Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (2): 985-999.DOI: 10.16085/j.issn.1000-6613.2022-0760
• Resources and environmental engineering • Previous Articles Next Articles
WANG Yibin(), FENG Jingwu, TAN Houzhang(), LI Liangyu
Received:
2022-04-26
Revised:
2022-06-21
Online:
2023-03-13
Published:
2023-02-25
Contact:
TAN Houzhang
通讯作者:
谭厚章
作者简介:
王毅斌(1990—),男,副研究员,研究方向为固废利用。E-mail:ybwang6639@mail.xjtu.edu.cn。
基金资助:
CLC Number:
WANG Yibin, FENG Jingwu, TAN Houzhang, LI Liangyu. Research progress on phosphorus speciation transformation and recovery during thermal chemical conversion of municipal sewage sludge[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 985-999.
王毅斌, 冯敬武, 谭厚章, 李良钰. 市政污泥热化学处置中磷元素形态转变与回收利用研究进展[J]. 化工进展, 2023, 42(2): 985-999.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0760
城市 | 日产量(含水率80%)/t·d-1 | 污泥处置技术路线 | 参考文献 |
---|---|---|---|
广州市 | 约3313.97 | 浓缩+深度机械脱水+热干化+建材利用 | [ |
北京市 | 6588~7684 | 中心城区以厌氧消化为主,周边城区以好氧发酵为主,多种工艺辅助。土地利用为主,建材利用为辅 | [ |
上海市 | 4200 | 以焚烧为主,土地利用为辅,卫生填埋应急 | [ |
武汉市 | 约1479.7 | 板框脱水+水泥/石灰炉窑混烧,建材利用为主,土地利用为辅,混合填埋保底 | [ |
重庆市 | 约3191.59 | 水泥炉窑协同处置,建材利用 | [ |
深圳市 | 5323 | 板框脱水+低温干化、外运处置 | [ |
昆明市 | 1059 | 土地利用和建材利用并行,填埋处置应急 | [ |
城市 | 日产量(含水率80%)/t·d-1 | 污泥处置技术路线 | 参考文献 |
---|---|---|---|
广州市 | 约3313.97 | 浓缩+深度机械脱水+热干化+建材利用 | [ |
北京市 | 6588~7684 | 中心城区以厌氧消化为主,周边城区以好氧发酵为主,多种工艺辅助。土地利用为主,建材利用为辅 | [ |
上海市 | 4200 | 以焚烧为主,土地利用为辅,卫生填埋应急 | [ |
武汉市 | 约1479.7 | 板框脱水+水泥/石灰炉窑混烧,建材利用为主,土地利用为辅,混合填埋保底 | [ |
重庆市 | 约3191.59 | 水泥炉窑协同处置,建材利用 | [ |
深圳市 | 5323 | 板框脱水+低温干化、外运处置 | [ |
昆明市 | 1059 | 土地利用和建材利用并行,填埋处置应急 | [ |
材料 | P2O5质量分数/% | 单质P(干基)质量分数/% | 备注 |
---|---|---|---|
污泥 | — | 2~6 | 浙江嘉兴污泥(5.8%)[ 上海竹园干污泥(2.14%)[ 0.2~5.5(德国)[ |
污泥灰 (焚烧) | 15.6~36[ (焚烧温度820~890℃) | 3.6~13.3 | 850℃<焚烧温度<950℃[ 4.8%/5.7%(英国)[ 3.6%~13.3%(德国焚烧灰中磷元素平均值9%)[ |
污泥炭 (热解) | — | 5~10.6 | 5.6%(西班牙)热解温度850℃[ 5.35%~7.08%热解温度300~500℃[ 9.99%~10.59%热解温度500℃/650℃/800℃[ |
污泥灰 (气化) | — | 5.1~14.9 | 气化温度850~950℃[ |
中国磷矿 | 33.8[ 我国磷矿中P2O5平均值为16.85[ | 7.4(平均值)[ | |
埃及磷矿 | 28.5[ | — | |
摩洛哥磷矿 | 34.0[ | — | |
多哥磷矿 | 35.5[ | — |
材料 | P2O5质量分数/% | 单质P(干基)质量分数/% | 备注 |
---|---|---|---|
污泥 | — | 2~6 | 浙江嘉兴污泥(5.8%)[ 上海竹园干污泥(2.14%)[ 0.2~5.5(德国)[ |
污泥灰 (焚烧) | 15.6~36[ (焚烧温度820~890℃) | 3.6~13.3 | 850℃<焚烧温度<950℃[ 4.8%/5.7%(英国)[ 3.6%~13.3%(德国焚烧灰中磷元素平均值9%)[ |
污泥炭 (热解) | — | 5~10.6 | 5.6%(西班牙)热解温度850℃[ 5.35%~7.08%热解温度300~500℃[ 9.99%~10.59%热解温度500℃/650℃/800℃[ |
污泥灰 (气化) | — | 5.1~14.9 | 气化温度850~950℃[ |
中国磷矿 | 33.8[ 我国磷矿中P2O5平均值为16.85[ | 7.4(平均值)[ | |
埃及磷矿 | 28.5[ | — | |
摩洛哥磷矿 | 34.0[ | — | |
多哥磷矿 | 35.5[ | — |
磷酸盐 | 熔点/℃ | 参考文献 |
---|---|---|
CaNaPO4–Ca3(PO4)2(β) | 980 | [ |
Ca3(PO4)2–CaMg(SiO3)2 | 1300±5 | [ |
Ca3(PO4)2–Mg3(PO4)2 | 1120 | [ |
Ca3(PO4)2 | 1810 | [ |
K3PO4 | 1620 | [ |
Na3PO4 | 1583 | [ |
Mg3(PO4)2 | 1357 | [ |
MgNa4(PO4)2 | 1655 | [ |
AlPO4 | >1800 | [ |
FePO4 | 1208 | [ |
磷酸盐 | 熔点/℃ | 参考文献 |
---|---|---|
CaNaPO4–Ca3(PO4)2(β) | 980 | [ |
Ca3(PO4)2–CaMg(SiO3)2 | 1300±5 | [ |
Ca3(PO4)2–Mg3(PO4)2 | 1120 | [ |
Ca3(PO4)2 | 1810 | [ |
K3PO4 | 1620 | [ |
Na3PO4 | 1583 | [ |
Mg3(PO4)2 | 1357 | [ |
MgNa4(PO4)2 | 1655 | [ |
AlPO4 | >1800 | [ |
FePO4 | 1208 | [ |
污泥/污泥灰特性 | 工艺 | 磷元素回收效率 | 参考文献 |
---|---|---|---|
日本岐阜,四个污水处理厂采用生物除磷工艺污泥灰700吨/年 包含20%~35% P2O5 | 污泥灰回收磷元素,50~70℃ NaOH溶液浸取1.5h+ 20~50℃ Ca(OH)2沉淀9h,回收形式为羟基磷灰石 | 磷回收率30%~40% 磷肥包含25%~30%柠檬酸溶型P2O5,产量300吨/年 | [ |
瑞士苏黎世,污泥灰30000吨/年,灰中含有大于8%的P | 96%硫酸浸取,32%盐酸溶剂萃取,获得74%磷酸 | 磷回收率>95% | [ |
日本千叶市,污泥焚烧温度820~890℃,十种污泥灰中含有15.6%~36% P2O5 | 添入CaCO3调整污泥灰中CaO含量至45%,1250℃/1300℃焚烧10min,Ca5[(SiO4)(PO4)](PO4) | CaO强化处理污泥灰,提高产物中P2O5的柠檬酸可溶性,利于植物吸收 | [ |
褐色污泥灰,污泥中含有Al(PO3)3、AlPO4、SiP2O7和β-Ca3(PO4)2 | 污泥灰悬浮溶液中鼓入CO2的方式,进一步溶解灰中碱土金属磷酸盐,回收磷酸根的形式 | PO43-接近30mg·L-1 | [ |
西班牙,污泥530℃快速热解生物炭的燃烧灰(600℃/750℃/900℃)和气化灰(820℃) | 采用硫酸和乙二酸进行浸取,燃烧灰浸取所用酸浓度(0.06mol·L-1/0.16mol·L-1/0.53mol·L-1),气化灰浸取酸浓度为0.04mol·L-1 | 磷回收率>90% | [ |
污泥/污泥灰特性 | 工艺 | 磷元素回收效率 | 参考文献 |
---|---|---|---|
日本岐阜,四个污水处理厂采用生物除磷工艺污泥灰700吨/年 包含20%~35% P2O5 | 污泥灰回收磷元素,50~70℃ NaOH溶液浸取1.5h+ 20~50℃ Ca(OH)2沉淀9h,回收形式为羟基磷灰石 | 磷回收率30%~40% 磷肥包含25%~30%柠檬酸溶型P2O5,产量300吨/年 | [ |
瑞士苏黎世,污泥灰30000吨/年,灰中含有大于8%的P | 96%硫酸浸取,32%盐酸溶剂萃取,获得74%磷酸 | 磷回收率>95% | [ |
日本千叶市,污泥焚烧温度820~890℃,十种污泥灰中含有15.6%~36% P2O5 | 添入CaCO3调整污泥灰中CaO含量至45%,1250℃/1300℃焚烧10min,Ca5[(SiO4)(PO4)](PO4) | CaO强化处理污泥灰,提高产物中P2O5的柠檬酸可溶性,利于植物吸收 | [ |
褐色污泥灰,污泥中含有Al(PO3)3、AlPO4、SiP2O7和β-Ca3(PO4)2 | 污泥灰悬浮溶液中鼓入CO2的方式,进一步溶解灰中碱土金属磷酸盐,回收磷酸根的形式 | PO43-接近30mg·L-1 | [ |
西班牙,污泥530℃快速热解生物炭的燃烧灰(600℃/750℃/900℃)和气化灰(820℃) | 采用硫酸和乙二酸进行浸取,燃烧灰浸取所用酸浓度(0.06mol·L-1/0.16mol·L-1/0.53mol·L-1),气化灰浸取酸浓度为0.04mol·L-1 | 磷回收率>90% | [ |
物质 | 化学式 | M①/P | 溶度积常数(25℃)lgKsp | 参考文献 |
---|---|---|---|---|
一水磷酸二氢钙 | Ca(H2PO4)2·H2O | 0.5 | -1.14 | [ |
磷酸二氢钙 | Ca(H2PO4)2 | 0.5 | -1.14 | [ |
二水磷酸氢钙 | CaHPO4·2H2O | 1.0 | -6.6 | [ |
磷酸氢钙 | CaHPO4 | 1.0 | -7.03~-6.7 | [ |
α-磷酸三钙 | α-Ca3(PO4)2 | 1.5 | -25.5 | [ |
β-磷酸三钙 | β-Ca3(PO4)2 | 1.5 | -28.9 | [ |
无定形磷酸三钙 | Ca3(PO4)2 | 1.5 | -25.5~-24.8 | [ |
磷酸四钙 | Ca4(PO4)2O | 2.0 | -38.0 | [ |
羟基磷灰石 | Ca5(PO4)3OH | 1.67 | -116.8 | [ |
氟磷灰石 | Ca5(PO4)3F | 1.67 | -60.51~-60 | [ |
氯磷灰石 | Ca5(PO4)3Cl | 1.67 | -53.08 | [ |
磷酸八钙 | Ca8H2(PO4)6·5H2O | 1.33 | -96.6/-46.97 | [ |
羟基磷灰石 | Ca10(PO4)6(OH)2 | 1.67 | -110.2 | [ |
氟磷灰石 | Ca10(PO4)6F2 | 1.67 | -55.9 | [ |
碳酸磷灰石 | Ca10(PO4)6(CO3)2 | 1.67 | -108.3 | [ |
磷镁石 | Mg3(PO4)2 | 1.5 | -27.7② | [ |
镁磷石 | MgHPO4·3H2O | 1.0 | -5.8② | [ |
鸟粪石 | MgNH4PO4·6H2O | 1.0 | -12.7② | [ |
含钾鸟粪石 | MgKPO4·6H2O | 2.0 | -22 | [ |
含钠鸟粪石 | MgNaPO4·6H2O | 2.0 | -11.6 | [ |
白磷钙石 | Ca9Mg(HPO4)(PO4)6 | 1.43 | -115.93~-109.48 | [ |
板磷铝矿 | AlPO4 | 1.0 | -20.0 | [ |
磷酸铝石 | AlPO4·2H2O | 1.0 | -30.5~-28.01 | [ |
磷酸铁 | FePO4 | 1.0 | -24.6~-22.0 | [ |
磷酸亚铁 | Fe3(PO4)2 | 1.5 | -29.88 | [ |
红磷铁矿 | FePO4·2H2O | 1.0 | -35.1~-33.6 | [ |
蓝铁矿 | Fe3(PO4)2·8H2O | 1.5 | -36.0 | [ |
物质 | 化学式 | M①/P | 溶度积常数(25℃)lgKsp | 参考文献 |
---|---|---|---|---|
一水磷酸二氢钙 | Ca(H2PO4)2·H2O | 0.5 | -1.14 | [ |
磷酸二氢钙 | Ca(H2PO4)2 | 0.5 | -1.14 | [ |
二水磷酸氢钙 | CaHPO4·2H2O | 1.0 | -6.6 | [ |
磷酸氢钙 | CaHPO4 | 1.0 | -7.03~-6.7 | [ |
α-磷酸三钙 | α-Ca3(PO4)2 | 1.5 | -25.5 | [ |
β-磷酸三钙 | β-Ca3(PO4)2 | 1.5 | -28.9 | [ |
无定形磷酸三钙 | Ca3(PO4)2 | 1.5 | -25.5~-24.8 | [ |
磷酸四钙 | Ca4(PO4)2O | 2.0 | -38.0 | [ |
羟基磷灰石 | Ca5(PO4)3OH | 1.67 | -116.8 | [ |
氟磷灰石 | Ca5(PO4)3F | 1.67 | -60.51~-60 | [ |
氯磷灰石 | Ca5(PO4)3Cl | 1.67 | -53.08 | [ |
磷酸八钙 | Ca8H2(PO4)6·5H2O | 1.33 | -96.6/-46.97 | [ |
羟基磷灰石 | Ca10(PO4)6(OH)2 | 1.67 | -110.2 | [ |
氟磷灰石 | Ca10(PO4)6F2 | 1.67 | -55.9 | [ |
碳酸磷灰石 | Ca10(PO4)6(CO3)2 | 1.67 | -108.3 | [ |
磷镁石 | Mg3(PO4)2 | 1.5 | -27.7② | [ |
镁磷石 | MgHPO4·3H2O | 1.0 | -5.8② | [ |
鸟粪石 | MgNH4PO4·6H2O | 1.0 | -12.7② | [ |
含钾鸟粪石 | MgKPO4·6H2O | 2.0 | -22 | [ |
含钠鸟粪石 | MgNaPO4·6H2O | 2.0 | -11.6 | [ |
白磷钙石 | Ca9Mg(HPO4)(PO4)6 | 1.43 | -115.93~-109.48 | [ |
板磷铝矿 | AlPO4 | 1.0 | -20.0 | [ |
磷酸铝石 | AlPO4·2H2O | 1.0 | -30.5~-28.01 | [ |
磷酸铁 | FePO4 | 1.0 | -24.6~-22.0 | [ |
磷酸亚铁 | Fe3(PO4)2 | 1.5 | -29.88 | [ |
红磷铁矿 | FePO4·2H2O | 1.0 | -35.1~-33.6 | [ |
蓝铁矿 | Fe3(PO4)2·8H2O | 1.5 | -36.0 | [ |
1 | 戴晓虎. 我国污泥处理处置现状及发展趋势[J]. 科学, 2020, 72(6): 30-34. |
DAI Xiaohu. Applications and perspectives of sludge treatment and disposal in China[J]. Science, 2020, 72(6): 30-34. | |
2 | WITOLD Kwapinski, Kolinovic IVA, LEAHY James J. Sewage sludge thermal treatment technologies with a focus on phosphorus recovery: A review[J]. Waste and Biomass Valorization, 2021, 12(11): 5837-5852. |
3 | 刘文彪, 黄文萱, 马航, 等. 我国磷矿资源分布及其选矿技术进展[J]. 化工矿物与加工, 2020, 49(12): 19-25. |
LIU Wenbiao, HUANG Wenxuan, MA Hang, et al. China’s phosphate ore resources distribution and the progress of phosphate ore dressing technology[J]. Industrial Minerals & Processing, 2020, 49(12): 19-25. | |
4 | 戴晓虎, 张辰, 章林伟, 等. 碳中和背景下污泥处理处置与资源化发展方向思考[J]. 给水排水, 2021, 57(3): 1-5. |
DAI Xiaohu, ZHANG Chen, ZHANG Linwei, et al. Thoughts on the development direction of sludge treatment and resource recovery under the background of carbon neutrality[J]. Water & Wastewater Engineering, 2021, 57(3): 1-5. | |
5 | 王涛, 宿宇. 污泥处理处置技术路线综述[J]. 中国环保产业, 2020(1): 51-55. |
WANG Tao, SU Yu. Analysis on stabilization, reducing, harmlessness and resource levels of sludge treatment and disposal technical route[J]. China Environmental Protection Industry, 2020(1): 51-55. | |
6 | 车悦驰, 颜蓓蓓, 王旭彤, 等. 污泥堆肥技术及工艺优化研究进展[J]. 环境工程, 2021, 39(4): 164-173. |
CHE Yuechi, YAN Beibei, WANG Xutong, et al. Research progress of technical optimization of sewage sludge composting[J]. Environmental Engineering, 2021, 39(4): 164-173. | |
7 | 赵玉刚, 朱海宾, 赵叡清. 水泥窑协同处置无机污泥技术的实践[J]. 水泥技术, 2022(3): 56-62. |
ZHAO Yugang, ZHU Haibin, ZHAO Ruiqing. Practice of inorganic sludge co-disposal technology in cement kiln[J]. Cement Technology, 2022(3): 56-62. | |
8 | 王飞, 张盛, 王丽花. 燃煤耦合污泥焚烧发电技术研究进展[J]. 洁净煤技术, 2022, 28(3): 82-94. |
WANG Fei, ZHANG Sheng, WANG Lihua. Research progress of coal-fired coupled sludge incineration power generation technology[J]. Clean Coal Technology, 2022, 28(3): 82-94. | |
9 | 吴云生, 汪国梁, 银正一, 等. 市政污泥热解炭化工程应用及运行分析[J]. 给水排水, 2022, 58(6): 43-48. |
WU Yunsheng, WANG Guoliang, YIN Zhengyi, et al. Application and operation analysis of sewage sludge pyrolysis carbonation project[J]. Water & Wastewater Engineering, 2022, 58(6): 43-48. | |
10 | SCHNELL Matthias, HORST Thomas, QUICKER Peter. Thermal treatment of sewage sludge in Germany: A review[J]. Journal of Environmental Management, 2020, 263: 110367. |
11 | 孟详东. 基于低温热转化的污泥中磷的迁移转化及回用研究[D]. 杭州: 浙江大学, 2021. |
MENG Xiangdong. Research on the transformation and recovery of phosphorus based on low-temperature thermal treatment of sewage sludge[D]. Hangzhou: Zhejiang University, 2021. | |
12 | 黄春桃, 徐晴晴. 2019年广州市城镇污水污泥处理处置现状分析[J]. 山东化工, 2021, 50(14): 247-248, 251. |
HUANG Chuntao, XU Qingqing. Analysis of sewage sludge treatment and disposal in Guangzhou in 2019[J]. Shandong Chemical Industry, 2021, 50(14): 247-248, 251. | |
13 | 林奕明, 方益民, 许冠英. 广东省污泥无害化处置情况及技术政策探讨[J]. 中国给水排水, 2017, 33(12): 19-23. |
LIN Yiming, FANG Yimin, XU Guanying. Current situation of harmless treatment and disposal of sewage sludge and discussion on relevant technical policies in Guangdong Province[J]. China Water & Wastewater, 2017, 33(12): 19-23. | |
14 | 李雪怡, 梁远, 方小锋, 等. 北京市污泥处理处置现状总结分析[J]. 中国给水排水, 2021, 37(22): 38-42. |
LI Xueyi, LIANG Yuan, FANG Xiaofeng, et al. Summarization and analysis of sludge treatment and disposal in Beijing[J]. China Water & Wastewater, 2021, 37(22): 38-42. | |
15 | 安叶, 张义斌, 黎攀, 等. 我国市政生活污泥处置现状及经验总结[J]. 给水排水, 2021, 57(S1): 94-98. |
AN Ye, ZHANG Yibin, LI Pan, et al. Current situation and experience summary of municipal sewage sludge treatment and disposal in China[J]. Water & Wastewater Engineering, 2021, 57(S1): 94-98. | |
16 | 李尔, 曾祥英. 武汉市主城区污水厂污泥处理处置现状及展望[J]. 中国给水排水, 2021, 37(18): 8-13. |
LI Er, ZENG Xiangying. Current situation and prospect of sludge treatment and disposal of WWTPs in the main urban area of Wuhan[J]. China Water & Wastewater, 2021, 37(18): 8-13. | |
17 | 蔡洪英, 王娟, 张曼丽, 等. 重庆市城市污水处理污泥产生及处置现状分析[J]. 资源再生, 2018(9): 40-42. |
CAI Hongying, WANG Juan, ZHANG Manli, et al. Present situation analysis and treatment of municipal sewage sludge in Chongqing[J]. Resource Recycling, 2018(9): 40-42. | |
18 | 蓝文军. 深圳市观澜水厂污泥处理工艺升级改造工程实践[J]. 净水技术, 2021, 40(1): 121-128. |
LAN Wenjun. Engineering practice of upgrading sludge treatment process in Shenzhen guanlan WTP[J]. Water Purification Technology, 2021, 40(1): 121-128. | |
19 | 颜莹莹, 孟春霖, 臧星华, 等. 深圳市污泥深度脱水应急工程的设计与运行[J]. 中国给水排水, 2022, 38(4): 120-124. |
YAN Yingying, MENG Chunlin, ZANG Xinghua, et al. Design and operation of the emergency project for deep dewatering of sludge in Shenzhen[J]. China Water & Wastewater, 2022, 38(4): 120-124. | |
20 | 朱启凤, 吴雪, 张英, 等. 昆明市污泥处理处置现状及对策研究[J]. 给水排水, 2021, 57(12): 20-25. |
ZHU Qifeng, WU Xue, ZHANG Ying, et al. Present situation and countermeasures of sludge treatment and disposal in Kunming city[J]. Water & Wastewater Engineering, 2021, 57(12): 20-25. | |
21 | 章维维, 林敏, 郁志杰, 等. 杭州余杭区污水厂污泥制砖利用分析研究[J]. 资源节约与环保, 2021(3): 118-119. |
ZHANG Weiwei, LIN Min, YU Zhijie, et al. Analysis and research on utilization of sludge from wastewater treatment plant in Yuhang district, Hangzhou[J]. Resources Economization & Environmental Protection, 2021(3): 118-119. | |
22 | 马雯. 污水处理厂污泥在建材用砖中的应用研究[D]. 杨凌: 西北农林科技大学, 2011. |
MA Wen. A study on application of the urban sewage sludge in the process of building bricks production[D]. Yangling: Northwest A & F University, 2011. | |
23 | 李智伟, 王兴栋, 林景江, 等. 污泥生物炭制备过程中氮磷钾及重金属的迁移行为[J]. 环境工程学报, 2016, 10(3): 1392-1399. |
LI Zhiwei, WANG Xingdong, LIN Jingjiang, et al. Transformation of nitrogen, phosphorus, potassium and heavy metals during sewage sludge biochar preparation[J]. Chinese Journal of Environmental Engineering, 2016, 10(3): 1392-1399. | |
24 | GIEVERS Fabian, LOEWEN Achim, NELLES Michael. Life cycle assessment of sewage sludge pyrolysis: Environmental impacts of biochar as carbon sequestrator and nutrient recycler[J]. Detritus, 2021, 16: 94-105. |
25 | HUANG Jingchun, WANG Zhenqi, QIAO Yu, et al. Transformation of nitrogen during hydrothermal carbonization of sewage sludge: Effects of temperature and Na/Ca acetates addition[J]. Proceedings of the Combustion Institute, 2021, 38(3): 4335-4344. |
26 | LIU Qingsong, TIAN Tian. Co-pyrolysis of iron-rich sewage sludge and potassium phosphate to prepare biochars: P fractionation and alleviated occlusion[J]. Journal of Analytical and Applied Pyrolysis, 2021, 159: 105285. |
27 | 王涛. 城市污泥(水)热处理固体产物中磷的迁移转化及释放回收研究[D]. 长沙: 湖南大学, 2018. |
WANG Tao. Hydrothermal carbonization of municipal sewage sludge: Investigation on the transformation release and recovery of phosphorus in hydrochar[D]. Changsha: Hunan University, 2018. | |
28 | 丁竹红, 胡忻. 南京市城市污泥和工业污泥中典型矿质元素含量和形态分布研究[J]. 安全与环境学报, 2006, 6(1): 57-60. |
DING Zhuhong, HU Xin. Contents and distribution of mineral elements in urban and industrial sludges in Nanjing[J]. Journal of Safety and Environment, 2006, 6(1): 57-60. | |
29 | XIAO Yi, ZHAO Ruihua, XIONG Zhongpu, et al. Transformation of phosphorous during incineration of sewage sludge: influence of steam and mineral[J]. Fuel, 2021, 303: 121307. |
30 | MENG Xiangdong, HUANG Qunxing, GAO Huaping, et al. Improved utilization of phosphorous from sewage sludge (as Fertilizer) after treatment by low-temperature combustion[J]. Waste Management, 2018, 80: 349-358. |
31 | ZHANG Qiang, LIU Haifeng, LI Weifeng, et al. Behavior of phosphorus during co-gasification of sewage sludge and coal[J]. Energy & Fuels, 2012, 26(5): 2830-2836. |
32 | STECKENMESSER Daniel, VOGEL Christian, ADAM Christian, et al. Effect of various types of thermochemical processing of sewage sludges on phosphorus speciation, solubility, and fertilization performance[J]. Waste Management, 2017, 62: 194-203. |
33 | TRINH Trung Ngoc, JENSEN Peter Arendt, Kim DAM-JOHANSEN, et al. Influence of the pyrolysis temperature on sewage sludge product distribution, bio-oil, and char properties[J]. Energy & Fuels, 2013, 27(3): 1419-1427. |
34 | THOMSEN Tobias Pape, Zsuzsa SÁROSSY, AHRENFELDT Jesper, et al. Changes imposed by pyrolysis, thermal gasification and incineration on composition and phosphorus fertilizer quality of municipal sewage sludge[J]. Journal of Environmental Management, 2017, 198: 308-318. |
35 | TANG Siqi, YAN Feng, ZHENG Chunmiao, et al. Novel calcium oxide-enhancement phosphorus recycling technique through sewage sludge pyrolysis[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 9167-9177. |
36 | REN Ziyan, ZENG Wei, LIU Hongjun, et al. Enhanced bioavailability of phosphorus in sewage sludge through pyrolysis aided by calcined clam shell powder[J]. Process Safety and Environmental Protection, 2021, 156: 121-133. |
37 | KUPKA Tomasz, MANCINI Marco, IRMER Michael, et al. Investigation of ash deposit formation during co-firing of coal with sewage sludge, saw-dust and refuse derived fuel[J]. Fuel, 2008, 87(12): 2824-2837. |
38 | ATIENZA-MARTÍNEZ M, GEA G, ARAUZO J, et al. Phosphorus recovery from sewage sludge char ash[J]. Biomass and Bioenergy, 2014, 65: 42-50. |
39 | FALK Joel, SKOGLUND Nils, GRIMM Alejandro, et al. Systematic evaluation of the fate of phosphorus in fluidized bed combustion of biomass and sewage sludge[J]. Energy & Fuels, 2020, 34(4): 3984-3995. |
40 | 徐杰. 钙基添加剂对城市污泥在热处理过程中磷转化的影响[D]. 杭州: 浙江大学, 2021. |
XU Jie. Effect of calcium-based additives on phosphorus transformation of municipal sludge during thermal treatment[D]. Hangzhou: Zhejiang University, 2021. | |
41 | 孟详东, 黄群星, 严建华, 等. 磷在污泥热解过程中的迁移转化[J]. 化工学报, 2018, 69(7): 3208-3215, 3303. |
MENG Xiangdong, HUANG Qunxing, YAN Jianhua, et al. Migration and transformation of phosphorus during pyrolysis process of sewage sludge[J]. CIESC Journal, 2018, 69(7): 3208-3215, 3303. | |
42 | 杨艳琴. 市政污泥与农林废弃物共热解制备生物炭及其对土壤中重金属迁移转化的影响[D]. 无锡: 江南大学, 2020. |
YANG Yanqin. Biochar preparation by co-pyrolysis of municipal sludge and agricultural and forestry waste and its impact on the migration and transformation of heavy metal in soil[D]. Wuxi: Jiangnan University, 2020. | |
43 | ACELAS Nancy Y, LÓPEZ Diana P, D W F (Wim) BRILMAN, et al. Supercritical water gasification of sewage sludge: gas production and phosphorus recovery[J]. Bioresource Technology, 2014, 174: 167-175. |
44 | HANNL Thomas Karl, Gustav HÄGGSTRÖM, HEDAYATI Ali, et al. Ash transformation during single-pellet gasification of sewage sludge and mixtures with agricultural residues with a focus on phosphorus[J]. Fuel Processing Technology, 2022, 227: 107102. |
45 | TOMASI MORGANO Marco, LEIBOLD Hans, RICHTER Frank, et al. Screw pyrolysis technology for sewage sludge treatment[J]. Waste Management, 2018, 73: 487-495. |
46 | OLIVER Krüger, ANGELA Grabner, CHRISTIAN Adam. Complete survey of German sewage sludge ash[J]. Environmental Science & Technology, 2014, 48(20): 11811-11818. |
47 | TANG Siqi, ZHENG Chunmiao, YAN Feng, et al. Product characteristics and kinetics of sewage sludge pyrolysis driven by alkaline earth metals[J]. Energy, 2018, 153: 921-932. |
48 | SHI Yan, LUO Gang, RAO Yue, et al. Hydrothermal conversion of dewatered sewage sludge: Focusing on the transformation mechanism and recovery of phosphorus[J]. Chemosphere, 2019, 228: 619-628. |
49 | 尹晶. 城市污泥热处理过程中磷的迁移转化特性研究[D]. 沈阳: 沈阳航空航天大学, 2014. |
YIN Jing. Study on the transformation characteristics of phosphorus during thermochemistry treatment of municipal sludge[D]. Shenyang: Shenyang Aerospace University, 2014. | |
50 | KLEEMANN Rosanna, CHENOWETH Jonathan, CLIFT Roland, et al. Comparison of phosphorus recovery from incinerated sewage sludge ash (ISSA) and pyrolysed sewage sludge char (PSSC)[J]. Waste Management, 2017, 60: 201-210. |
51 | 纪莎莎, 黄瑾. 污泥焚烧工程中的磷形态分布与磷迁移研究[J]. 中国给水排水, 2021, 37(5): 26-30. |
JI Shasha, HUANG Jin. Phosphorus forms distribution and migration in sludge incineration project[J]. China Water & Wastewater, 2021, 37(5): 26-30. | |
52 | BERGFELDT Britta, TOMASI MORGANO Marco, LEIBOLD Hans, et al. Recovery of phosphorus and other nutrients during pyrolysis of chicken manure[J]. Agriculture, 2018, 8(12): 187. |
53 | IMAI T. Calcination technology for manufacturing mineral fertilizer using CaO-enriched sewage sludge ash[M]// Phosphorus Recovery and Recycling. Singapore: Springer, 2018: 179-187. |
54 | LIU Qiang, LI Jiayi, FANG Zheng, et al. Behavior of fast and slow phosphorus release from sewage sludge-derived biochar amended with CaO[J]. Environmental Science and Pollution Research, 2021, 28(22): 28319-28328. |
55 | PARÉS VIADER Raimon, JENSEN Pernille Erland, OTTOSEN Lisbeth M, et al. Comparison of phosphorus recovery from incineration and gasification sewage sludge ash[J]. Water Science and Technology, 2017, 75(5/6): 1251-1260. |
56 | GORAZDA K, TARKO B, WERLE S, et al. Sewage sludge as a fuel and raw material for phosphorus recovery: Combined process of gasification and P extraction[J]. Waste Management, 2018, 73: 404-415. |
57 | 付雄, 刘敏, 陈滢. 污泥灰中磷的湿化学法回收技术研究进展[J]. 化工环保, 2017, 37(3): 276-281. |
FU Xiong, LIU Min, CHEN Ying. Research progresses on recovery of phosphorus from sewage sludge ash by wet chemical method[J]. Environmental Protection of Chemical Industry, 2017, 37(3): 276-281. | |
58 | Abhay RAJ, YADAV Ashutosh, ARYA Shashi, et al. Preparation, characterization and agri applications of biochar produced by pyrolysis of sewage sludge at different temperatures[J]. Science of the Total Environment, 2021, 795: 148722. |
59 | 陈晶晶, 艾克来木·艾合买提, 张作泰. 磷强化污泥生物炭对土壤特性及玉米生长的影响[J]. 环境卫生工程, 2021, 29(6): 27-33. |
CHEN Jingjing, AIKELAIMU Aihemaiti, ZHANG Zuotai. The effect of P-enhanced sludge biochar on soil properties and corn growth[J]. Environmental Sanitation Engineering, 2021, 29(6): 27-33. | |
60 | QIAN Tingting, JIANG Hong. Migration of phosphorus in sewage sludge during different thermal treatment processes[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(6): 1411-1419. |
61 | HUANG Rixiang, TANG Yuanzhi. Speciation dynamics of phosphorus during (hydro)thermal treatments of sewage sludge[J]. Environmental Science & Technology, 2015, 49(24): 14466-14474. |
62 | LI Rundong, ZHANG Ziheng, LI Yanlong, et al. Transformation of apatite phosphorus and non-apatite inorganic phosphorus during incineration of sewage sludge[J]. Chemosphere, 2015, 141: 57-61. |
63 | XIA Yunxue, TANG Yuanyuan, SHIH Kaimin, et al. Enhanced phosphorus availability and heavy metal removal by chlorination during sewage sludge pyrolysis[J]. Journal of Hazardous Materials, 2020, 382: 121110. |
64 | XIONG Qiao, WU Xiang, Hang LYU, et al. Influence of rice husk addition on phosphorus fractions and heavy metals risk of biochar derived from sewage sludge[J]. Chemosphere, 2021, 280: 130566. |
65 | Gustav HÄGGSTRÖM, HANNL Thomas Karl, HEDAYATI Ali, et al. Single pellet combustion of sewage sludge and agricultural residues with a focus on phosphorus[J]. Energy & Fuels, 2021, 35(12): 10009-10022. |
66 | ZHAO Yazhou, REN Qiangqiang, NA Yongjie. Phosphorus transformation from municipal sewage sludge incineration with biomass: Formation of apatite phosphorus with high bioavailability[J]. Energy & Fuels, 2018, 32(10): 10951-10955. |
67 | ZHAI Shuangmeng, AKAOGI Masaki, KOJITANI Hiroshi, et al. Thermodynamic investigation on β-and γ-Ca3(PO4)2 and the phase equilibria[J]. Physics of the Earth and Planetary Interiors, 2014, 228: 144-149. |
68 | MATHEW M, SCHROEDER L W, DICKENS B, et al. The crystal structure of α-Ca3(PO4)2 [J]. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1977, 33(5): 1325-1333. |
69 | KUMAR P N, FERREIRA J M F, KANNAN S. Phase transition mechanisms involved in the formation of structurally stable β-Ca3(PO4)2-α-Al2O3 composites[J]. Journal of the European Ceramic Society, 2017, 37(8): 2953-2963. |
70 | ANDO Jumpei, MATSUNO Seiichi. Ca3(PO4)2-CaNaPO4 system[J]. Bulletin of the Chemical Society of Japan, 1968, 41(2): 342-347. |
71 | CARRODEGUAS Raúl García, DE AZA Antonio H, Ismael GARCÍA-PÁEZ, et al. Revisiting the phase-equilibrium diagram of the Ca3(PO4)2-CaMg(SiO3)2 system[J]. Journal of the American Ceramic Society, 2010, 93(2): 561-569. |
72 | ANDO J. Phase diagrams of Ca3(PO4)2-Mg3(PO4)2 and Ca3(PO4)2-CaNaPO4 systems[J]. Bulletin of the Chemical Society of Japan, 1958, 31(2): 201-205. |
73 | JUNGOWSKA Wanda. The system LaPO4-Ca3(PO4)2 [J]. Solid State Sciences, 2002, 4(2): 229-232. |
74 | PIOTROWSKA D, ZNAMIEROWSKA T, SZCZYGIEŁ I. Phase equilibria in the ErPO4–K3PO4 system[J]. Journal of Thermal Analysis and Calorimetry, 2013, 113(1): 121-126. |
75 | Teresa PODHAJSKA-KAŹMIERCZAK. Phase equilibria in the ternary system MgO-Na2O-P2O5. The partial system MgO-Mg3(PO4)2-Mg4Na(PO4)3-Na4P2O7 [J]. Thermochimica Acta, 2002, 385(1/2): 163-169. |
76 | VEKSLER Ilya V, THOMAS Rainer, WIRTH Richard. Crystallization of AlPO4-SiO2 solid solutions from granitic melt and implications for P-rich melt inclusions in pegmatitic quartz[J]. American Mineralogist, 2003, 88(11/12): 1724-1730. |
77 | ZHANG Liying, SCHLESINGER Mark E, BROW Richard K. Phase equilibria in the Fe2O3-P2O5 system[J]. Journal of the American Ceramic Society, 2011, 94(5): 1605-1610. |
78 | Aleksandra NOVAKOVIĆ, VAN LITH Simone C, FRANDSEN Flemming J, et al. Release of potassium from the systems K-Ca-Si and K-Ca-P[J]. Energy & Fuels, 2009, 23(7): 3423-3428. |
79 | LIN Kunsen, Jiahong KUO, XIONG Kun, et al. Effect of phosphorus concentration on alkali and heavy metals transformation under agglomeration/defluidization during fluidized bed simulated sludge co-combustion[J]. Waste and Biomass Valorization, 2020, 11(12): 6903-6916. |
80 | LIN Kunsen, Jiahong KUO, LIN Chiou-Liang, et al. Sequential extraction for heavy metal distribution of bottom ash from fluidized bed co-combusted phosphorus-rich sludge under the agglomeration/defluidization process[J]. Waste Management & Research, 2020, 38(2): 122-133. |
81 | SEVONIUS Christoffer, YRJAS Patrik, Daniel LINDBERg, et al. Agglomeration tendency of a fluidized bed during addition of different phosphate compounds[J]. Fuel, 2020, 268: 117300. |
82 | SCHMID Max, HAFNER Selina, BIOLLAZ Serge, et al. Steam-oxygen gasification of sewage sludge: Reduction of tar, H2S and COS with limestone as bed additive[J]. Biomass and Bioenergy, 2021, 150: 106100. |
83 | HANNL Thomas Karl, SEFIDARI Hamid, KUBA Matthias, et al. Thermochemical equilibrium study of ash transformation during combustion and gasification of sewage sludge mixtures with agricultural residues with focus on the phosphorus speciation[J]. Biomass Conversion and Biorefinery, 2021, 11(1): 57-68. |
84 | GINSBERG Tobias, HANNES Jens, Jöry KLEEBERG, et al. Gasification of sewage sludge and recovery of phosphorus–R&D-activities at RWE[J]. Klärschlammkonferenz, 2019. |
85 | BOURGEL Christine, Emmanuel VÉRON, POIRIER Jacques, et al. Behavior of phosphorus and other inorganics during the gasification of sewage sludge[J]. Energy & Fuels, 2011, 25(12): 5707-5717. |
86 | QI Xiaobin, SONG Guoliang, SONG Weijian, et al. Combustion performance and slagging characteristics during co-combustion of Zhundong coal and sludge[J]. Journal of the Energy Institute, 2018, 91(3): 397-410. |
87 | 郑晓园, 蒋正伟, 陈伟, 等. 污水污泥水热炭化过程中磷的迁移转化特性[J]. 化工进展, 2020, 39(5): 2017-2025. |
ZHENG Xiaoyuan, JIANG Zhengwei, CHEN Wei, et al. Migration and transformation of phosphorus in sewage sludge during hydrothermal carbonization process[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 2017-2025. | |
88 | LI Shuaishuai, ZENG Wei, JIA Ziyue, et al. Phosphorus species transformation and recovery without apatite in FeCl3-assisted sewage sludge hydrothermal treatment[J]. Chemical Engineering Journal, 2020, 399: 125735. |
89 | WANG Tao, ZHAI Yunbo, ZHU Yun, et al. Feedwater pH affects phosphorus transformation during hydrothermal carbonization of sewage sludge[J]. Bioresource Technology, 2017, 245: 182-187. |
90 | WANG Qian, JUNG Haesung, WAN Biao, et al. Transformation kinetics of phosphorus and nitrogen in iron-rich sewage sludges during hydrothermal treatment and recovery of nutrients from process water[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(31): 10630-10641. |
91 | 郝晓地, 于晶伦, 刘然彬, 等. 剩余污泥焚烧灰分磷回收及其技术进展[J]. 环境科学学报, 2020, 40(4): 1149-1159. |
HAO Xiaodi, YU Jinglun, LIU Ranbin, et al. Advances of phosphorus recovery from the incineration ashes of excess sludge and its associated technologies[J]. Acta Scientiae Circumstantiae, 2020, 40(4): 1149-1159. | |
92 | PETZET S, CORNEL P. Towards a complete recycling of phosphorus in wastewater treatment—Options in Germany[J]. Water Science and Technology, 2011, 64(1): 29-35. |
93 | NAKAGAWA H, OHTA J. Phosphorus recovery from sewage sludge ash: A case study in Gifu, Japan[M]//Phosphorus Recovery and Recycling. Singapore: Springer, 2018: 149-155. |
94 | SONODA Ken ichi. Alkaline leaching of phosphate from sewage sludge ash[M]// Phosphorus recovery and recycling. Singapore: Springer Singapore, 2018: 143-148. |
95 | HOSHO Fumiki. Phosphorus recovery from sewage sludge by high-temperature thermochemical process (KUBOTA process)[M]// Phosphorus Recovery and Recycling. Singapore: Springer, 2019: 189-199. |
96 | TOYAMA Takeshi. Phosphorus extraction from sewage sludge ash by the CO2 blowing method[M]// Phosphorus Recovery and Recycling. Singapore: Springer, 2019: 201-207. |
97 | SANO Akira, KANOMATA Makoto, INOUE Hiroki, et al. Extraction of raw sewage sludge containing iron phosphate for phosphorus recovery[J]. Chemosphere, 2012, 89(10): 1243-1247. |
98 | MORF L, SCHLUMBERGER S, ADAM F, et al. Urban phosphorus mining in the canton of Zurich: Phosphoric acid from sewage sludge ash[M]// Phosphorus Recovery and Recycling. Singapore: Springer, 2019: 157-177. |
99 | LANGEVELD Kees. Phosphorus recovery into fertilizers and industrial products by ICL in Europe[M]// Phosphorus Recovery and Recycling. Singapore: Springer, 2019: 235-252. |
100 | 胡维杰, 赵由才, 甄广印. 德国污水污泥处理处置政策及磷回收技术解析与启示[J]. 给水排水, 2020, 56(6): 15-20. |
HU Weijie, ZHAO Youcai, ZHEN Guangyin. Analysis and inspiration of sewage sludge treatment & disposal policy and phosphorus recovery technology in Germany[J]. Water & Wastewater Engineering, 2020, 56(6): 15-20. | |
101 | DONATELLO S, TONG D, CHEESEMAN C R. Production of technical grade phosphoric acid from incinerator sewage sludge ash (ISSA)[J]. Waste Management, 2010, 30(8/9): 1634-1642. |
102 | GINSBERG Tobias, HANNES Jens, Jörg KLEEBERG, et al. Gasification of sewage sludge in the Freiberg COORVED lab scale unit for in-situ recovery of Phosphorus[C]//IEC Gasification Conference, 2018. |
103 | ARNOUT Sander, NAGELS Els. Modelling thermal phosphorus recovery from sewage sludge ash[J]. Calphad, 2016, 55: 26-31. |
104 | 何海东, 刘亚利. 剩余污泥中磷的释放和回收技术的研究进展[J]. 化工技术与开发, 2021, 50(6): 59-63. |
HE Haidong, LIU Yali. Research progress on release and recovery of phosphorus from waste activated sludge[J]. Technology & Development of Chemical Industry, 2021, 50(6): 59-63. | |
105 | 马龙, 杨成, 孟凡非, 等. 污泥磷化学回收技术的研究进展[J]. 水处理技术, 2018, 44(6): 15-18, 27. |
MA Long, YANG Cheng, MENG Fanfei, et al. Research progress on phosphorus recovery in sludge by chemical technology[J]. Technology of Water Treatment, 2018, 44(6): 15-18, 27. | |
106 | 李长玉. 基于蓝铁矿结晶法的污水及污泥中磷回收技术研究[D]. 烟台: 中国科学院大学(中国科学院烟台海岸带研究所), 2021. |
LI Changyu. Phosphorus recovery from sewage or sludge by vivianite crystallization[D]. Yantai: Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 2021. | |
107 | FANG Le, YAN Feng, CHEN Jingjing, et al. Novel recovered compound phosphate fertilizer produced from sewage sludge and its incinerated ash[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(17): 6611-6621. |
108 | 许劲, 朱杰东, 李卷利, 等. 湿化学法回收污泥水热炭中磷的潜能研究[J]. 化工学报, 2021, 72(11): 5779-5789, 5894. |
XU Jin, ZHU Jiedong, LI Juanli, et al. Potential of phosphorus recovery from sludge-based hydrochar by wet chemical method[J]. CIESC Journal, 2021, 72(11): 5779-5789, 5894. | |
109 | 郝晓地, 于文波, 时琛, 等. 污泥焚烧灰分磷回收潜力分析及其市场前景[J]. 中国给水排水, 2021, 37(4): 5-10. |
HAO Xiaodi, YU Wenbo, SHI Chen, et al. Potential analysis and market prospects of phosphorus recovery from the bottom ashes of sludge incineration[J]. China Water & Wastewater, 2021, 37(4): 5-10. | |
110 | MIRETZKY Patricia, Alicia FERNANDEZ-CIRELLI. Phosphates for Pb immobilization in soils: A review[J]. Environmental Chemistry Letters, 2008, 6(3): 121-133. |
111 | SCHAMEL Martha. Novel dual setting approaches for mechanically reinforced mineral biocements[D]. Würzburg: Julius-Maximilians-Universität Würzburg, 2017. |
112 | BOLAN N S, ADRIANO D C, NAIDU R. Role of phosphorus in (im)mobilization and bioavailability of heavy metals in the soil-plant system[J]. Reviews of Environmental Contamination & Toxicology, 2003, 177(2): 1-44. |
113 | OFOEGBU Stanley Udochukwu. Technological challenges of phosphorus removal in high-phosphorus ores: Sustainability implications and possibilities for greener ore processing[J]. Sustainability, 2019, 11(23): 6787. |
114 | CHOW L C. Next generation calcium phosphate-based biomaterials[J]. Dental Materials Journal, 2009, 28(1): 1-10. |
115 | RAHAMAN M S, MAVINIC D S, BHUIYAN M I H, et al. Exploring the determination of struvite solubility product from analytical results[J]. Environmental Technology, 2006, 27(9): 951-961. |
116 | LIU Ruiqiang, ZHAO Dongye. Reducing leachability and bioaccessibility of lead in soils using a new class of stabilized iron phosphate nanoparticles[J]. Water Research, 2007, 41(12): 2491-2502. |
117 | WOLLMANN Iris, GAURO Ajay, Torsten MÜLLER, et al. Phosphorus bioavailability of sewage sludge-based recycled fertilizers[J]. Journal of Plant Nutrition and Soil Science, 2018, 181(2): 158-166. |
118 | FIGUEIREDO Cícero Célio, SOUZA PRADO JUNQUEIRA REIS Arthur, ARAUJO Alyson Silva, et al. Assessing the potential of sewage sludge-derived biochar as a novel phosphorus fertilizer: Influence of extractant solutions and pyrolysis temperatures[J]. Waste Management, 2021, 124: 144-153. |
119 | 刘凯传, 刘佳欢, 孙甲玉, 等. 污泥-秸秆混合基生物炭对土壤性质和植物生长的影响[J]. 山东农业大学学报(自然科学版), 2018, 49(6): 1015-1019. |
LIU Kaichuan, LIU Jiahuan, SUN Jiayu, et al. Effect of sludge-straw mixture biochar on soil properties and plant growth[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2018, 49(6): 1015-1019. | |
120 | 何飞, 赵忠祥, 康俊梅, 等. 氮磷钾配比施肥对紫花苜蓿草产量及品质的影响[J]. 中国草地学报, 2019, 41(5): 24-32. |
HE Fei, ZHAO Zhongxiang, KANG Junmei, et al. Effects of N, P and K fertilizer on alfalfa hay yield and quality[J]. Chinese Journal of Grassland, 2019, 41(5): 24-32. |
[1] | MA Yi, CAO Shiwei, WANG Jiajun, LIN Liqun, XING Yan, CAO Tengliang, LU Feng, ZHAO Zhenlun, ZHANG Zhijun. Research progress in recovery of spent cathode materials for lithium-ion batteries using deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 219-232. |
[2] | WANG Baoying, WANG Huangying, YAN Junying, WANG Yaoming, XU Tongwen. Research progress of polymer inclusion membrane in metal separation and recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3990-4004. |
[3] | LYU Jie, HUANG Chong, FENG Ziping, HU Yafei, SONG Wenji. Performance and control system of gas engine heat pump based on waste heat recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4182-4192. |
[4] | HU Yafei, FENG Ziping, TIAN Jiayao, SONG Wenji. Waste heat recovery performance of an air-source gas engine-driven heat pump system in multi-heating operation modes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4204-4211. |
[5] | HOU Dianbao, HE Maoyong, CHEN Yugang, YANG Haiyun, LI Haimin. Application analysis of resource allocation optimization and circular economy in development and utilization of potassium resources [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3197-3208. |
[6] | ZENG Tianxu, ZHANG Yongxian, YAN Yuan, LIU Hong, MA Jiao, DANG Hongzhong, WU Xinbo, LI Weiwei, CHEN Yongzhi. Effects of hydroxylamine on the activity and kinetic parameters of nitrifying bacteria [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3272-3280. |
[7] | LIU Yulong, YAO Junhu, SHU Chuangchuang, SHE Yuehui. Biosynthesis and EOR application of magnetic Fe3O4 NPs [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2464-2474. |
[8] | LI Huahua, LI Yihang, JIN Beichen, LI Longxin, CHENG Shao’an. Research progress of Anammox bio-electrochemical coupling wastewater treatment system [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2678-2690. |
[9] | WANG Hao, HUO Jinda, QU Guorui, YANG Jiaqi, ZHOU Shiwei, LI Bo, WEI Yonggang. Research progress of positive electrode material recycling technology for retired lithium batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2702-2716. |
[10] | YANG Ziqiang, LI Fenghai, GUO Weijie, MA Mingjie, ZHAO Wei. Review on phosphorus migration and transformation during municipal sewage sludge heat treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2081-2090. |
[11] | HU Yafei, FENG Ziping, TIAN Jiayao, HUANG Chong, SONG Wenji. Energy saving simulation and operation economic analysis of fuel driven non-electric heat pump systems [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1217-1227. |
[12] | ZHANG Qunli, HUANG Haotian, ZHANG Lin, ZHAO Wenqiang, ZHANG Qiuyue. Analysis of condensation waste heat recovery system of spray flue gas source heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 650-657. |
[13] | WU Xinbo, DANG Hongzhong, MA Jiao, YAN Yuan, ZENG Tianxu, LI Weiwei, ZHANG Guozhen, CHEN Yongzhi. Effect of denitrifying phosphorus removal under short-cut nitrification mode with A2/O-BAF process [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1089-1097. |
[14] | LI Dongxian, WANG Jia, JIANG Jianchun. Producing aliphatic acids via pressurized hydrolysis of soapstock assisted by ultrasound [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 409-416. |
[15] | BAO Jin, SONG Yonghui, DONG Ping, LI Yifan, ZHU Rongyan, LIAO Long. Extraction and enrichment of iron ions in cyanide tailings electrolyte [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 517-525. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |