Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (S1): 1-14.DOI: 10.16085/j.issn.1000-6613.2021-2021
• Chemical processes and equipment • Previous Articles Next Articles
ZHANG Zhe(), LANG Yuanlu, WU Qiaoyan, CHEN Jianan, JI Hongwei, LI Xingbo, MA Yan, TAO Liouqian, QIAO Chunyan, WANG Jinyue
Received:
2021-09-26
Revised:
2022-03-10
Online:
2022-11-10
Published:
2022-10-20
Contact:
ZHANG Zhe
张哲(), 郎元路, 吴巧燕, 陈佳楠, 计宏伟, 李星泊, 马妍, 陶柳倩, 谯春艳, 王瑾悦
通讯作者:
张哲
作者简介:
张哲(1975—),男,博士,教授,研究生导师,研究方向为换热器强化换热。E-mail:zhangzhe@tjcu.edu.cn。
基金资助:
CLC Number:
ZHANG Zhe, LANG Yuanlu, WU Qiaoyan, CHEN Jianan, JI Hongwei, LI Xingbo, MA Yan, TAO Liouqian, QIAO Chunyan, WANG Jinyue. Analysis of surface and interface evolution characteristics of freezing droplet during melting[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 1-14.
张哲, 郎元路, 吴巧燕, 陈佳楠, 计宏伟, 李星泊, 马妍, 陶柳倩, 谯春艳, 王瑾悦. 冻结液滴融化过程中的表面及界面演化特性分析[J]. 化工进展, 2022, 41(S1): 1-14.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2021
温度 /℃ | 热导率 | 密度 | 比热容 | 黏度 |
---|---|---|---|---|
2 | 0.556 | 4.208 | 1.6728 | |
4 | 0.558 | 4.204 | 1.5674 | |
6 | 0.565 | 1 | 4.199 | 1.4728 |
11 | 0.577 | 4.190 | 1.2713 | |
16 | 0.589 | 4.186 | 1.1111 |
温度 /℃ | 热导率 | 密度 | 比热容 | 黏度 |
---|---|---|---|---|
2 | 0.556 | 4.208 | 1.6728 | |
4 | 0.558 | 4.204 | 1.5674 | |
6 | 0.565 | 1 | 4.199 | 1.4728 |
11 | 0.577 | 4.190 | 1.2713 | |
16 | 0.589 | 4.186 | 1.1111 |
组件名称 | 参数名称 | 参数值及名称 |
---|---|---|
摄像机 | 型号 | Allied Vision Stingray F-046B |
精度 | 8.3μm | |
最大帧率 | 61fps | |
变焦倍率 | 6.5 | |
传感器型号 | Sony ICX415 | |
接触角精度 | 0.3° | |
接触角分辨率 | 0.01° |
组件名称 | 参数名称 | 参数值及名称 |
---|---|---|
摄像机 | 型号 | Allied Vision Stingray F-046B |
精度 | 8.3μm | |
最大帧率 | 61fps | |
变焦倍率 | 6.5 | |
传感器型号 | Sony ICX415 | |
接触角精度 | 0.3° | |
接触角分辨率 | 0.01° |
测试材料 | 冷表面温度/℃ | 环境湿度/% | 冻结时间/s |
---|---|---|---|
纯铝片 | -18 | 35 | 75 |
镀锌铁片 | -18 | 35 | 88 |
有机玻璃 | -18 | 35 | 350 |
聚氯乙烯 | -18 | 35 | 278 |
测试材料 | 冷表面温度/℃ | 环境湿度/% | 冻结时间/s |
---|---|---|---|
纯铝片 | -18 | 35 | 75 |
镀锌铁片 | -18 | 35 | 88 |
有机玻璃 | -18 | 35 | 350 |
聚氯乙烯 | -18 | 35 | 278 |
物性参数 | 纯铝板 | 镀锌板 | 聚氯乙烯 | 有机玻璃 |
---|---|---|---|---|
热导率 | 237 | 46.52 | 0.14 | 0.18 |
密度 | 2.7 | 7.25 | 1.4 | 1.18 |
比热容 | 0.39 | 0.091 | 1.05 | 1.424 |
平均表面粗糙度/μm | 0.218 | 0.557 | 0.029 | 0.013 |
物性参数 | 纯铝板 | 镀锌板 | 聚氯乙烯 | 有机玻璃 |
---|---|---|---|---|
热导率 | 237 | 46.52 | 0.14 | 0.18 |
密度 | 2.7 | 7.25 | 1.4 | 1.18 |
比热容 | 0.39 | 0.091 | 1.05 | 1.424 |
平均表面粗糙度/μm | 0.218 | 0.557 | 0.029 | 0.013 |
1 | WU X M, DAI W T, SHEN X F, et al. Visual and theoretical analyses of the early stage of frost formation on cold surfaces[J]. Journal of Enhanced Heat Transfer, 2007, 14(3): 257-268. |
2 | JHEE S, LEE K S, KIM W S. Effect of surface treatments on the frosting/defrosting behavior of a fin-tube heat exchanger[J]. International Journal of Refrigeration, 2007, 25: 1047-1053. |
3 | JING T, KIM Y, LEE S, et al. Frosting and defrosting on rigid super-hydrophobic surface[J]. Applied Surface Science, 2013, 276: 27-42. |
4 | RAHMAN M A, JACOBI A M. Drainage of frost melt water from vertical brass surfaces with parallel microgrooves[J]. International Journal of Heat and Mass Transfer, 2012, 55(5/6): 1596-1605. |
5 | RAHMAN M A, JACOBI A M. Study of frost properties and frost melt water drainage on micro-grooved brass surfaces in multiple frost/defrost/refrost cycles[J]. Applied Thermal Engineering, 2014, 64(1/2): 453-461. |
6 | RAHMAN M A, JACOBI A M. Experimental study on frosting/defrosting characteristics of micro-grooved metal surfaces[J]. International Journal of Refrigeration, 2015, 50: 44-56. |
7 | LIU Y, KULACKI F. An experimental study of defrost on treated surfaces: effect of frost slumping[J]. International Journal of Heat and Mass Transfer, 2018, 119: 880-890. |
8 | SATKAR D K, FARZANEH M. Superhydrophobic coatings with reduced ice adhesion[J]. Journal of Adhesion Science and Technology, 2009, 23(9): 1215-1237. |
9 | WANG F, LIANG C H, YANG M T, et al. Preliminary study of a novel defrosting method for air source heat pumps based on superhydrophobic fin[J]. Applied Thermal Engineering, 2015, 90: 136-144. |
10 | CHEN M M, YANG Z G, JIN Z Y. An experimental investigation of the melting process of an ice bead on the smooth and micro-grooved surfaces under a hot shear flow[J]. International Journal of Heat and Mass Transfer, 2019, 144: 190-210. |
11 | STOYANOV D B, NIXON J D, SARLAK H. Analysis of derating and anti-icing strategies for wind turbines in cold climates[J]. Applied Energy, 2021, 288: 116610. |
12 | FAKOREDE O, FEGER Z, IBRAHIM H, et al. Ice protection systems for wind turbines in cold climate: characteristics, comparisons and analysis[J]. Renewable and Sustainable Energy Reviews, 2016, 65: 662-675. |
13 | HOMOLA M C, NICKLASSON P J, SUNDSDO P A. Ice sensors for wind turbines[J]. Cold Regions Science and Technology, 2006, 46(2): 125-131. |
14 | JIN Z Y, ZHANG H H, YANG Z G. The impact and freezing processes of a water droplet on a cold surface with different inclined angles[J]. International Journal of Heat and Mass Transfer, 2016, 103: 886-893. |
15 | JIN Z Y, JIN S Y, YANG Z G. An experimental investigation into the icing and melting process of a water droplet impinging onto a superhydrophobic surface[J]. Science China(Physics, Mechanics & Astronomy), 2013, 56(11): 2047-2053. |
16 | DU Q, CHEN M M, XIE J X. Modelling grain growth with the generalized Kampmann-Wagner numerical model[J]. Computational Materials Science, 2021, 186: 110066. |
17 | IVALL J, RENAULT-CRISPO J S, COULOMBE S, et al. Ice-dependent liquid-phase convective cells during the melting of frozen sessile droplets containing water and multiwall carbon nanotubes[J]. International Journal of Heat and Mass Transfer, 2016, 101: 27-37. |
18 | KUMARESAN V, VELRAJ R, DAS S K. The effect of carbon nanotubes in enhancing the thermal transport properties of PCM during solidification[J]. Heat and Mass Transfer, 2012, 48(8): 1345-1355. |
19 | LANGMUIR I. The role of attractive and repulsive forces in the formation of tactoids, thixotropic gels, protein crystals and coacervates[J]. Journal of Chemical Physics, 1938, 6: 873-896. |
20 | MEYER E E, ROSENBENBERG K J, ISRAELACHVILI J. Recent progress in understanding hydrophobic interactions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103: 15739-15746. |
21 | DERIAGUIN B, OBUCHOV E. Ultramicrometric analysis of solvate layers and elementary expansion effects[J]. Acta Physica Chim, 1936, 5: 1-22. |
22 | 张雨龙, 张鹏, 马非. 冰晶颗粒的浮升融化过程[J]. 上海交通大学学报, 2020, 54(5): 473-480. |
ZHANG Y L, ZHANG P, MA F. Floating and melting process of an ice crystal particle[J]. Journal of Shanghai Jiaotong University, 2020, 54(5): 473-480. | |
23 | GUO W M, ZHANG Y L, MENG Z N, et al. Non-uniform melting of a spherical ice particle in free ascending[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119097. |
24 | XU H, SHIRVANYANTS D, BEERS K L, et al. Molecular visualization of conformation-triggered flow instability[J]. Physical Review Letters, 2005, 94: 237801. |
25 | 王先领, 王瑾, 张云超, 等. 聚甲基丙烯酸三氟乙酯单体与分子链在金属有机框架中吸附及取向特性的理论研究[J]. 原子与分子物理学报, 2020, 37(5): 649-656. |
WANG X L, WANG J, ZHANG Y C, et al. Theoretical study on adsorption and orientation properties of poly (2, 2, 2-trifluoroethyl methacrylate) and its molecular chain within metal-organic frameworks[J]. Journal of Atomic and Molecular Physics, 2020, 37(5): 649-656. | |
26 | 赵亚奇, 冯巧, 杜玲枝, 等. 关于影响高分子材料玻璃化转变温度因素的教学分析[J]. 高分子通报, 2012(6): 107-110. |
ZHAO Y Q, FENG Q, DU L Q, et al. Teaching analysis on factors affecting the glass transition temperature of polymer materials[J]. Polymer Bulletin, 2012(6): 107-110. | |
27 | 齐维靖, 张萌, 潘拴, 等. InGaN/GaN超晶格厚度对Si衬底GaN基蓝光发光二极管光电性能的影响[J]. 物理学报, 2016, 65(7): 318-325. |
QI W J, ZHANG M, PAN S, et al. Influences of InGaN/GaN sup erlattice thickness on the electronic and optical prop erties of GaN based blue light-emitting dio des grown on Si substrates[J]. Acta Physica Sinica, 2016, 65(7): 318-325. | |
28 | 陈洪生, 龙冲生, 肖红星. 金属基弥散燃料元件失稳肿胀的静态弹塑性模型[J]. 核动力工程, 2021, 42(3): 74-79. |
CHEN H S, LONG C S, XIAO H X. Static elastoplastic model of metal matrix dispersion fuel element under unstable swelling condition[J]. Nuclear Power Engineering, 2021, 42(3): 74-79. |
[1] | WANG Jiaqing, SONG Guangwei, LI Qiang, GUO Shuaicheng, DAI Qingli. Rubber-concrete interface modification method and performance enhancement path [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 328-343. |
[2] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[3] | LIU Yang, WANG Yungang, XIU Haoran, ZOU Li, BAI Yanyuan. Optimal carbonization process of walnut shell based on dynamic analysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 94-103. |
[4] | ZHANG Chao, YANG Peng, LIU Guanglin, ZHAO Wei, YANG Xufei, ZHANG Wei, YU Bo. Influence of surface microstructure on arrayed microjet flow boiling heat transfer [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4193-4203. |
[5] | LI Xuejia, LI Peng, LI Zhixia, JIN Dunshang, GUO Qiang, SONG Xufeng, SONG Peng, PENG Yuelian. Experimental comparation on anti-scaling and anti-wetting ability of hydrophilic and hydrophobic modified membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4458-4464. |
[6] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[7] | ZHANG Kai, LYU Qiunan, LI Gang, LI Xiaosen, MO Jiamei. Morphology and occurrence characteristics of methane hydrates in the mud of the South China Sea [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3865-3874. |
[8] | LI Ruidong, HUANG Hui, TONG Guohu, WANG Yueshe. Hygroscopic properties and corrosion behavior of ammonium salt in a crude oil distillation column [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2809-2818. |
[9] | FU Shurong, WANG Lina, WANG Dongwei, LIU Rui, ZHANG Xiaohui, MA Zhanwei. Oxygen evolution cocatalyst enhancing the photoanode performances for photoelectrochemical water splitting [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2353-2370. |
[10] | LI Xue, WANG Yanjun, WANG Yuchao, TAO Shengyang. Recent advances in bionic surfaces for fog collection [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2486-2503. |
[11] | ZHAO Yao, ZHOU Zhihui, WU Hongdan, HU Chuanzhi, ZHANG Guochun, WU Ruipeng. Response surface analysis and optimization of membrane permeation vaporization by Silicalite-1 molecular sieve [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2586-2594. |
[12] | MA Runmei, YANG Haichao, LI Zhengda, LI Shuangxi, ZHAO Xiang, ZHANG Guoqing. Influence analysis of coating on deformation and frictional wear of mechanical seal end for high-speed bearing cavity [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1688-1697. |
[13] | LIANG Yijing, MA Yan, LU Zhanfeng, QIN Fusheng, WAN Junjie, WANG Zhiyuan. Experimental investigation on the anti-coking performance of La1-x Sr x MnO3 perovskite coating [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1769-1778. |
[14] | WANG Jia, PENG Chong, TANG Lei, LU Anhui. Modification of the active phase structure of residue hydrogenation catalyst and its catalytic performance [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1811-1821. |
[15] | WU Xia, JIANG Xuntao, ZHANG Yuxiao, LYU Huiyuan, HUANG Fang, YU Xiaoxi. Protein crystallization research based on droplet microfluidics [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2024-2030. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |