CAO Min, AI Shuyan, et al. Physical and chemical properties of fly ash and its comprehensive utilization[J]. Coal Mine Energy Environmental Protection, 1997, 11(3): 44-47. | |
29 | 张灿强. 不同种类粉煤灰特性的实验研究[D]. 南京: 东南大学,2017. |
ZHANG Canqiang. Experimental study on characteristics of different kinds of fly ash[D]. Nanjing: Southeast University, 2017. | |
30 | 单雪媛. 粉煤灰中有价元素分布规律及浸出行为研究[D]. 太原: 山西大学, 2019. |
SHAN Xueyuan. Study on distribution and extraction characteristics of valuable elements in fly ash[D]. Taiyuan: Shanxi University, 2019. | |
31 | PALOMO Á, ALONSO S, FERNANDEZ-JIMÉNEZ A, et al. Alkaline activation of fly ashes: NMR study of the reaction products[J]. Journal of the American Ceramic Society, 2004, 87(6): 1141-1145. |
32 | CRIADO M, FERNÁNDEZ-JIMÉNEZ A, PALOMO A, et al. Effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Part II: 29Si MAS-NMR survey[J]. Microporous and Mesoporous Materials, 2008, 109(1/2/3): 525-534. |
33 | REINIK J, HEINMAA I, MIKKOLA J P, et al. Hydrothermal alkaline treatment of oil shale ash for synthesis of tobermorites[J]. Fuel, 2007, 86(5/6): 669-676. |
34 | 陈朝轶, 吕莹璐, 李军旗, 等. 用硫酸从粉煤灰中直接浸出氧化铝[J]. 湿法冶金, 2013, 32(5): 309-311. |
CHEN Chaoyi, Yinglu LYU, LI Junqi, et al. Direct leaching of alumina from fly ash using sulfuric acid[J]. Hydrometallurgy of China, 2013, 32(5): 309-311. | |
35 | 邹京伦, 张双双, 贾雯雯, 等. 粉煤灰制备净水剂聚合氯化铝铁的研究[J]. 应用化工, 2012, 41(4): 649-651, 655. |
ZOU Jinglun, ZHANG Shuangshuang, JIA Wenwen, et al. Research on preparation of PAFC from fly ash[J]. Applied Chemical Industry, 2012, 41(4): 649-651, 655. | |
36 | 王金龙, 任瑞晨, 陈晨, 等. 循环流化床灰制备聚合氯化铝铁絮凝剂[J]. 环境工程学报, 2012, 6(9): 3325-3328. |
WANG Jinlong, REN Ruichen, CHEN Chen, et al. Preparation of polymeric aluminum ferric chloride from circulating fluidized bed ash[J]. Chinese Journal of Environmental Engineering, 2012, 6(9): 3325-3328. | |
37 | 李彩霞, 王金龙, 何朋, 等. 循环流化床灰制备聚合双酸铝铁絮凝剂[J]. 环境工程学报, 2013, 7(5): 362-366. |
LI Caixia, WANG Jinlong, HE Peng, et al. Preparation of polymeric aluminum ferric chloride sulfate coagulant from circulating fluidized bed ash[J]. Chinese Journal of Environmental Engineering, 2013, 7(5): 362-366. | |
38 | 罗清. 循环流化床锅炉灰渣盐酸浸出过程研究[D].上海: 华东理工大学, 2013. |
LUO Qing. Study on the leaching process of CFB ash with hydrochloric acid[D]. Shanghai: East China University of Science and Technology, 2013. | |
39 | SEIDEL A, ZIMMELS Y. Mechanism and kinetics of aluminum and iron leaching from coal fly ash by sulfuric acid[J]. Chemical Engineering Science, 1998, 53(22): 3835-3852. |
40 | MA Zhibin, ZHANG Xueli, GUO Yanxia, et al. Extraction of valuable metals and preparation of mesoporous materials from circulating fluidized bed-derived fly ash via an acid-alkali-based alternate method[J]. ACS Omega, 2020, 5(48): 31295-31305. |
41 | CUI Li, GUO Yanxia, WANG Xuming, et al. Dissolution kinetics of aluminum and iron from coal mining waste by hydrochloric acid[J]. Chinese Journal of Chemical Engineering, 2015, 23(3): 590-596. |
42 | 王小芳. 基于CFB粉煤灰提铝的铁杂质分离基础研究[D]. 太原: 山西大学, 2020. |
WANG Xiaofang. Study on the separation of iron impurities based on the extraction of aluminum from CFB fly ash[D]. Taiyuan: Shanxi University, 2020. | |
43 | 王金龙, 任瑞晨, 李彩霞, 等. 循环流化床灰中铝的浸出行为及动力学研究[J]. 硅酸盐通报, 2012, 31(2): 42-46. |
WANG Jinlong, REN Ruichen, LI Caixia, et al. Leaching behavior and kinetics of aluminum from circulating fluidized bed ash[J]. Bulletin of the Chinese Ceramic Society, 2012, 31(2): 42-46. | |
44 | 李龙涛, 曾伟强, 施正伦, 等. 高碳石煤循环流化床焙烧灰渣酸浸提钒试验研究[J]. 稀有金属, 2014, 38(1): 123-129. |
LI Longtao, ZENG Weiqiang, SHI Zhenglun, et al. Acid leaching for extracting vanadium from residue of high-carbon stone coal after cfb combustion[J]. Chinese Journal of Rare Metals, 2014, 38(1): 123-129. | |
45 | LUO Qing, CHEN Guilan, SUN Yuzhu, et al. Dissolution kinetics of aluminum, calcium, and iron from circulating fluidized bed combustion fly ash with hydrochloric acid[J]. Industrial & Engineering Chemistry Research, 2013, 52(51): 18184-18191. |
46 | 王蕾. 利用高铝粉煤灰制备氧化硅气凝胶的实验研究[D]. 北京: 中国地质大学(北京), 2006. |
WANG Lei. Preparation of silica aerogel from high-alumina fly ash: an experimental study[D]. Beijing: China University of Geosciences(Beijing), 2006. | |
47 | 李文清, 邹萍, 池君洲, 等. 用盐酸从循环流化床粉煤灰中浸出氧化铝[J]. 湿法冶金,2020, 39(2): 110-113. |
LI Wenqing, ZOU Ping, CHI Junzhou, et al. Leaching of alumina from circulating fluidized bed fly ash using hydrochloric acid[J]. Hydrometallurgy of China, 2020, 39(2): 110-113. | |
48 | XU Hui, LI Qin, SHEN Lifeng, et al. Low-reactive circulating fluidized bed combustion (CFBC) fly ashes as source material for geopolymer synthesis[J]. Waste Management, 2010, 30(1): 57-62. |
49 | 邵宁宁. 碱激发粉煤灰过程机理及其发泡胶凝材料的高性能化[D]. 北京: 中国矿业大学(北京), 2017. |
SHAO Ningning. Alkaline activation reaction mechanism of fly ash and high performance study for its foamed cementious materials[D]. Beijing: China University of Mining & Technology (Beijing), 2017. | |
50 | 薄春丽, 郑诗礼, 马淑花, 等. 高铝粉煤灰铝硅化合物在稀碱溶液中的浸出行为[J]. 过程工程学报, 2012, 12(4): 613-617. |
BO Chunli, ZHENG Shili, MA Shuhua, et al. Leaching behaviors of aluminum and silicon compounds in aluminum-rich fly ash in dilute alkaline solution[J]. The Chinese Journal of Process Engineering, 2012, 12(4): 613-617. | |
51 | 张香兰, 杨国明, 吕飞勇, 等. 循环流化床粉煤灰在碱液中硅、铝的溶出及聚合研究[J]. 洁净煤技术, 2018, 24(3): 108-113. |
ZHANG Xianglan, YANG Guoming, Feiyong LYU, et al. Dissolution and polymerization of Si and Al in alkaline solution by circulating fluidized bed fly ash[J]. Clean Coal Technology, 2018, 24(3): 108-113. | |
52 | 杜淄川, 李会泉, 包炜军,等. 高铝粉煤灰碱溶脱硅过程反应机理[J]. 过程工程学报, 2011(3): 442-447. |
DU Zichuan, LI Huiquan, BAO Weijun, et al. Reaction mechanism of desilification process of high aluminum fly ash by alkali solution[J]. The Chinese Journal of Process Engineering, 2011(3): 442-447. | |
53 | JIANG Zhouqing, YANG Jing, MA Hongwen, et al. Reaction behaviour of Al2O3 and SiO2 in high alumina coal fly ash during alkali hydrothermal process[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(6): 2065-2072. |
54 | WILIŃSKA I, PACEWSKA B. Comparative investigation of reactivity of different kinds of fly ash in alkaline media[J]. Journal of Thermal Analysis and Calorimetry, 2019, 138(6): 3857-3872. |
55 | 李歌, 马鸿文, 刘浩, 等. 粉煤灰碱溶脱硅液碳化法制备白炭黑的实验与硅酸聚合机理研究[J]. 化工学报, 2011, 62(12): 3580-3587. |
LI Ge, MA Hongwen, LIU Hao, et al. Preparation of precipitated silica from desilicated solution of high-alumina fly ash by dissolution with alkali: experiment and principle of polymerization of silicic acid[J]. CIESC Journal, 2011, 62(12): 3580-3587. |
[1] | HUI Bo, HOU Hongyi, ZHANG Tao, CHE Shengwen. Drying characteristics of cylindrical annular pulsating heat pipe [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 33-40. |
[2] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[3] | ZHENG Xin, JIA Li, WANG Yanlin, ZHANG Jingchao, CHEN Shihu, QIAO Xiaolei, FAN Baoguo. Effect of sewage sludge mixed with coal slime on heavy metal retention characteristics [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3233-3241. |
[4] | XIU Haoran, WANG Yungang, BAI Yanyuan, ZOU Li, LIU Yang. Combustion characteristics and ash melting behavior of Zhundong coal/municipal sludge blended combustion [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3242-3252. |
[5] | ZHAN Yong, WANG Hui, WEI Tingting, ZHU Xingyu, WANG Xiankai, CHEN Sisi, DONG Bin. In situ reduction effect of Mn2+ enhanced ozone conditioning on sludge in biological treatment process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3253-3260. |
[6] | WANG Wenhao, HE Lidong, WANG Xuezhi, YAN Ze, JIA Xingyun, LIU Chunrui. Leakage characteristics of labyrinth, honeycomb and honeycomb-labyrinth seals under eccentric conditions [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1698-1707. |
[7] | ZHANG Chengsong, ZHANG Jing, GONG Bin, LI Mingyang, YUAN Jiaxin, LI Hongye. Vibration characteristics of self-priming jet flexible impeller [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1728-1738. |
[8] | TIAN Fang, GUO Guang, DING Keqiang, YANG Feng, LIU Chong, WANG Huiya. Isolation of halophilic bacterium and their decolorization characteristics and mechanism of azo dyes [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2115-2121. |
[9] | ZOU Yincai, LI Qingguo, WU Hui, ZHONG Xiaobing, CHEN Xianzhi. Heat transfer simulation and optimization of missile borne phase change heat sink [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1248-1256. |
[10] | LI Guangwen, HUA Qucheng, HUANG Zuoxin, DA Zhijian. Progress on polymethacrylate as viscosity index improvers for lube oil [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1562-1571. |
[11] | XIE Yingchun, MA Hongting, XU Chang, MA Shuo, CHEN Mo, LIU Jun, SUN Guoqiang. Analysis of heat transfer characteristics in vertical tube of seepage falling film evaporative condenser [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1187-1194. |
[12] | LI Jingjing, ZHAO Yao, XU Fengchi, LI Kangjian. Heavy metal leaching characteristics of porous asphalt mixture containing MSWI-BAA under different stormwater runoff flow rates [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5520-5530. |
[13] | ZHANG Zhe, LANG Yuanlu, WU Qiaoyan, CHEN Jianan, JI Hongwei, LI Xingbo, MA Yan, TAO Liouqian, QIAO Chunyan, WANG Jinyue. Analysis of surface and interface evolution characteristics of freezing droplet during melting [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 1-14. |
[14] | ZHANG Xinyuan, ZHANG Bolin, ZHANG Shengen. Research progress on recovery of spent vanadium-titanium based deNO x catalyst with alkaline process [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 580-594. |
[15] | FU Chunlong, WANG Songjiang, LI Guozhi. Research progress on combustion technology of coal gasification fine slag [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 516-523. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |