Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (S1): 94-103.DOI: 10.16085/j.issn.1000-6613.2023-0809
• Chemical processes and equipment • Previous Articles Next Articles
LIU Yang(), WANG Yungang(), XIU Haoran, ZOU Li, BAI Yanyuan
Received:
2023-05-15
Revised:
2023-06-21
Online:
2023-11-30
Published:
2023-10-25
Contact:
WANG Yungang
通讯作者:
王云刚
作者简介:
刘阳(1995—),男,博士研究生,研究方向为生物质高效利用等。E-mail:707187439@qq.com。
基金资助:
CLC Number:
LIU Yang, WANG Yungang, XIU Haoran, ZOU Li, BAI Yanyuan. Optimal carbonization process of walnut shell based on dynamic analysis[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 94-103.
刘阳, 王云刚, 修浩然, 邹立, 白彦渊. 基于动力学分析的核桃壳最佳炭化工艺[J]. 化工进展, 2023, 42(S1): 94-103.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0809
原料 | 工业分析(质量分数)/% | 元素分析(质量分数)/% | Qnet·ar/MJ·kg -1 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Aad | Vad | Mad | FCad | C | H | O | N | S | ||
核桃壳 | 0.28 | 70.73 | 7.77 | 21.22 | 48.4 | 6.18 | 44.29 | 0.33 | 0.01 | 17.44 |
原料 | 工业分析(质量分数)/% | 元素分析(质量分数)/% | Qnet·ar/MJ·kg -1 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Aad | Vad | Mad | FCad | C | H | O | N | S | ||
核桃壳 | 0.28 | 70.73 | 7.77 | 21.22 | 48.4 | 6.18 | 44.29 | 0.33 | 0.01 | 17.44 |
参数 | 数值 | |||
---|---|---|---|---|
5℃·min -1 | 10℃·min -1 | 20℃·min -1 | 30℃·min -1 | |
Td/℃ | 228.5 | 247.8 | 259.2 | 267.3 |
Te/℃ | 389.9 | 395.1 | 405.3 | 416.6 |
TP/℃ | 346.3 | 361.7 | 365.2 | 367.7 |
ΔWmax/% | 51.1 | 52.7 | 52.3 | 52.9 |
η∞/% | 76.6 | 77.0 | 76.9 | 77.4 |
(dW/dt)max/%·min -1 | 0.71 | 0.69 | 0.69 | 0.70 |
(dW/dt)mean/%·min -1 | 0.1 | 0.1 | 0.1 | 0.1 |
P/10 -5%3·min -2·℃ -1 | 9.8 | 10.1 | 9.5 | 9.3 |
参数 | 数值 | |||
---|---|---|---|---|
5℃·min -1 | 10℃·min -1 | 20℃·min -1 | 30℃·min -1 | |
Td/℃ | 228.5 | 247.8 | 259.2 | 267.3 |
Te/℃ | 389.9 | 395.1 | 405.3 | 416.6 |
TP/℃ | 346.3 | 361.7 | 365.2 | 367.7 |
ΔWmax/% | 51.1 | 52.7 | 52.3 | 52.9 |
η∞/% | 76.6 | 77.0 | 76.9 | 77.4 |
(dW/dt)max/%·min -1 | 0.71 | 0.69 | 0.69 | 0.70 |
(dW/dt)mean/%·min -1 | 0.1 | 0.1 | 0.1 | 0.1 |
P/10 -5%3·min -2·℃ -1 | 9.8 | 10.1 | 9.5 | 9.3 |
转化率 | 拟合曲线 | 活化能E/kJ·mol -1 | 线性相关系数R2 |
---|---|---|---|
0.05 | y=10.47x+21.07 | 40.92942 | 0.96724 |
0.1 | y=11.32x+18.37 | 74.23701 | 0.96137 |
0.15 | y=14.93x+18.52 | 123.99989 | 0.96492 |
0.2 | y=16.99x+21.47 | 141.1927 | 0.97774 |
0.25 | y=23.23x+31.85 | 192.93921 | 0.99983 |
0.3 | y=19.52x+24.87 | 168.19976 | 0.97851 |
0.35 | y=20.73x+26.42 | 172.21079 | 0.96724 |
0.4 | y=22.85x+29.43 | 175.81415 | 0.96137 |
0.45 | y=25.21x+32.78 | 176.44426 | 0.9587 |
0.5 | y=25.37x+32.41 | 210.77128 | 0.95368 |
0.55 | y=26.29x+33.33 | 218.43556 | 0.95423 |
0.6 | y=24.82x+30.51 | 206.15721 | 0.95912 |
0.65 | y=25.81x+30.69 | 214.45144 | 0.96901 |
0.7 | y=25.86x+31.39 | 214.83034 | 0.9575 |
0.75 | y=26.27x+31.62 | 218.23444 | 0.95142 |
0.8 | y=10.47x+21.07 | 230.85888 | 0.91083 |
0.85 | y=27.79x+33.49 | 383.15627 | 0.94912 |
0.9 | y=40.92x+47.70 | 339.92115 | 0.95142 |
0.95 | y=53.78x+57.11 | 280.62832 | 0.99983 |
转化率 | 拟合曲线 | 活化能E/kJ·mol -1 | 线性相关系数R2 |
---|---|---|---|
0.05 | y=10.47x+21.07 | 40.92942 | 0.96724 |
0.1 | y=11.32x+18.37 | 74.23701 | 0.96137 |
0.15 | y=14.93x+18.52 | 123.99989 | 0.96492 |
0.2 | y=16.99x+21.47 | 141.1927 | 0.97774 |
0.25 | y=23.23x+31.85 | 192.93921 | 0.99983 |
0.3 | y=19.52x+24.87 | 168.19976 | 0.97851 |
0.35 | y=20.73x+26.42 | 172.21079 | 0.96724 |
0.4 | y=22.85x+29.43 | 175.81415 | 0.96137 |
0.45 | y=25.21x+32.78 | 176.44426 | 0.9587 |
0.5 | y=25.37x+32.41 | 210.77128 | 0.95368 |
0.55 | y=26.29x+33.33 | 218.43556 | 0.95423 |
0.6 | y=24.82x+30.51 | 206.15721 | 0.95912 |
0.65 | y=25.81x+30.69 | 214.45144 | 0.96901 |
0.7 | y=25.86x+31.39 | 214.83034 | 0.9575 |
0.75 | y=26.27x+31.62 | 218.23444 | 0.95142 |
0.8 | y=10.47x+21.07 | 230.85888 | 0.91083 |
0.85 | y=27.79x+33.49 | 383.15627 | 0.94912 |
0.9 | y=40.92x+47.70 | 339.92115 | 0.95142 |
0.95 | y=53.78x+57.11 | 280.62832 | 0.99983 |
转化率范围 | 温度范围 | 反应 | 有效活化能Ea |
---|---|---|---|
α<0.11 | T0~T1 | 水分蒸发,低温易分解组分进行分解 | 从40.9kJ/mol上升至 86.2kJ/mol |
0.11≤α<0.44 | T1~T3 | 半纤维素分解出挥发分 | 从86.2kJ/mol上升至181.7kJ/mol再下降至173.6kJ/mol后续基本没有变化 |
0.44≤α<0.85 | T3~T5 | 纤维素分解出挥发分、木质素分解成炭 | 从173.6kJ/mol迅速上升至352.2kJ/mol |
α≥0.85 | T5~Te | 木质素分解成炭 | 从352.2kJ/mol下降至280.4kJ/mol |
转化率范围 | 温度范围 | 反应 | 有效活化能Ea |
---|---|---|---|
α<0.11 | T0~T1 | 水分蒸发,低温易分解组分进行分解 | 从40.9kJ/mol上升至 86.2kJ/mol |
0.11≤α<0.44 | T1~T3 | 半纤维素分解出挥发分 | 从86.2kJ/mol上升至181.7kJ/mol再下降至173.6kJ/mol后续基本没有变化 |
0.44≤α<0.85 | T3~T5 | 纤维素分解出挥发分、木质素分解成炭 | 从173.6kJ/mol迅速上升至352.2kJ/mol |
α≥0.85 | T5~Te | 木质素分解成炭 | 从352.2kJ/mol下降至280.4kJ/mol |
因素 | 水平 | ||
---|---|---|---|
低水平 (-1) | 中间水平 (0) | 高水平 (+1) | |
X1 | 0 | 15 | 30 |
X2 | 300 | 400 | 500 |
X3 | 20 | 40 | 60 |
X4 | 0.25 | 2.625 | 5 |
因素 | 水平 | ||
---|---|---|---|
低水平 (-1) | 中间水平 (0) | 高水平 (+1) | |
X1 | 0 | 15 | 30 |
X2 | 300 | 400 | 500 |
X3 | 20 | 40 | 60 |
X4 | 0.25 | 2.625 | 5 |
方差来源 | 平方和 | 自由度 | 均方差 | F值 | P值 | 显著性 |
---|---|---|---|---|---|---|
R2=0.9913, Adj R2=0.9792, 信噪比=27.2898 | ||||||
模型 | 5387.31 | 14 | 384.81 | 81.80 | < 0.0001 | 显著 |
X1 | 39.79 | 1 | 39.79 | 8.46 | 0.0156 | |
X2 | 4338.08 | 1 | 4338.08 | 922.14 | < 0.0001 | |
X3 | 119.20 | 1 | 119.20 | 25.34 | 0.0005 | |
X4 | 110.84 | 1 | 110.84 | 23.56 | 0.0007 | |
X1X2 | 4.62 | 1 | 4.62 | 0.9826 | 0.3449 | |
X1X3 | 0.54 | 1 | 0.54 | 0.1148 | 0.7417 | |
X1X4 | 2.04 | 1 | 2.04 | 0.4347 | 0.5246 | |
X2X3 | 0.73 | 1 | 0.73 | 0.1554 | 0.7017 | |
X2X4 | 23.38 | 1 | 23.38 | 4.97 | 0.0499 | |
X3X4 | 0.02 | 1 | 0.02 | 0.0042 | 0.9498 | |
X12 | 6.09 | 1 | 6.09 | 1.29 | 0.2818 | |
X22 | 406.73 | 1 | 406.73 | 86.46 | < 0.0001 | |
X32 | 5.57 | 1 | 5.57 | 1.18 | 0.3021 | |
X42 | 3.09 | 1 | 3.09 | 0.6565 | 0.4367 | |
误差 | 47.04 | 10 | 4.70 | — | — | |
失拟项 | 28.93 | 3 | 6.58 | 7.43 | 0.0771 | 不显著 |
纯误差 | 1.32 | 4 | 0.97 | — | — | |
校正总和 | 5434.35 | 24 | — | — | — |
方差来源 | 平方和 | 自由度 | 均方差 | F值 | P值 | 显著性 |
---|---|---|---|---|---|---|
R2=0.9913, Adj R2=0.9792, 信噪比=27.2898 | ||||||
模型 | 5387.31 | 14 | 384.81 | 81.80 | < 0.0001 | 显著 |
X1 | 39.79 | 1 | 39.79 | 8.46 | 0.0156 | |
X2 | 4338.08 | 1 | 4338.08 | 922.14 | < 0.0001 | |
X3 | 119.20 | 1 | 119.20 | 25.34 | 0.0005 | |
X4 | 110.84 | 1 | 110.84 | 23.56 | 0.0007 | |
X1X2 | 4.62 | 1 | 4.62 | 0.9826 | 0.3449 | |
X1X3 | 0.54 | 1 | 0.54 | 0.1148 | 0.7417 | |
X1X4 | 2.04 | 1 | 2.04 | 0.4347 | 0.5246 | |
X2X3 | 0.73 | 1 | 0.73 | 0.1554 | 0.7017 | |
X2X4 | 23.38 | 1 | 23.38 | 4.97 | 0.0499 | |
X3X4 | 0.02 | 1 | 0.02 | 0.0042 | 0.9498 | |
X12 | 6.09 | 1 | 6.09 | 1.29 | 0.2818 | |
X22 | 406.73 | 1 | 406.73 | 86.46 | < 0.0001 | |
X32 | 5.57 | 1 | 5.57 | 1.18 | 0.3021 | |
X42 | 3.09 | 1 | 3.09 | 0.6565 | 0.4367 | |
误差 | 47.04 | 10 | 4.70 | — | — | |
失拟项 | 28.93 | 3 | 6.58 | 7.43 | 0.0771 | 不显著 |
纯误差 | 1.32 | 4 | 0.97 | — | — | |
校正总和 | 5434.35 | 24 | — | — | — |
X1 | X2 | X3 | X4 | q | |
---|---|---|---|---|---|
实验值 | 预测值 | ||||
14.8min | 324.7℃ | 60min | 5mm | 68.8% | 72.3% |
14.8min | 324.7℃ | 60min | 5mm | 70.9% | 72.3% |
14.8min | 324.7℃ | 60min | 5mm | 68.6% | 72.3% |
X1 | X2 | X3 | X4 | q | |
---|---|---|---|---|---|
实验值 | 预测值 | ||||
14.8min | 324.7℃ | 60min | 5mm | 68.8% | 72.3% |
14.8min | 324.7℃ | 60min | 5mm | 70.9% | 72.3% |
14.8min | 324.7℃ | 60min | 5mm | 68.6% | 72.3% |
1 | Umi Fazara MD ALI, AZMI Nur Hidayah, Khairuddin MD ISA, et al. Optimization study on preparation of amine functionalized sea mango (cerbera odollam) activated carbon for carbon dioxide (CO2) adsorption[J]. Combustion Science and Technology, 2018, 190: 1259-1282. |
2 | 王申宛, 郑晓燕, 校导, 等. 生物炭的制备、改性及其在环境修复中应用的研究进展[J]. 化工进展, 2020, 39(S2): 352-361. |
WANG Shenwan, ZHENG Xiaoyan, XIAO Dao, et al. Research progress of production, modification and application in environment remediation of biochar[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 352-361. | |
3 | Endah AGUSTINA S, FIRMANSYAH. Design and performance test of drum kiln for durian peel carbonization[J]. IOP Conference Series: Earth and Environmental Science, 2020, 542(1): 012040. |
4 | 常秋连, 李文博, 赵鹏. 煤焦油渣炭化过程中孔结构及表面分形特征[J]. 化工进展, 2020, 39(10): 4305-4313. |
CHANG Qiulian, LI Wenbo, ZHAO Peng. Structure and surface fractal characteristics of coal tar residue during carbonization[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4305-4313. | |
5 | 朱金陵, 何晓峰, 王志伟, 等. 玉米秸秆颗粒热解制炭的试验研究[J]. 太阳能学报, 2010, 31(7): 789-793. |
ZHU Jinling, HE Xiaofeng, WANG Zhiwei, et al. Experimental study on pyrolysising and producting charcoal with corn straw pellet[J]. Acta Energiae Solaris Sinica, 2010, 31(7): 789-793. | |
6 | 朱赫男, 王志朴, 邢文龙, 等. 污泥与生物质共热解制备生物质炭工艺优化及吸附性能[J]. 化工进展, 2018, 37(S1): 199-204. |
ZHU Henan, WANG Zhipu, XING Wenlong, et al. Process optimization and adsorption performance of biochars prepared by co-pyrolysis of sludge and biomasses[J]. Chemical Industry and Engineering Progress, 2018, 37(S1): 199-204. | |
7 | 胡福昌, 陈顺伟, 康志雄, 等. 竹材列管移动床连续干馏炭化的工业试验[J]. 林产化学与工业, 2005, 25(2): 47-51. |
HU Fuchang, CHEN Shunwei, KANG Zhixiong, et al. An industrial test on continuous carbonization of bamboo in multitubular moving bed[J]. Chemistry & Industry of Forest Products, 2005, 25(2): 47-51. | |
8 | 杨莉, 付婧, 文子伟, 等. 6种低温生物质炭的制备及结构表征[J]. 吉林农业大学学报, 2021, 43(5): 565-573. |
YANG Li, FU Jing, WEN Ziwei, et al. Preparation and structure characterization of six kinds of low temperature biochar[J]. Journal of Jilin Agricultural University, 2021, 43(5): 565-573. | |
9 | 徐大勇, 张苗, 杨伟伟, 等. 氧化铝改性污泥生物炭粒制备及其对Pb(Ⅱ)的吸附特性[J]. 化工进展, 2020, 39(3): 1153-1166. |
XU Dayong, ZHANG Miao, YANG Weiwei, et al. Preparation of alumina modified sludge biocharcoal particles and their adsorption characteristics for Pb(Ⅱ)[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1153-1166. | |
10 | GHYSELS Stef, RONSSE Frederik, DICKINSON Dane, et al. Production and characterization of slow pyrolysis biochar from lignin-rich digested stillage from lignocellulosic ethanol production[J]. Biomass and Bioenergy, 2019, 122: 349-360. |
11 | 罗煜, 赵立欣, 孟海波, 等. 不同温度下热裂解芒草生物质炭的理化特征分析[J]. 农业工程学报, 2013, 29(13): 208-217. |
LUO Yu, ZHAO Lixin, MENG Haibo, et al. Physio-chemical characterization of biochars pyrolyzed from miscanthus under two different temperatures[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(13): 208-217. | |
12 | 高美. 生物质炭化成型燃料的制备及其燃烧性能的研究[D]. 哈尔滨: 黑龙江科技学院, 2010. |
GAO Mei. The research of the fabrication and combustion characteristic of the biomass carbonized forming fuel [D].: Harbin: Heilongjiang University of Science and Technology, 2010. | |
13 | MEDIC D, DARR M, SHAH A, et al. Effects of torrefaction process parameters on biomass feedstock upgrading[J]. Fuel, 2012, 91(1): 147-154. |
14 | PIMCHUAI Anuphon, DUTTA Animesh, BASU Prabir. Torrefaction of agriculture residue to enhance combustible properties[J]. Energy & Fuels, 2010, 24(9): 4638-4645. |
15 | Po-Chih KUO, WU Wei, CHEN Wei-Hsin. Gasification performances of raw and torrefied biomass in a downdraft fixed bed gasifier using thermodynamic analysis[J]. Fuel, 2014, 117: 1231-1241. |
16 | 姚红宇, 唐光木, 葛春辉, 等. 炭化温度和时间与棉杆炭特性及元素组成的相关关系[J]. 农业工程学报, 2013, 29(7): 199-206. |
YAO Hongyu, TANG Guangmu, GE Chunhui, et al. Characteristics and elementary composition of cotton stalk-char in different carbonization temperature and time[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(7): 199-206. | |
17 | MA Yuhui, WANG Jing, ZHANG Yushan. TG-FTIR study on pyrolysis of Enteromorpha prolifera[J]. Biomass Conversion and Biorefinery, 2018, 8(1): 151-157. |
18 | FAN Fangyu, ZHENG Yunwu, HUANG Yuanbo, et al. Combustion kinetics of biochar prepared by pyrolysis of macadamia shells[J]. BioResources, 2017, 12(2): 68-71. |
19 | 梁嘉晋. 纤维素和半纤维素热解机理及其产物调控途径的研究[D]. 广州: 华南理工大学, 2016. |
LIANG Jiajin. Mechanism researches of cellulose and hemicellulose pyrolysis and their products regulation[D]. Guangzhou: South China University of Technology, 2016. | |
20 | 钱卫. 低阶烟煤中低温热解及热解产物研究[D]. 北京: 中国矿业大学(北京), 2012. |
QIAN Wei. Experimental study on medium-low temperature pyrolysis of low rank bituminous coal and characterization of pyrolysis-derived products[D]. Beijing: China University of Mining & Technology, Beijing, 2012. | |
21 | VYAZOVKIN Sergey, BURNHAM Alan K, CRIADO José M, et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(1/2): 1-19. |
22 | 吴正锐. 黄松甸木耳菌糠的热解特性分析及动力学研究[D]. 吉林: 东北电力大学, 2020. |
WU Zhengrui. Study on pyrolysis charcteristic and pyrolysis kinetics analysis of spent jew’s-ear substrate in huangsongdian[D]. Jilin: Northeast Dianli University, 2020. | |
23 | 任宁, 王昉, 张建军, 等. 热分析动力学研究方法的新进展[J]. 物理化学学报, 2020, 36(6): 12-18. |
REN Ning, WANG Fang, ZHANG Jianjun, et al. Progress in thermal analysis kinetics[J]. Acta Physico-Chimica Sinica, 2020, 36(6): 12-18. | |
24 | TSAMBA Alberto J, YANG Weihong, BLASIAK Wlodzimierz. Pyrolysis characteristics and global kinetics of coconut and cashew nut shells[J]. Fuel Processing Technology, 2006, 87(6): 523-530. |
25 | YANG Haiping, YAN Rong, CHEN Hanping, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007, 86(12/13): 1781-1788. |
[1] | ZHAO Yao, ZHOU Zhihui, WU Hongdan, HU Chuanzhi, ZHANG Guochun, WU Ruipeng. Response surface analysis and optimization of membrane permeation vaporization by Silicalite-1 molecular sieve [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2586-2594. |
[2] | WANG Xue, XU Qiyong, ZHANG Chao. Hydrothermal carbonization of the lignocellulosic biomass and application of the hydro-char [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2536-2545. |
[3] | HE Shanming, PAN Jiechang, XU Guozuan, LI Wenjun, LIANG Yong. Thermodynamic analysis and experimental verification of chromium and vanadium removal by ferrous salt precipitation from crude sodium tungstate solution [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2171-2179. |
[4] | LI Yeqing, YANG Xingru, LIANG Zhuo, JIANG Hao, XU Quan, ZHOU Hongjun, FENG Lu. Impact of exogenous additives on hydrothermal dechlorination performance of polyvinyl chloride [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2706-2712. |
[5] | WANG Yujuan, TANG Jianfeng, HUA Yihuai, CHEN Jing, SANG Wei, LIU Yunfei. Influence of different start-up conditions on response characteristics of natural gas decarbonization device [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1770-1780. |
[6] | XU Jie, HUANG Qunxing, MENG Xiangdong, GAO Huaping. Effect of calcium-based additive on phosphorus form and bioavailability during hydrothermal carbonization of sewage sludge [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3507-3514. |
[7] | Jianfeng TANG, Yujuan WANG, Yue WANG, Yihuai HUA, Jie CHU, Wei SANG, Jing CHEN. Applicability of Aspen HYSYS for simulation of amine decarbonization regeneration process [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 747-754. |
[8] | Xiaoyuan ZHENG, Zhengwei JIANG, Wei CHEN, Yutong YE, Zhi YING, Shasha JI, Bo WANG. Migration and transformation of phosphorus in sewage sludge during hydrothermal carbonization process [J]. Chemical Industry and Engineering Progress, 2020, 39(5): 2017-2025. |
[9] | Zheng TANG,Song ZHAO,Yajie QIAN,Gang XUE,Hanzhong JIA,Pin GAO. Formation mechanisms and environmental applications of persistent free radicals in biochar: a review [J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1521-1527. |
[10] | Entian LI,Yang XU,Pei YAO,Yuanyuan ZHU,Yihan ZHANG,Xiashi ZHU. Remove naphthalene from solvent oil by vinyl imidazole ionic liquid and β-cyclodextrin [J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1321-1328. |
[11] | Liubin SHI, Mingde TANG, Yong TANG, Lulu HE, Zhangfa TONG, Lishuo LI. Preparation and characterization of micro-nano hierarchical hollow rod-like calcium carbonate by high pressure carbonization [J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4742-4748. |
[12] | Qiulian CHANG, Wenbo LI, Peng ZHAO. Structure and surface fractal characteristics of coal tar residue during carbonization [J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4305-4313. |
[13] | YUAN Yanwen, ZHAO Lixin, MENG Haibo, CONG Hongbin, HUO Lili, TANG Sen. Research on the preparation of Fischer-Tropsch synthesis gas by biomass carbonization pyrolysis gas catalytic reforming [J]. Chemical Industry and Engineering Progress, 2019, 38(s1): 152-158. |
[14] | Liangcai WANG,Huanhuan MA,Jianbin ZHOU. Effect of carbonization process on physiochemical properties of digestate [J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1545-1551. |
[15] | Jing FANG, Mengyu DIAO, Chunli LI, Bihan XUAN. Study on thermodynamic analysis and energy saving of heat integrated distillation column [J]. Chemical Industry and Engineering Progress, 2019, 38(02): 834-841. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |