Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (5): 2586-2594.DOI: 10.16085/j.issn.1000-6613.2022-1345
• Materials science and technology • Previous Articles Next Articles
ZHAO Yao(), ZHOU Zhihui(), WU Hongdan, HU Chuanzhi, ZHANG Guochun, WU Ruipeng
Received:
2022-07-18
Revised:
2022-09-13
Online:
2023-06-02
Published:
2023-05-10
Contact:
ZHOU Zhihui
赵尧(), 周志辉(), 吴红丹, 胡传智, 张国春, 吴睿鹏
通讯作者:
周志辉
作者简介:
赵尧(1996—),男,硕士研究生,研究方向为环境功能材料。E-mail:406453077@qq.com。
基金资助:
CLC Number:
ZHAO Yao, ZHOU Zhihui, WU Hongdan, HU Chuanzhi, ZHANG Guochun, WU Ruipeng. Response surface analysis and optimization of membrane permeation vaporization by Silicalite-1 molecular sieve[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2586-2594.
赵尧, 周志辉, 吴红丹, 胡传智, 张国春, 吴睿鹏. Silicalite-1分子筛膜渗透蒸发条件的响应面分析与优化[J]. 化工进展, 2023, 42(5): 2586-2594.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1345
因子代码 | 因子名称 | 最小值(-1) | 最大值(+1) | 中心值(0) |
---|---|---|---|---|
A | 乙醇质量分数/% | 1 | 15 | 8 |
B | 料液温度/℃ | 50 | 70 | 60 |
C | 真空压力/kPa | 5 | 15 | 10 |
因子代码 | 因子名称 | 最小值(-1) | 最大值(+1) | 中心值(0) |
---|---|---|---|---|
A | 乙醇质量分数/% | 1 | 15 | 8 |
B | 料液温度/℃ | 50 | 70 | 60 |
C | 真空压力/kPa | 5 | 15 | 10 |
序号 | A | B | C | 分离系数 | 渗透通量/g·m-2·h-1 |
---|---|---|---|---|---|
1 | 0 | 1 | 1 | 26.46 | 345.86 |
2 | 0 | 1 | -1 | 19.08 | 956.48 |
3 | 1 | 0 | -1 | 33.16 | 1733.81 |
4 | 0 | 0 | 0 | 32.65 | 969.84 |
5 | 0 | -1 | 1 | 28.95 | 156.16 |
6 | 1 | 0 | 1 | 39.13 | 584.31 |
7 | 0 | 0 | 0 | 32.92 | 1076.74 |
8 | 1 | 1 | 0 | 26.14 | 1018.73 |
9 | 0 | -1 | -1 | 27.29 | 845.31 |
10 | -1 | -1 | 0 | 11.75 | 289.71 |
11 | -1 | 0 | -1 | 5.53 | 810.19 |
12 | 0 | 0 | 0 | 33.21 | 931.69 |
13 | -1 | 0 | 1 | 12.89 | 465.78 |
14 | 1 | -1 | 0 | 50.31 | 301.13 |
15 | 0 | 0 | 0 | 32.14 | 1037.01 |
16 | 0 | 0 | 0 | 30.49 | 1045.86 |
17 | -1 | 1 | 0 | 14.08 | 321.54 |
序号 | A | B | C | 分离系数 | 渗透通量/g·m-2·h-1 |
---|---|---|---|---|---|
1 | 0 | 1 | 1 | 26.46 | 345.86 |
2 | 0 | 1 | -1 | 19.08 | 956.48 |
3 | 1 | 0 | -1 | 33.16 | 1733.81 |
4 | 0 | 0 | 0 | 32.65 | 969.84 |
5 | 0 | -1 | 1 | 28.95 | 156.16 |
6 | 1 | 0 | 1 | 39.13 | 584.31 |
7 | 0 | 0 | 0 | 32.92 | 1076.74 |
8 | 1 | 1 | 0 | 26.14 | 1018.73 |
9 | 0 | -1 | -1 | 27.29 | 845.31 |
10 | -1 | -1 | 0 | 11.75 | 289.71 |
11 | -1 | 0 | -1 | 5.53 | 810.19 |
12 | 0 | 0 | 0 | 33.21 | 931.69 |
13 | -1 | 0 | 1 | 12.89 | 465.78 |
14 | 1 | -1 | 0 | 50.31 | 301.13 |
15 | 0 | 0 | 0 | 32.14 | 1037.01 |
16 | 0 | 0 | 0 | 30.49 | 1045.86 |
17 | -1 | 1 | 0 | 14.08 | 321.54 |
方差来源 | 平方和 | 自由度 | 均方 | F值 | p值 | 显著性 |
---|---|---|---|---|---|---|
模型 | 1975.52 | 9 | 219.50 | 64.65 | <0.0001 | 显著 |
A | 1364.77 | 1 | 1364.77 | 401.94 | <0.0001 | 显著 |
B | 132.36 | 1 | 132.36 | 38.98 | 0.0004 | 显著 |
C | 62.55 | 1 | 62.55 | 18.42 | 0.0036 | 显著 |
AB | 175.56 | 1 | 175.56 | 51.70 | 0.0002 | 显著 |
AC | 0.48 | 1 | 0.48 | 0.14 | 0.7172 | 不显著 |
BC | 8.18 | 1 | 8.18 | 2.41 | 0.1646 | 不显著 |
A2 | 94.59 | 1 | 94.59 | 27.86 | 0.0012 | 显著 |
B2 | 16.38 | 1 | 16.38 | 4.82 | 0.0641 | 不显著 |
C2 | 99.65 | 1 | 99.65 | 29.35 | 0.0010 | 显著 |
总残差 | 23.77 | 7 | 3.40 | — | — | — |
失拟误差 | 19.13 | 3 | 6.38 | 5.50 | 0.0665 | 不显著 |
纯误差 | 4.64 | 4 | 1.16 | — | — | — |
总和 | 1999.29 | 16 | — | — | — | — |
方差来源 | 平方和 | 自由度 | 均方 | F值 | p值 | 显著性 |
---|---|---|---|---|---|---|
模型 | 1975.52 | 9 | 219.50 | 64.65 | <0.0001 | 显著 |
A | 1364.77 | 1 | 1364.77 | 401.94 | <0.0001 | 显著 |
B | 132.36 | 1 | 132.36 | 38.98 | 0.0004 | 显著 |
C | 62.55 | 1 | 62.55 | 18.42 | 0.0036 | 显著 |
AB | 175.56 | 1 | 175.56 | 51.70 | 0.0002 | 显著 |
AC | 0.48 | 1 | 0.48 | 0.14 | 0.7172 | 不显著 |
BC | 8.18 | 1 | 8.18 | 2.41 | 0.1646 | 不显著 |
A2 | 94.59 | 1 | 94.59 | 27.86 | 0.0012 | 显著 |
B2 | 16.38 | 1 | 16.38 | 4.82 | 0.0641 | 不显著 |
C2 | 99.65 | 1 | 99.65 | 29.35 | 0.0010 | 显著 |
总残差 | 23.77 | 7 | 3.40 | — | — | — |
失拟误差 | 19.13 | 3 | 6.38 | 5.50 | 0.0665 | 不显著 |
纯误差 | 4.64 | 4 | 1.16 | — | — | — |
总和 | 1999.29 | 16 | — | — | — | — |
方差来源 | 平方和 | 自由度 | 均方 | F值 | p值 | 显著性 |
---|---|---|---|---|---|---|
模型 | 2.615×106 | 9 | 2.906×105 | 35.10 | <0.0001 | 显著 |
A | 3.831×105 | 1 | 3.831×105 | 46.27 | 0.0003 | 显著 |
B | 1.379×105 | 1 | 1.379×105 | 16.65 | 0.0047 | 显著 |
C | 9.756×105 | 1 | 9.756×105 | 117.83 | <0.0001 | 显著 |
AB | 1.176×105 | 1 | 1.176×105 | 14.20 | 0.0070 | 不显著 |
AC | 1.620×105 | 1 | 1.620×105 | 19.57 | 0.0031 | 显著 |
BC | 1541.74 | 1 | 1541.74 | 0.19 | 0.6791 | 不显著 |
A2 | 4.505×104 | 1 | 4.505×104 | 5.44 | 0.0524 | 不显著 |
B2 | 7.641×105 | 1 | 7.641×105 | 92.29 | <0.0001 | 显著 |
C2 | 443.69 | 1 | 443.69 | 0.054 | 0.8236 | 不显著 |
总残差 | 5.796×104 | 7 | 8279.76 | — | — | — |
失拟误差 | 4.377×104 | 3 | 1.459×104 | 4.11 | 0.0665 | 不显著 |
纯误差 | 1.419×104 | 4 | 3547.54 | — | — | — |
总和 | 2.673×106 | 16 | — | — | — | — |
方差来源 | 平方和 | 自由度 | 均方 | F值 | p值 | 显著性 |
---|---|---|---|---|---|---|
模型 | 2.615×106 | 9 | 2.906×105 | 35.10 | <0.0001 | 显著 |
A | 3.831×105 | 1 | 3.831×105 | 46.27 | 0.0003 | 显著 |
B | 1.379×105 | 1 | 1.379×105 | 16.65 | 0.0047 | 显著 |
C | 9.756×105 | 1 | 9.756×105 | 117.83 | <0.0001 | 显著 |
AB | 1.176×105 | 1 | 1.176×105 | 14.20 | 0.0070 | 不显著 |
AC | 1.620×105 | 1 | 1.620×105 | 19.57 | 0.0031 | 显著 |
BC | 1541.74 | 1 | 1541.74 | 0.19 | 0.6791 | 不显著 |
A2 | 4.505×104 | 1 | 4.505×104 | 5.44 | 0.0524 | 不显著 |
B2 | 7.641×105 | 1 | 7.641×105 | 92.29 | <0.0001 | 显著 |
C2 | 443.69 | 1 | 443.69 | 0.054 | 0.8236 | 不显著 |
总残差 | 5.796×104 | 7 | 8279.76 | — | — | — |
失拟误差 | 4.377×104 | 3 | 1.459×104 | 4.11 | 0.0665 | 不显著 |
纯误差 | 1.419×104 | 4 | 3547.54 | — | — | — |
总和 | 2.673×106 | 16 | — | — | — | — |
1 | ALI N, BILAL M, KHAN A, et al. Understanding the hierarchical assemblies and oil/water separation applications of metal-organic frameworks[J]. Journal of Molecular Liquids, 2020, 318: 114273. |
2 | DÍAZ V H G, TOST G O. Butanol production from lignocellulose by simultaneous fermentation, saccharification, and pervaporation or vacuum evaporation[J]. Bioresource Technology, 2016, 218: 174-182. |
3 | LIU Song, ZHOU Guangyuan, CHENG Gongbi, et al. Emerging membranes for separation of organic solvent mixtures by pervaporation or vapor permeation[J]. Separation and Purification Technology, 2022, 299: 121729. |
4 | 董道敏, 刘宾, 柴永明, 等. 动态水热法制备Silicalite-1分子筛膜包覆多孔缺陷Al2O3微球[J]. 化工进展, 2018, 37(10): 3943-3948. |
DONG Daomin, LIU Bin, CHAI Yongming, et al. Dynamic hydrothermal synthesis of Silicalite-1 zeolite membrane to encapsulate defective porous alumina spheres[J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3943-3948. | |
5 | UENO K, NEGISHI H, MIYAMOTO M, et al. Effect of deposition seed crystal amount on the α-Al2O3 support and separation performance of silicalite-1 membranes for acetic acid/water mixtures[J]. Separation and Purification Technology, 2017, 174: 57-65. |
6 | 赵文博, 沈润生, 傅雯倩. 多孔Silicalite-1沸石负载Ni对肉桂醛的选择性加氢[J]. 精细石油化工, 2019, 36(1): 40-46. |
ZHAO Wenbo, SHEN Runsheng, FU Wenqian. Selective hydrogenation of cinnamaldehyde in porous Silicalite-1 zeolite supported by Ni[J]. Speciality Petrochemicals, 2019, 36(1): 40-46. | |
7 | LI Jiexin, SHI Chunhong, ZHANG Huifeng, et al. Silicalite-1 zeolite membrane: Synthesis by seed method and application in organics removal[J]. Chemosphere, 2019, 218: 984-991. |
8 | 樊丽虹, 李裕, 宋尧, 等. 原位水热合成b轴Silicalite-1膜时间控制及乙醇-水物系分离[J]. 中北大学学报(自然科学版), 2018, 39(3): 316-321, 349. |
FAN Lihong, LI Yu, SONG Yao, et al. Timing control on b-oriented Silicalite-1 synthesized by in situ hydrothermal and separation of system of ethanol and water[J]. Journal of North University of China(Natural Science Edition), 2018, 39(3): 316-321, 349. | |
9 | ZHANG Lejian, WANG Xinping, CHEN Yong. Rapid synthesis of uniform nano-sized silicalite-1 zeolite crystals under atmospheric pressure without wastes discharge[J]. Chemical Engineering Journal, 2020, 382(2): 122913. |
10 | KUJAWSKA A, KNOZOWSKA K, KUJAWA J, et al. Influence of downstream pressure on pervaporation properties of PDMS and POMS based membranes[J]. Separation and Purification Technology, 2016, 159: 68-80. |
11 | SHARAFI S M, MOGHIMI S M, VAEZI M J, et al. Synthesis a low template B-ZSM-5 membrane with suitable morphology and high performance for the separation of acetone/water mixtures[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107079. |
12 | LI Yan, LI Shenhui, XU Lihao, et al. Highly selective PDMS membranes embedded with ILs-decorated halloysite nanotubes for ethyl acetate pervaporation separation[J]. Separation and Purification Technology, 2022, 298: 121552. |
13 | BEZERRA M A, SANTELLI R E, OLIVEIRA E P, et al. Response surface methodology (RSM) as a tool for optimization in analytical chemistry[J]. Talanta, 2008, 76(5): 965-977. |
14 | HUANG Zhen, RU Xiaofei, ZHU Yatong, et al. Poly (vinyl alcohol)/ZSM-5 zeolite mixed matrix membranes for pervaporation dehydration of isopropanol/water solution through response surface methodology[J]. Chemical Engineering Research and Design, 2019, 144: 19-34. |
15 | CATARINO M, FERREIRA A, MENDES A. Study and optimization of aroma recovery from beer by pervaporation[J]. Journal of Membrane Science, 2009, 341(1/2): 51-59. |
16 | XIANGLI Fenjuan, WEI Wang, CHEN Yiwei, et al. Optimization of preparation conditions for polydimethylsiloxane (PDMS)/ceramic composite pervaporation membranes using response surface methodology[J]. Journal of Membrane Science, 2008, 311(1/2):23-33. |
17 | WEE S L, TYE C T, BHATIA S. Process optimization studies for the dehydration of alcohol-water system by inorganic membrane based pervaporation separation using design of experiments (DOE)[J]. Separation and Purification Technology, 2010, 71(2):192-199. |
18 | YEONG Y F, ABDULLAH A Z, AHMAD A L, et al. Process optimization studies of p-xylene separation from binary xylene mixture over silicalite-1 membrane using response surface methodology[J]. Journal of Membrane Science, 2009, 341(1/2): 96-108. |
19 | ZHAO Qingyu, WANG Jinqu, CHU Naibo, et al. Preparation of high-permeance MFI membrane with the modified secondary growth method on the macroporous α-alumina tubular support[J]. Journal of Membrane Science, 2008, 320(1/2): 303-309. |
20 | LIN Xiao, KITA H, OKAMOTO K I. Silicalite membrane preparation, characterization, and separation performance[J]. Industrial & Engineering Chemistry Research, 2001, 40(19): 4069-4078. |
21 | LIU Guoping, JIN Wanqin. Pervaporation membrane materials: Recent trends and perspectives[J]. Journal of Membrane Science, 2021, 636(15): 119557. |
22 | TAWALBEH M, TEZEL F H, AL-ISMAILY M, et al. Highly permeable tubular silicalite-1 membranes for CO2 capture[J]. Science of the Total Environment, 2019, 676: 305-320. |
23 | ZHANG Fazhi, FUJI M, TAKAHASHI M. In situ growth of continuous b-oriented MFI zeolite membranes on porous α-alumina substrates precoated with a mesoporous silica sublayer[J]. Chemistry of Materials, 2005, 17(5): 1167-1173. |
24 | UENO K, NEGISHI H, MIYAMOTO M, et al. Effect of Si/Al ratio and amount of deposited MFI-type seed crystals on the separation performance of silicalite-1 membranes for ethanol/water mixtures in the presence of succinic acid[J]. Microporous and Mesoporous Materials, 2018, 267: 1-8. |
25 | REN Xiuxiu, YU Huan, GUO Meng, et al. Long alkyl chain-containing organosilica/silicalite-1 composite membranes for alcohol recovery[J]. Microporous and Mesoporous Materials, 2022, 338: 111947. |
26 | QIU Heng’e, XU Ning, KONG Lin, et al. Fast synthesis of thin silicalite-1 zeolite membranes at low temperature[J]. Journal of Membrane Science, 2020, 611:118361. |
27 | KAMELIAN F S, MOHAMMADI T, NAEIMPOOR F. Fast, facile and scalable fabrication of novel microporous silicalite-1/PDMS mixed matrix membranes for efficient ethanol separation by pervaporation[J]. Separation and Purification Technology, 2019, 229: 115820. |
28 | YANG Xiaobo, DIB E, LANG Qiaolin, et al. Silicalite-1 formation in acidic medium: Synthesis conditions and physicochemical properties[J]. Microporous and Mesoporous Materials, 2022, 329: 111537. |
29 | FARZANEH A, ZHOU M, ANTZUTKIN O N, et al. Adsorption of butanol and water vapors in silicalite-1 films with a low defect density[J]. Langmuir, 2016, 32(45): 11789-11798. |
30 | SHU Xiaojun, WANG Xuerui, KONG Qingqing, et al. High-flux MFI zeolite membrane supported on YSZ hollow fiber for separation of ethanol/water[J]. Industrial & Engineering Chemistry Research, 2012, 51(37): 12073-12080. |
31 | WU Amei, TANG Congyong, ZHONG Shenglai, et al. Synthesis optimization of (h 0 h)-oriented silicalite-1 membranes for butane isomer separation[J]. Separation and Purification Technology, 2019, 214: 51-60. |
[1] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[2] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[3] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[4] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[5] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[6] | LIU Yang, WANG Yungang, XIU Haoran, ZOU Li, BAI Yanyuan. Optimal carbonization process of walnut shell based on dynamic analysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 94-103. |
[7] | HE Meijin. Application and development trend of molecular management in separation technology in petrochemical field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 260-266. |
[8] | SHU Bin, CHEN Jianhong, XIONG Jian, WU Qirong, YU Jiangtao, YANG Ping. Necessity analysis of promoting the development of green methanol under the goal of carbon neutrality [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4471-4478. |
[9] | LIAO Zhixin, LUO Tao, WANG Hong, KONG Jiajun, SHEN Haiping, GUAN Cuishi, WANG Cuihong, SHE Yucheng. Application and progress of solvent deasphalting technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4573-4586. |
[10] | WANG Xiaohan, ZHOU Yasong, YU Zhiqing, WEI Qiang, SUN Jinxiao, JIANG Peng. Synthesis and hydrocracking performance of Y molecular sieves with different crystal sizes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4283-4295. |
[11] | PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942. |
[12] | ZHOU Longda, ZHAO Lixin, XU Baorui, ZHANG Shuang, LIU Lin. Advances in electrostatic-cyclonic coupling enhanced multiphase media separation research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3443-3456. |
[13] | HAN Hengwen, HAN Wei, LI Mingfeng. Research progress in olefin hydration process and the catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3489-3500. |
[14] | WANG Darui, SUN Hongmin, XUE Mingwei, WANG Yiyan, LIU Wei, YANG Weimin. Efficient synthesis of fully crystalline ZSM-5 zeolite catalyst by microwave method and its catalytic performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3582-3588. |
[15] | CHEN Xiangli, LI Qianqian, ZHANG Tian, LI Biao, LI Kangkang. Research progress on self-healing oil/water separation membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3600-3610. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |