Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (6): 3507-3514.DOI: 10.16085/j.issn.1000-6613.2020-1474
• Resources and environmental engineering • Previous Articles Next Articles
XU Jie1(), HUANG Qunxing1(), MENG Xiangdong1, GAO Huaping2
Received:
2020-07-29
Revised:
2020-12-04
Online:
2021-06-22
Published:
2021-06-06
Contact:
HUANG Qunxing
通讯作者:
黄群星
作者简介:
徐杰(1997—),男,硕士研究生,研究方向为污泥资源化利用。E-mail:基金资助:
CLC Number:
XU Jie, HUANG Qunxing, MENG Xiangdong, GAO Huaping. Effect of calcium-based additive on phosphorus form and bioavailability during hydrothermal carbonization of sewage sludge[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3507-3514.
徐杰, 黄群星, 孟详东, 郜华萍. 钙基添加剂对污水污泥在水热炭化过程中磷形态及生物有效性的影响[J]. 化工进展, 2021, 40(6): 3507-3514.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1474
工业分析/% | 元素分析/% | ||||||||
---|---|---|---|---|---|---|---|---|---|
M | A | V | FC | C | H | N | S | P | |
2.39 | 45.83 | 49.67 | 2.11 | 20.96 | 3.71 | 2.90 | 2.59 | 2.86 |
工业分析/% | 元素分析/% | ||||||||
---|---|---|---|---|---|---|---|---|---|
M | A | V | FC | C | H | N | S | P | |
2.39 | 45.83 | 49.67 | 2.11 | 20.96 | 3.71 | 2.90 | 2.59 | 2.86 |
固相产物 | 回收率/% |
---|---|
H200 | 59.43 |
H200-Ca10 | 58.49 |
H200-Ca20 | 55.24 |
H200-Ca30 | 49.51 |
固相产物 | 回收率/% |
---|---|
H200 | 59.43 |
H200-Ca10 | 58.49 |
H200-Ca20 | 55.24 |
H200-Ca30 | 49.51 |
固相产物 | TP | IP | OP | NAIP | AP |
---|---|---|---|---|---|
DSS | 57.69±0.27 | 52.88±0.15 | 4.94±0.03 | 23.33±0.09 | 28.68±0.21 |
H200 | 79.35±0.31 | 74.40±0.08 | 4.07±0.01 | 26.67±0.13 | 46.86±0.14 |
H200-Ca10 | 78.82±0.19 | 74.67±0.20 | 4.27±0.07 | 16.11±0.07 | 57.69±0.08 |
H200-Ca20 | 81.22±0.30 | 79.62±0.06 | 0.73±0.02 | 3.14±0.03 | 75.61±0.18 |
H200-Ca30 | 76.80±0.27 | 73.45±0.23 | 1.86±0.08 | 3.47±0.05 | 69.07±0.12 |
固相产物 | TP | IP | OP | NAIP | AP |
---|---|---|---|---|---|
DSS | 57.69±0.27 | 52.88±0.15 | 4.94±0.03 | 23.33±0.09 | 28.68±0.21 |
H200 | 79.35±0.31 | 74.40±0.08 | 4.07±0.01 | 26.67±0.13 | 46.86±0.14 |
H200-Ca10 | 78.82±0.19 | 74.67±0.20 | 4.27±0.07 | 16.11±0.07 | 57.69±0.08 |
H200-Ca20 | 81.22±0.30 | 79.62±0.06 | 0.73±0.02 | 3.14±0.03 | 75.61±0.18 |
H200-Ca30 | 76.80±0.27 | 73.45±0.23 | 1.86±0.08 | 3.47±0.05 | 69.07±0.12 |
磷形态 | DSS | H200 | H200-Ca10 | H200-Ca20 | H200-Ca30 |
---|---|---|---|---|---|
TP | 99.77 | 101.12 | 99.85 | 101.08 | 101.97 |
IP | 101.67 | 101.18 | 101.17 | 101.10 | 101.25 |
磷形态 | DSS | H200 | H200-Ca10 | H200-Ca20 | H200-Ca30 |
---|---|---|---|---|---|
TP | 99.77 | 101.12 | 99.85 | 101.08 | 101.97 |
IP | 101.67 | 101.18 | 101.17 | 101.10 | 101.25 |
固相产物 | 磷回收率/% |
---|---|
H200 | 81.74 |
H200-Ca10 | 88.79 |
H200-Ca20 | 93.69 |
H200-Ca30 | 94.15 |
固相产物 | 磷回收率/% |
---|---|
H200 | 81.74 |
H200-Ca10 | 88.79 |
H200-Ca20 | 93.69 |
H200-Ca30 | 94.15 |
金属 | DSS | H200 | H200-Ca10 | H200-Ca20 | H200-Ca30 | 中国农业标准 |
---|---|---|---|---|---|---|
As | 77.1±7.1 | 13.3±2.0 | 22.2±1.9 | 16.8±0.8 | 20.2±2.3 | <50 |
Cd | 3.7±0.3 | 3.8±0.1 | 3.6±0.5 | 3.7±0.2 | 3±0.8 | <10 |
Cr | 358.1±23.7 | 403.1±29.8 | 382.6±16.9 | 423.7±20.8 | 328.8±24.6 | <500 |
Pb | 291.1±19.4 | 128.7±15.3 | 137.0±13.9 | 146.1±14.6 | 104.2±10.5 | <200 |
Hg | 7.5±1.1 | 1.5±0.4 | 0.8±0.2 | 0.1±0.0 | 0.3±0.0 | <5 |
金属 | DSS | H200 | H200-Ca10 | H200-Ca20 | H200-Ca30 | 中国农业标准 |
---|---|---|---|---|---|---|
As | 77.1±7.1 | 13.3±2.0 | 22.2±1.9 | 16.8±0.8 | 20.2±2.3 | <50 |
Cd | 3.7±0.3 | 3.8±0.1 | 3.6±0.5 | 3.7±0.2 | 3±0.8 | <10 |
Cr | 358.1±23.7 | 403.1±29.8 | 382.6±16.9 | 423.7±20.8 | 328.8±24.6 | <500 |
Pb | 291.1±19.4 | 128.7±15.3 | 137.0±13.9 | 146.1±14.6 | 104.2±10.5 | <200 |
Hg | 7.5±1.1 | 1.5±0.4 | 0.8±0.2 | 0.1±0.0 | 0.3±0.0 | <5 |
1 | 徐洪斌, 马勇光. 磷资源合理利用及回收[J]. 安全与环境工程, 2008, 15(3): 62-64. |
XU Hongbin, MA Yongguang. Rational reuse and recovery of phosphorus[J]. Safety and Environmental Engineering, 2008, 15(3): 62-64. | |
2 | JAMES F, Reilly I I. Mineral commodity summaries 2019[M]. DAVID Bernhardt. Virginia: U.S. Geological Survey, 2019: 122-123. |
3 | 沈巍. 中国磷资源开发利用的现状分析与可持续发展建议[J]. 经济研究导刊, 2012(5): 83-84. |
SHEN Wei. Analysis of current situation of development and utilization of phosphorus resources in china and suggestions for sustainable development[J]. Economic Research Guide, 2012(5): 83-84. | |
4 | 陈树俊. 基于低温热处理技术的城市污泥磷回收[D]. 广州: 广东工业大学, 2017. |
CHEN Shujun. Phosphorus recover from sewage sludge based on thermal treatment[D]. Guangzhou: Guangdong University of Technology, 2017. | |
5 | DESMIDT E, GHYSELBRECHT K, ZHANG Y, et al. Global phosphorus scarcity and full-scale P-recovery techniques: a review[J]. Critical Reviews in Environmental Science and Technology, 2015, 45(4): 336-384. |
6 | RITTMANN B E, MAYER B, WESTERHOFF P, et al. Capturing the lost phosphorus[J]. Chemosphere, 2011, 84(6): 846-853. |
7 | LIU Q, FANG Z, LIU Y, et al. Phosphorus speciation and bioavailability of sewage sludge derived biochar amended with CaO[J]. Waste Management, 2019, 87: 71-77. |
8 | MENG X D, HUANG Q X, XU J, et al. A review of phosphorus recovery from different thermal treatment products of sewage sludge[J]. Waste Disposal & Sustainable Energy, 2019, 1(2): 99-115. |
9 | XUE X Y, CHEN D Z, SONG X D, et al. Hydrothermal and pyrolysis treatment for sewage sludge: choice from product and from energy benefit[J]. Energy Procedia, 2015, 66: 301-304. |
10 | HUANG R, TANG Y. Speciation dynamics of phosphorus during (hydro)thermal treatments of sewage sludge[J]. Environmental Science & Technology, 2015, 49(24): 14466-14474. |
11 | HUANG R X, FANG C, LU X W, et al. Transformation of phosphorus during (hydro)thermal treatments of solid biowastes: reaction mechanisms and implications for P reclamation and recycling[J]. Environmental Science & Technology, 2017, 51(18): 10284-10298. |
12 | HEILMANN S M, JADER L R, HARNED L A, et al. Hydrothermal carbonization of microalgae Ⅱ. Fatty acid, char, and algal nutrient products[J]. Applied Energy, 2011, 88(10): 3286-3290. |
13 | HEILMANN S M, JADER L R, SADOWSKY M J, et al. Hydrothermal carbonization of distiller’s grains[J]. Biomass and Bioenergy, 2011, 35(7): 2526-2533. |
14 | HEILMANN S M, MOLDE J S, TIMLER J G, et al. Phosphorus reclamation through hydrothermal carbonization of animal manures[J]. Environmental Science & Technology, 2014, 48(17): 10323-10329. |
15 | HUANG R X, TANG Y Z. Evolution of phosphorus complexation and mineralogy during (hydro)thermal treatments of activated and anaerobically digested sludge: Insights from sequential extraction and P K-edge XANES[J]. Water Research, 2016, 100: 439-447. |
16 | LIU H, HU H Y, LUO G Q, et al. Enhancement of hydrogen production in steam gasification of sewage sludge by reusing the calcium in lime-conditioned sludge[J]. International Journal of Hydrogen Energy, 2013, 38(3): 1332-1341. |
17 | WESTPHAL Patricia A, LEE CHRISTENSEN G. Lime stabilization: effectiveness of two process modifications[J]. Journal Water Pollution Control Federation, 1983, 55(11): 1381-1386. |
18 | FARRELL Joseph B, SMITH James E, HATHAWAY Steven W, et al. Lime stabilization of primary sludges[J]. Journal Water Pollution Control Federation, 1974, 46(1): 113-122. |
19 | CHIANG K Y, LU C H, CHIEN K L. Enhanced energy efficiency in gasification of paper-reject sludge by a mineral catalyst[J]. International Journal of Hydrogen Energy, 2011, 36(21): 14186-14194. |
20 | PERERA M K, ENGLEHARDT J D. Simultaneous nitrogen and phosphorus recovery from municipal wastewater by electrochemical pH modulation[J]. Separation and Purification Technology, 2020, 250: 117166. |
21 | MARIN-BATISTA J D, MOHEDANO A F, RODRÍGUEZ J J, et al. Energy and phosphorous recovery through hydrothermal carbonization of digested sewage sludge[J]. Waste Management, 2020, 105: 566-574. |
22 | LI R D, ZHANG Z H, LI Y L, et al. Transformation of apatite phosphorus and non-apatite inorganic phosphorus during incineration of sewage sludge[J]. Chemosphere, 2015, 141: 57-61. |
23 | LIU Q, FANG Z, LIU Y, et al. Phosphorus speciation and bioavailability of sewage sludge derived biochar amended with CaO[J]. Waste Management, 2019, 87: 71-77. |
24 | The European Parliament and of Thecouncil. Regulation (EC) No2003/2003 of 13 October 2003 relating to fertilizers: No2003/2003[EB/OL]. . |
25 | AKHTAR M, MCCALLISTER D L, ESKRIDGE K M. Availability and fractionation of phosphorus in sewage sludge-amended soils[J]. Communications in Soil Science and Plant Analysis, 2002, 33(13/14): 2057-2068. |
26 | HE Z Q, GRIFFIN T S, HONEYCUTT C W. Evaluation of soil phosphorus transformations by sequential fractionation and phosphatase hydrolysis[J]. Soil Science, 2004, 169(7): 515-527. |
27 | 赵吴琼, 李菊梅, 徐明岗, 等. 长期不同施肥下灰漠土有机磷组分的变化[J]. 生态环境, 2007, 16(2): 569-572. |
ZHAO Wuqiong, LI Jumei, XU Minggang, et al. Changes of organic phosphor componentes in grey desert soil under long-term different fertilization[J]. Ecology and Environment, 2007, 16(2): 569-572. | |
28 | 郑晓园, 蒋正伟, 陈伟, 等. 污水污泥水热炭化过程中磷的迁移转化特性[J]. 化工进展, 2020, 39(5): 2017-2025. |
ZHENG Xiaoyuan, JIANG Zhengwei, CHEN Wei, et al. Migration and transformation of phosphorus in sewage sludge during hydrothermal carbonization process[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 2017-2025. | |
29 | 孟详东, 黄群星, 严建华, 等. 磷在污泥热解过程中的迁移转化[J]. 化工学报, 2018, 69(7): 3208-3215, 3303. |
MENG Xiangdong, HUANG Qunxing, YAN Jianhua, et al. Migration and transformation of phosphorus during pyrolysis process of sewage sludge[J]. CIESC Journal, 2018, 69(7): 3208-3215, 3303. | |
30 | PARDO P, RAURET G, LÓPEZ-SÁNCHEZ J F. Shortened screening method for phosphorus fractionation in sediments: a complementary approach to the standards, measurements and testing harmonised protocol[J]. Analytica Chimica Acta, 2004, 508(2): 201-206. |
31 | TAN Z X, LAGERKVIST A. Phosphorus recovery from the biomass ash: a review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(8): 3588-3602. |
32 | ADAM C, PEPLINSKI B, MICHAELIS M, et al. Thermochemical treatment of sewage sludge ashes for phosphorus recovery[J]. Waste Management, 2009, 29(3): 1122-1128. |
33 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 中华人民共和国推荐性国家标准: 肥料中砷、镉、铅、铬、汞生态指标[S]. 北京: 中国标准出版社, 2009. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. National Standard (Recommended) of the People’s Republic of China: Ecological index of arsenic cadmium lead chromium and mercury for fertilizers. [S]. Beijing: Standards Press of China, 2009. |
[1] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[2] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[3] | ZHENG Xin, JIA Li, WANG Yanlin, ZHANG Jingchao, CHEN Shihu, QIAO Xiaolei, FAN Baoguo. Effect of sewage sludge mixed with coal slime on heavy metal retention characteristics [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3233-3241. |
[4] | XIU Haoran, WANG Yungang, BAI Yanyuan, ZOU Li, LIU Yang. Combustion characteristics and ash melting behavior of Zhundong coal/municipal sludge blended combustion [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3242-3252. |
[5] | YANG Ziqiang, LI Fenghai, GUO Weijie, MA Mingjie, ZHAO Wei. Review on phosphorus migration and transformation during municipal sewage sludge heat treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2081-2090. |
[6] | ZHAO Jiaqi, HUANG Yaji, LI Zhiyuan, DING Xueyu, QI Shuaijie, ZHANG Yuyao, LIU Jun, GAO Jiawei. Characteristics of three-phase products from co-pyrolysis of sewage sludge and PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2122-2129. |
[7] | WANG Yibin, FENG Jingwu, TAN Houzhang, LI Liangyu. Research progress on phosphorus speciation transformation and recovery during thermal chemical conversion of municipal sewage sludge [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 985-999. |
[8] | WU Xinbo, DANG Hongzhong, MA Jiao, YAN Yuan, ZENG Tianxu, LI Weiwei, ZHANG Guozhen, CHEN Yongzhi. Effect of denitrifying phosphorus removal under short-cut nitrification mode with A2/O-BAF process [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1089-1097. |
[9] | PAN Sirui, DENG Wenyi, SU Yaxin. Verification and application of circuit probe method for measuring the liquid film thickness of sewage sludge [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5538-5547. |
[10] | CHEN Qiushi, ZHENG Chen, ZHANG Mindi. Numerical simulation of the esterification between chlorophosphate and n-butyl alcohol in microchannel reactor [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 29-35. |
[11] | YANG Chengyu, LIU Min, YUAN Lin, HU Xuan, CHEN Ying. Adsorption of low-concentration phosphorus after cross-linked modification of bamboo-based cellulose nanofibrils [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5074-5084. |
[12] | XIONG Yongzhi, LIU Yanyan, CHEN Xiaohong, LU Beili, HUANG Biao, LIN Guanfeng. Preparation and electrochemical performance of bagasse-based phosphorus-doped activated carbon [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4397-4405. |
[13] | JI Xuanyu, LIN Weijian, ZHOU Xiong, BAI Jisong, YANG Yu, KONG Jie, LIAO Chongyang. Research status and progress of waste tire pyrolysis technology [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4498-4512. |
[14] | XIE Li, LI Xiufen. Effect of exopolysaccharide content on alkaline-thermal hydrolysis process of dissolved sludge protein and hydrolysate solid-liquid separation performance [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4580-4586. |
[15] | HUANG Ping’an, XU Jun, YANG Yuxuan, PAN Yuhan, WANG Xinwen, HUANG Qunxing. Ball milled modified pyrolysis carbon adsorb sulfamethoxazole [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3784-3793. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |