Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (9): 4471-4478.DOI: 10.16085/j.issn.1000-6613.2023-0647
• Perspective • Previous Articles Next Articles
SHU Bin1,2(
), CHEN Jianhong1,2(
), XIONG Jian1,2, WU Qirong1,2, YU Jiangtao1,2, YANG Ping1,2
Received:2023-04-19
Revised:2023-06-02
Online:2023-09-28
Published:2023-09-15
Contact:
CHEN Jianhong
舒斌1,2(
), 陈建宏1,2(
), 熊健1,2, 吴其荣1,2, 喻江涛1,2, 杨平1,2
通讯作者:
陈建宏
作者简介:舒斌(1985—),男,硕士,高级工程师,研究方向为清洁能源及CCUS。E-mail:314819596@qq.com。
基金资助:CLC Number:
SHU Bin, CHEN Jianhong, XIONG Jian, WU Qirong, YU Jiangtao, YANG Ping. Necessity analysis of promoting the development of green methanol under the goal of carbon neutrality[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4471-4478.
舒斌, 陈建宏, 熊健, 吴其荣, 喻江涛, 杨平. 碳中和目标下推动绿色甲醇发展的必要性分析[J]. 化工进展, 2023, 42(9): 4471-4478.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0647
| 催化剂 | 温度 /℃ | 压力 /MPa | CO2单程 转化率/% | 甲醇选择性 /% |
|---|---|---|---|---|
| CuO/ZnO/Al2O3[ | 240 | 2.0 | 21.2 | 48.4 |
| CuO/ZnO/ZrO2[ | 240~250 | — | 22.0 | 42.3 |
| CuO/ZnO、CuO/ZrO2[ | 230~270 | — | 12.8~17.6 | 40.2~63.8 |
| ZnO/ZrO2[ | 315~320 | 5.0 | 10.0 | 90.0 |
| 贵金属催化剂[ | 250 | 2.0 | 11.0 | 60.0 |
| 催化剂 | 温度 /℃ | 压力 /MPa | CO2单程 转化率/% | 甲醇选择性 /% |
|---|---|---|---|---|
| CuO/ZnO/Al2O3[ | 240 | 2.0 | 21.2 | 48.4 |
| CuO/ZnO/ZrO2[ | 240~250 | — | 22.0 | 42.3 |
| CuO/ZnO、CuO/ZrO2[ | 230~270 | — | 12.8~17.6 | 40.2~63.8 |
| ZnO/ZrO2[ | 315~320 | 5.0 | 10.0 | 90.0 |
| 贵金属催化剂[ | 250 | 2.0 | 11.0 | 60.0 |
| 煤制甲醇 | 绿色甲醇 | ||
|---|---|---|---|
煤价 /CNY·t-1 | 甲醇成本 /CNY·t-1 | 绿电电价 /CNY·kWh-1 | 甲醇成本 /CNY·t-1 |
| 500 | 1877 | 0.1 | 2818 |
| 1000 | 2627 | 0.2 | 3899 |
| 1500 | 3377 | 0.3 | 4979 |
| 2000 | 4127 | 0.4 | 6059 |
| 煤制甲醇 | 绿色甲醇 | ||
|---|---|---|---|
煤价 /CNY·t-1 | 甲醇成本 /CNY·t-1 | 绿电电价 /CNY·kWh-1 | 甲醇成本 /CNY·t-1 |
| 500 | 1877 | 0.1 | 2818 |
| 1000 | 2627 | 0.2 | 3899 |
| 1500 | 3377 | 0.3 | 4979 |
| 2000 | 4127 | 0.4 | 6059 |
| 24 | WANG Yuyao, LIAO Youjun, ZENG Wei. Application of water-cooled methanol synthesis reactor technology around tube[J]. Coal Chemical Industry, 2022, 50(5): 45-47. |
| 25 | 张建利. 管壳外冷-绝热复合式甲醇合成反应器在大型甲醇合成装置中的应用[J]. 肥料与健康, 2022, 49(4): 40-44. |
| ZHANG Jianli. Application of shell and tube external cooling-adiabatic combined style methanol synthesis reactor in large methanol synthesis unit[J]. Fertilizer & Health, 2022, 49(4): 40-44. | |
| 26 | 李万林, 李芮, 孙乖绪, 等. Davy、Lurgi、Topsoe甲醇合成工艺对比分析及其应用情况[J]. 中氮肥, 2021(5): 41-45. |
| LI Wanlin, LI Rui, SUN Guaixu, et al. Comparative analysis and application of methanol synthesis processes of Davy, Lurgi and Topsoe[J]. M-Sized Nitrogenous Fertilizer Progress, 2021(5): 41-45. | |
| 27 | 李芮, 李万林, 武海梅, 等. 煤基甲醇合成工艺技术选择及生产效率影响因素浅析[J]. 中氮肥, 2020(6): 49-54. |
| LI Rui, LI Wanlin, WU Haimei, et al. Selection of coal-based methanol synthesis process technology and analysis of influencing factors of production efficiency[J]. M-Sized Nitrogenous Fertilizer Progress, 2020(6): 49-54. | |
| 28 | 王集杰, 韩哲, 陈思宇, 等. 太阳燃料甲醇合成[J]. 化工进展, 2022, 41(3): 1309-1317. |
| WANG Jijie, HAN Zhe, CHEN Siyu, et al. Liquid sunshine methanol[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1309-1317. | |
| 29 | 姬加良. 煤与不同原料重整气化制甲醇对CO2排放的影响[J]. 能源科技, 2020, 18(2): 62-66. |
| JI Jialiang. Effect of reforming gasification to methanol by coal and different raw materials on carbon dioxide emission[J]. Energy Science and Technology, 2020, 18(2): 62-66. | |
| 30 | 张雨曦.绿电装机有望达五成 全国电力供需总体平衡[N]. 中国工业报, 2022-07-13(6). |
| ZHANG Yuxi. The installed green electricity is expected to reach 50% of the overall balance of electricity supply and demand in China[N].China Industry News,2022-07-13(6). | |
| 31 | 白冰, 李小春, 刘延锋, 等. 中国CO2集中排放源调查及其分布特征[J]. 岩石力学与工程学报, 2006, 25(S1): 2918-2923. |
| 1 | 张钰. 全球2022年能源碳排放量增 0.9%创历史新高[EB/OL].(2023-03-03)[2023-04-10]. . |
| 2 | 辛明悦. 科学家测算发现:2022年全球碳排放量预计达406亿吨不减反增[EB/OL].(2022-11-11)[2023-04-10].. |
| 3 | 朱琼芳. 我国甲醇及其下游产品市场分析与展望[J]. 煤化工, 2019, 47(6): 52-57. |
| ZHU Qiongfang. Market analysis and prospect of methanol and its downstream products in China[J]. Coal Chemical Industry, 2019, 47(6): 52-57. | |
| 4 | ZHAO Kai. Global methanol marine fuel development and trend: Carbon intensity of methanol(2022)[R].Methanal Institute, 2021-08-08. |
| 5 | 瞿磊, 李胜乾, 江莉莎. 煤-天然气综合利用制甲醇CO2减排分析[J]. 煤化工, 2022, 50(3): 9-11, 40. |
| QU Lei, LI Shengqian, JIANG Lisha. CO2 emission reduction analysis of coal and natural gas comprehensive utilization to methanol[J]. Coal Chemical Industry, 2022, 50(3): 9-11, 40. | |
| 6 | WANG Danjun, TAO Furong, ZHAO Huahua, et al. Preparation of Cu/ZnO/Al2O3 catalyst for CO2 hydrogenation to methanol by CO2 assisted aging[J]. Chinese Journal of Catalysis, 2011, 32(9/10): 1452-1456. |
| 7 | 马晓然, 王康军, 吴静. Cu-ZnO-Al2O3-ZrO2催化二氧化碳加氢合成甲醇的研究[J]. 沈阳化工大学学报, 2012, 26(4): 314-317. |
| MA Xiaoran, WANG Kangjun, WU Jing. Synthesis of methanol from CO2 hydrogenation over Cu-ZnO-Al2O3-ZrO2 catalyst[J]. Journal of Shenyang University of Chemical Technology, 2012, 26(4): 314-317. | |
| 8 | 于杨. 轻稀土元素改性Cu-ZnO-Al2O3催化剂对CO2加氢制甲醇反应的催化性能[J]. 石油化工, 2016, 45(1): 24-30. |
| YU Yang. Cu-ZnO-Al2O3 catalyst modify with light rare earth elements for CO2 hydrogenation to methanol[J]. Petrochemical Technology, 2016, 45(1): 24-30. | |
| 31 | BAI Bing, LI Xiaochun, LIU Yanfeng, et al. Preliminary study on CO2 industrial point sources and their distribution in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S1): 2918-2923. |
| 32 | 陆诗建, 蒋超, 康寿兴. 基于MVR热泵的胺法捕集回收烟气中CO2 [J]. 山东化工, 2018, 47(10): 196-200. |
| LU Shijian, JIANG Chao, KANG Shouxing. Recovery of CO2 in flue gas by amine method based on MVR heat pump[J]. Shandong Chemical Industry, 2018, 47(10): 196-200. | |
| 33 | 德信海事. 山重水复疑无路?——甲醇作为船舶燃料的应用现状与未来发展[EB/OL].(2022-11-18)[2023-04-13].. |
| 34 | 程一步. 低碳甲醇燃料全生命周期碳排分析[J]. 石油石化绿色低碳, 2023, 8(1): 9-16. |
| CHENG Yibu. Lifecycle carbon emission analysis of low-carbon methanol fuel[J]. Green Petroleum & Petrochemicals, 2023, 8(1): 9-16. | |
| 35 | 德信海事. 马士基为旗下12艘大型甲醇箱船锁定绿色燃料[EB/OL].(2022-03-12)[2023-04-15].. |
| 9 | 高文桂, 王华, 张逢杰, 等. 铜锌比对CuO-ZnO-ZrO2催化剂CO2加氢合成甲醇性能的影响[J]. 天然气化工(C1化学与化工), 2014, 39(4): 16-20, 40. |
| GAO Wengui, WANG Hua, ZHANG Fengjie, et al. Effect of Cu/Zn ratio on properties of CuO-ZnO-ZrO2 for methanol synthesis from CO2 hydrogenation[J]. Natural Gas Chemical Industry, 2014, 39(4): 16-20, 40. | |
| 10 | 于杨, 郝爱香, 陈海波, 等. TiO2助剂对Cu-ZnO/ZrO2催化剂催化CO2加氢制甲醇反应性能的影响[J]. 石油化工, 2014, 43(5): 511-516. |
| YU Yang, HAO Aixiang, CHEN Haibo, et al. Effect of TiO2 as promoter on catalytic performance of Cu-ZnO/ZrO2 in hydrogenation of CO2 to methanol[J]. Petrochemical Technology, 2014, 43(5): 511-516. | |
| 11 | 程鹏泽, 高文桂, 纳薇, 等. 不同沉淀剂对CO2加氢合成甲醇Cu-ZnO-ZrO2催化剂性能的影响[J]. 化工进展, 2017, 36(8): 2955-2961. |
| CHENG Pengze, GAO Wengui, NA Wei, et al. Influence of different precipitants on the properties of Cu-ZnO-ZrO2 catalyst for methanol synthesis through CO2 hydrogenation[J]. Chemical Industry and Engineering Progress, 2017, 36(8): 2955-2961. | |
| 12 | KATTEL Shyam, RAMÍREZ Pedro J, CHEN Jingguang G, et al. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts[J]. Science, 2017, 355(6331): 1296-1299. |
| 13 | 王野. MOFs限域Cu/ZnOx超小纳米粒子催化CO2选择加氢制甲醇[J]. 物理化学学报, 2017, 33(5): 857-858. |
| WANG Ye. Selective hydrogenation of CO2 to methanol catalyzed by MOFs confined Cu/ZnO x ultrafine nanoparticles[J]. Acta Physico-Chimica Sinica, 2017, 33(5): 857-858. | |
| 14 | AN Bing, ZHANG Jingzheng, CHENG Kang, et al. Confinement of ultrasmall Cu/ZnO x nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2 [J]. Journal of the American Chemical Society, 2017, 139(10): 3834-3840. |
| 15 | 魏伟, 孙予罕, 闻霞, 等. 二氧化碳资源化利用的机遇与挑战[J]. 化工进展, 2011, 30(1): 216-224. |
| WEI Wei, SUN Yuhan, WEN Xia, et al. Opportunities and challenges of carbon dioxide utilization as a resource[J]. Chemical Industry and Engineering Progress, 2011, 30(1): 216-224. | |
| 16 | 庄会栋, 白绍芬, 刘欣梅, 等. Cu/ZrO2催化剂的结构及其CO2加氢合成甲醇催化反应性能[J]. 燃料化学学报, 2010, 38(4): 462-467. |
| ZHUANG Huidong, BAI Shaofen, LIU Xinmei, et al. Structure and performance of Cu/ZrO2 catalyst for the synthesis of methanol from CO2 hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2010, 38(4): 462-467. | |
| 17 | WANG Jijie, LI Guanna, LI Zelong, et al. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol[J]. Science Advances, 2017, 3(10): e1701290. |
| 18 | ZHANG Tao. ZnO-ZrO2 solid solution catalyst for highly selective hydrogenation of CO2 to methanol[J]. Chinese Journal of Catalysis, 2017, 38(11): 1781-1783. |
| 19 | YANG Xiaofang, KATTEL Shyam, SENANAYAKE Sanjaya D, et al. Low pressure CO2 hydrogenation to methanol over gold nanoparticles activated on a CeO x /TiO2 interface[J]. Journal of the American Chemical Society, 2015, 137(32): 10104-10107. |
| 20 | BAHRUJI Hasliza, BOWKER Michael, HUTCHINGS Graham, et al. Pd/ZnO catalysts for direct CO2 hydrogenation to methanol[J]. Journal of Catalysis, 2016, 343: 133-146. |
| 21 | 李庆勋, 王宗宝, 娄舒洁, 等. 二氧化碳加氢制甲醇研究进展[J]. 现代化工, 2019, 39(5): 19-23. |
| LI Qingxun, WANG Zongbao, LOU Shujie, et al. Research progress in methanol production from carbon dioxide hydrogenation[J]. Modern Chemical Industry, 2019, 39(5): 19-23. | |
| 22 | 周伟. 甲醇合成技术的研究进展[J]. 当代化工研究, 2021(8): 143-144. |
| ZHOU Wei. Research progress of methanol synthesis technology[J]. Modern Chemical Research, 2021(8): 143-144. | |
| 23 | 张彦强. 大型甲醇合成反应器研究[J]. 山西化工, 2021, 41(5): 173-174, 177. |
| ZHANG Yanqiang. Study on large scale methanol synthesis reactor[J]. Shanxi Chemical Industry, 2021, 41(5): 173-174, 177. | |
| 24 | 王雨瑶, 廖友军, 曾伟. 绕管水冷甲醇合成反应器技术的应用[J]. 煤化工, 2022, 50(5): 45-47. |
| [1] | SUN Xudong, ZHAO Yuying, LI Shirui, WANG Qi, LI Xiaojian, ZHANG Bo. Textual quantitative analysis on China’s local hydrogen energy development policies [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3478-3488. |
| [2] | CUI Ruili, CHENG Tao, SONG Junnan, NIU Guifeng, LIU Yuanyuan, ZHANG Tao, ZHAO Yusheng, WANG Luhai. Regeneration characterization and performance evaluation of the fixed-bed residue hydrotreating catalyst for microcarbon reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5200-5204. |
| [3] | FENG Ying, ZHAO Mengjie, CUI Qian, XIE Yuju, ZHANG Jianwei, DONG Xin. Research progress of molecular simulation technology in the development and application of chitosan functional materials [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4241-4253. |
| [4] | YANG Youqi, CHEN Bingzhen. PSE in China: retrospect and prospects [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 3991-4008. |
| [5] | ZHU Jiaxing, HAO Lin, LIU Guozhao, WEI Hongyuan. Research progress and prospect on inherent safety assessment methods for chemical processes [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4009-4024. |
| [6] | MU Yanjun, SONG Qianqian, WANG Hongqiu, FU Kaimei, XUE Jing, WANG Chunjiao. Strategy and inspiration of low-carbon development in the USA petrochemical industry [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2797-2805. |
| [7] | TANG Jiaojiao, XIE Junxiang, CHEN Chongjun, YU Cheng, CHEN Dechao. Carbon neutral technologies and case studies in urban sewage treatment plants [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2662-2671. |
| [8] | LU Zhaojin, REN Guanwei, LYU Fuwei, DONG Xiao, BAI Zhishan. Development and application of deacidification technology in domestic sulfuric acid alkylation refining system [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1430-1439. |
| [9] | WANG Jijie, HAN Zhe, CHEN Siyu, TANG Chizhou, SHA Feng, TANG Shan, YAO Tingting, LI Can. Liquid sunshine methanol [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1309-1317. |
| [10] | MIAO Qingqing, SHI Chunyan, ZHANG Xiangping. Photovoltaic technology under carbon neutrality [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1125-1131. |
| [11] | TIAN Yuanyu, QIAO Yingyun, ZHANG Yongning. Construction of green emission reduction system under the constraint of carbon neutrality [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 1078-1084. |
| [12] | YAN Guochun, WEN Liang, ZHANG Hua. Analysis of development path of modern coal chemical industry [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6201-6212. |
| [13] | ZHENG Longzhu, SU Xiaojing, LI Hongqiang, GUAN Hang, GUZINUER Ababaikeli, FENG Haiyang, WEI Ye, LAI Xuejun, ZENG Xingrong. Progress in construction and application of functional superhydrophobic surfaces [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2634-2645. |
| [14] | ZHU Litao, OUYANG Bo, ZHANG Xibao, LUO Zhenghong. Progress on application of machine learning to multiphase reactors [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1699-1714. |
| [15] | FENG Yangyang, ZHAO Zhongcong, YANG Wenbo, HU Linqi, ZHANG Wenda, SHE Yuehui. Microbial natural synthetic metal nanoparticles and the application in heavy oil catalytic viscosity reduction [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2215-2226. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |