Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (5): 2634-2645.DOI: 10.16085/j.issn.1000-6613.2020-1284
• Materials science and technology • Previous Articles Next Articles
ZHENG Longzhu1(), SU Xiaojing1,2, LI Hongqiang1(), GUAN Hang1, GUZINUER Ababaikeli1, FENG Haiyang1, WEI Ye1, LAI Xuejun1, ZENG Xingrong1
Received:
2020-07-07
Online:
2021-05-24
Published:
2021-05-06
Contact:
LI Hongqiang
郑龙珠1(), 苏晓竞1,2, 李红强1(), 官航1, 古孜努尔·阿巴白克力null1, 冯海洋1, 韦业1, 赖学军1, 曾幸荣1
通讯作者:
李红强
作者简介:
郑龙珠(1996—),女,硕士研究生,研究方向为功能性超疏水材料。E-mail:基金资助:
CLC Number:
ZHENG Longzhu, SU Xiaojing, LI Hongqiang, GUAN Hang, GUZINUER Ababaikeli, FENG Haiyang, WEI Ye, LAI Xuejun, ZENG Xingrong. Progress in construction and application of functional superhydrophobic surfaces[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2634-2645.
郑龙珠, 苏晓竞, 李红强, 官航, 古孜努尔·阿巴白克力null, 冯海洋, 韦业, 赖学军, 曾幸荣. 功能性超疏水表面的构建及其应用进展[J]. 化工进展, 2021, 40(5): 2634-2645.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1284
1 | DARMANIN T, GUITTARD F. Superhydrophobic and superoleophobic properties in nature[J]. Materials Today, 2015, 18(5): 273-285. |
2 | E J Q, JIN Y, DENG Y W, et al. Wetting models and working mechanisms of typical surfaces existing in nature and their application on superhydrophobic surfaces: a review[J]. Advanced Materials Interfaces, 2018, 5(1): 1701052. |
3 | WEN G, GUO Z G, LIU W M. Biomimetic polymeric superhydrophobic surfaces and nanostructures: from fabrication to applications[J]. Nanoscale, 2017, 9(10): 3338-3366. |
4 | 赵晓非, 杨明全, 章磊, 等. 仿生超疏水表面的制备与应用的研究进展[J]. 化工进展, 2016, 35(9): 2818-2829. |
ZHAO Xiaofei, YANG Mingquan, ZHANG Lei, et al. Research progress in fabrication and application of bioinspired super-hydrophobic surface[J]. Chemical Industry and Engineering Progress, 2016, 35(9): 2818-2829. | |
5 | LATTHE S S, SUTAR R S, KODAG V S, et al. Self-cleaning superhydrophobic coatings: potential industrial applications[J]. Progress in Organic Coatings, 2019, 128: 52-58. |
6 | BAI X G, SHEN Y Q, TIAN H F, et al. Facile fabrication of superhydrophobic wood slice for effective water-in-oil emulsion separation[J]. Separation and Purification Technology, 2019, 210: 402-408. |
7 | CUI M K, MU P, SHEN Y Q, et al. Three-dimensional attapulgite with sandwich-like architecture used for multifunctional water remediation[J]. Separation and Purification Technology, 2020, 235: 116210. |
8 | WANG Y, YANG Y. Superhydrophobic surfaces-based redox-induced electricity from water droplets for self-powered wearable electronics[J]. Nano Energy, 2019, 56: 547-554. |
9 | CHU Z, JIAO W, HUANG Y, et al. FDTS-modified SiO2/rGO wrinkled films with a micro-nanoscale hierarchical structure and anti-icing/deicing properties under condensation condition[J]. Advanced Materials Interfaces, 2020, 7(1): 1901446. |
10 | YANG C, WU L, LI G. Magnetically responsive superhydrophobic surface: in situ reversible switching of water droplet wettability and adhesion for droplet manipulation[J]. ACS Applied Materials & Interfaces, 2018, 10(23): 20150-20158. |
11 | KWOK D Y, NEUMANN A W. Contact angle measurement and contact angle interpretation[J]. Advances in Colloid and Interface Science, 1999, 81(3): 167-249. |
12 | WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994. |
13 | CASSIE A, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551. |
14 | WANG B, ZHANG Y B, SHI L, et al. Advances in the theory of superhydrophobic surfaces[J]. Journal of Materials Chemistry, 2012, 22(38): 20112-20127. |
15 | NEINHUIS C, BARTHLOTT W. Characterization and distribution of water-repellent, self-cleaning plant surfaces[J]. Annals of Botany, 1997, 79(6): 667-677. |
16 | SAM E K, SAM D K, LYU X M, et al. Recent development in the fabrication of self-healing superhydrophobic surfaces[J]. Chemical Engineering Journal, 2019, 373: 531-546. |
17 | ZHANG H, HOU C P, SONG L X, et al. A stable 3D sol-gel network with dangling fluoroalkyl chains and rapid self-healing ability as a long-lived superhydrophobic fabric coating[J]. Chemical Engineering Journal, 2019, 334: 598-610. |
18 | 周莹, 肖利吉, 姚丽, 等. 自修复型超疏水材料研究进展[J]. 材料导报, 2019, 33(7): 1234-1242. |
ZHOU Ying, XIAO Liji, YAO Li, et al. Research progress in self-healing superhydrophobic surfaces[J]. Materials Reports, 2019, 33(7): 1234-1242. | |
19 | IONOV L, SYNYTSKA A. Self-healing superhydrophobic materials[J]. Physical Chemistry Chemical Physics, 2012, 14(30): 10497-10502. |
20 | ZHU D D, LU X M, LU Q H. Electrically conductive PEDOT coating with self-healing superhydrophobicity[J]. Langmuir, 2014, 30(16): 4671-4677. |
21 | WU M C, LI Y, AN N, et al. Applied voltage and near‐infrared light enable healing of superhydrophobicity loss caused by severe scratches in conductive superhydrophobic films[J]. Advanced Functional Materials, 2016, 26(37): 6777-6784. |
22 | QIN L M, CHEN N, ZHOU X, et al. A superhydrophobic aerogel with robust self-healability[J]. Journal of Materials Chemistry A, 2018, 6(10): 4424-4431. |
23 | 梁婷, 范振忠, 刘庆旺, 等. 超疏水/超双疏表面自修复方式的研究进展[J]. 化工进展, 2019, 38(7): 3185-3193. |
LIANG Ting, FAN Zhenzhong, LIU Qingwang, et al. Research progress on the self-healing on superhydrophobic/superamphiphobic surface[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3185-3193. | |
24 | WANG P, SUN B, LIANG Y, et al. A stretchable and super-robust graphene superhydrophobic composite for electromechanical sensor application[J]. Journal of Materials Chemistry A, 2019, 6(12): 10404-10410. |
25 | SAHOO B N, WOO J, ALGADI H, et al. Superhydrophobic, transparent, and stretchable 3D hierarchical wrinkled film-based sensors for wearable applications[J]. Advanced Materials Technologies, 2019, 4(10): 1900230. |
26 | JU J, YAO X, HOU X, et al. A highly stretchable and robust non-fluorinated superhydrophobic surface[J]. Journal of Materials Chemistry A, 2017, 5(7): 16273-16280. |
27 | GAO J F, LI B, HUANG X W, et al. Electrically conductive and fluorine free superhydrophobic strain sensors based on SiO2 /graphene-decorated electrospun nanofibers for human motion monitoring[J]. Chemical Engineering Journal, 2019, 273: 298-306. |
28 | LI B, LUO J, HUANG X, et al. A highly stretchable, super-hydrophobic strain sensor based on polydopamine and graphene reinforced nanofiber composite for human motion monitoring[J]. Composites Part B: Engineering, 2020, 181: 107580. |
29 | WANG F, PI J, SONG F, et al. A superhydrophobic coating to create multi-functional materials with mechanical/chemical/physical robustness[J]. Chemical Engineering Journal, 2020, 381: 122539. |
30 | YU S, GUO Z, LIU W. Biomimetic transparent and superhydrophobic coatings: from nature and beyond nature[J]. Chemical Communications, 2015, 51(10): 1775-1794. |
31 | 葛思洁, 王法军, 温姜霞, 等. SiO2/PDMS复合透明超疏水涂层的制备与性能研究[J]. 化工新型材料, 2017, 45(6): 227-229. |
GE Sijie, WANG Fajun, WEN Jiangxia, et al. Preparation and property of transparent and superhydrophobic coating based on SiO2/PDMS composite[J]. New Chemical Materials, 2017, 45(6): 227-229. | |
32 | WU X H, CHEN Z. A mechanically robust transparent coating for anti-icing and self-cleaning applications[J]. Journal of Materials Chemistry A, 2018, 6(33): 16043-16052. |
33 | LIN Y, HAN J P, CAI M Y, et al. Durable and robust transparent superhydrophobic glass surfaces fabricated by a femtosecond laser with exceptional water repellency and thermostability[J]. Journal of Materials Chemistry A, 2018, 6(19): 9049-9056. |
34 | GONG D W, LONG J Y, JIANG D F, et al. Robust and stable transparent superhydrophobic polydimethylsiloxane films by duplicating via a femtosecond laser-ablated template[J]. ACS Applied Materials & Interfaces, 2016, 8(27): 17511-17518. |
35 | JANG N S, HA S H, KIM K H, et al. Facile one-step photopatterning of hierarchical polymer structures for highly transparent, flexible superhydrophobic films[J]. Progress in Organic Coatings, 2019, 130: 24-30. |
36 | YANG C, ZHANG Z, LI G. Programmable droplet manipulation by combining a superhydrophobic magnetic film and an electromagnetic pillar array[J]. Sensors and Actuators B: Chemical, 2018, 262: 892-901. |
37 | BEN S, ZHOU T T, MA H, et al. Multifunctional magnetocontrollables superwettable-microcilia surface for directional droplet manipulation[J].Advanced Science, 2019, 6(17): 1900834. |
38 | 张雪梅, 王航, 郝彬彬, 等. 磁性超疏水聚氨酯海绵的制备及其性能研究[J]. 当代化工, 2019, 48(8): 1714-1717. |
ZHANG Xuemei, WANG Hang, HAO Binbin, et al. Study on preparation and properties of magnetic superhydrophobic polyurethane sponges[J]. Contemporary Chemical Industry, 2019, 48(8): 1714-1717. | |
39 | MI H, JING X, XIE H, et al. Magnetically driven superhydrophobic silica sponge decorated with hierarchical cobalt nanoparticles for selective oil absorption and oil/water separation[J]. Chemical Engineering Journal, 2018, 337: 541-551. |
40 | SU X J, LI H Q, LAI X J, et al. Dual-functional superhydrophobic textiles with asymmetric roll-down/pinned states for water droplet transportation and oil-water separation[J]. ACS Applied Materials & Interfaces, 2018, 10(4): 4213-4221. |
41 | SHARMA M, JOSHI M, NIGAM S, et al. Efficient oil removal from wastewater based on polymer coated superhydrophobic tetrapodal magnetic nanocomposite adsorbent[J]. Applied Materials Today, 2019, 17: 130-141. |
42 | ZHANG C A, LI Y L, SUN S, et al. Novel magnetic and flame-retardant superhydrophobic sponge for solar-assisted high-viscosity oil/water separation[J]. Progress in Organic Coatings, 2020, 139: 105369. |
43 | JIANG S J, HU Y L, WU H, et al. Multifunctional Janus microplates arrays actuated by magnetic fields for water/light switches and bio‐inspired assimilatory coloration[J]. Advanced Materials, 2019, 31(15): 1807507. |
44 | LIN L, WANG L, LI B, et al. Dual conductive network enabled superhydrophobic and high performance strain sensors with outstanding electro-thermal performance and extremely high gauge factors[J]. Chemical Engineering Journal, 2020, 385: 123391. |
45 | JIA L C, ZHANG G Q, XU L, et al. Robustly superhydrophobic conductive texile for efficient electromagnetic interference shielding[J].ACS Applied Materical & Interfaces, 2019, 11(1): 1680-1688. |
46 | 周存, 何雅僖. 超疏水导电聚酯织物的制备及其性能[J]. 纺织学报, 2018, 39(8): 88-94, 99. |
ZHOU Cun, HE Yaxi. Preparation and properties of superhydrophobic conductive polyethylene terephthalate fabrics[J]. Journal of Textile Research, 2018, 39(8): 88-94, 99. | |
47 | LI L H, BAI Y Y, LI L L, et al. A superhydrophobic smart coating for flexible and wearable sensing electronics[J]. Advanced Materials, 2017, 29(43): 1702517. |
48 | GAO J F, LUO J C, WANG L, et al. Flexible, superhydrophobic and highly conductive composite based on non-woven polypropylene fabric for electromagnetic interference shielding[J]. Chemical Engineering Journal, 2019, 364: 493-502. |
49 | WU J J, LI H Q, LAI X J, et al. Superhydrophobic polydimethylsiloxane@multiwalled carbon nanotubes membrane for effective water-in-oil emulsions separation and quick deicing[J]. Industrial & Engineering Chemistry Research, 2019, 58(20): 8791-8799. |
50 | YAN S, REN F, LI C, et al. Unidirectional self-transport of air bubble via a Janus membrane in aqueous environment[J]. Applied Physics Letters, 2018, 113(26): 261602. |
51 | SOZ C K, TROSIEN S, BIESALSKI M. Superhydrophobic hybrid paper sheets with Janus-type wettability[J]. ACS Applied Materials & Interfaces, 2018, 10(43): 37478-37488. |
52 | 张贤, 母情源, 任琳琳, 等. 单面超疏水单面亲水Janus-CA纤维膜的制备及其油水分离性能[J]. 浙江理工大学学报(自然科学版), 2020, 43(3): 283-292. |
ZHANG Xian, MU Qingyuan, REN Linlin, et al. Preparation of superhydrophobic/hydrophilic Janus-CA fibrous membrane and its oil-water separation performance[J]. Journal of Zhejiang Sci-Tech University (Natural Sciences Edition), 2020, 43(3): 283-292. | |
53 | 任宝娜, 皮浩弘, 谷英姝, 等. Janus膜的制备及其应用研究进展[J]. 材料工程, 2020, 48(6): 73-81. |
REN Baona, PI Haohong, GU Yingshu, et al. Research progress in preparation and application of Janus membranes[J]. Journal of Materials Engineering, 2020, 48(6): 73-81. | |
54 | ZHAO Y Y, YU C M, LAN H, et al. Improved interfacial floatability of superhydrophobic/superhydrophilic Janus sheet inspired by lotus leaf[J]. Advanced Functional Materials, 2017, 27(27): 1701466. |
55 | ZHU T, WU J R, ZHAO N, et al. Superhydrophobic/superhydrophilic Janus fabrics reducing blood loss[J]. Advanced Healthcare Materials, 2018, 7(7): 1701086. |
56 | GORE P M, KANDASUBRAMANIAN B. Heterogeneous wettable cotton based superhydrophobic Janus biofabric engineered with PLA/functionalized-organoclay microfibers for efficient oil-water separation[J]. Journal of Materials Chemistry A, 2018, 6(17): 7457-7479. |
57 | 谢超, 洪国辉, 杨伟强, 等. 利用蜡烛灰制备超疏水疏油抗菌涂层[J]. 高等学校化学学报, 2019, 40(2): 379-384. |
XIE Chao, HONG Guohui, YANG Weiqiang, et al. Antibacterial superhydrophobic-oleophobic coating fabricated by candle soot[J]. Chemical Journal of Chinese Universities, 2019, 40(2): 379-384. | |
58 | YANG R, ZHU Y, QIN D, et al. Light-operated dual-mode propulsion at the liquid/air interface using flexible, superhydrophobic, and thermally stable photothermal paper[J]. ACS Applied Materials & Interfaces, 2019, 12(1): 1339-1347. |
59 | 吉婉丽, 钟少锋, 余雪满. 阻燃超疏水棉纤维的制备及性能[J]. 应用化学, 2020, 37(3): 301-306. |
JI Wanli, ZHONG Shaofeng, YU Xueman. Preparation and properties of superhydrophobic and flame-retardant cotton fabric[J]. Chinese Journal of Applied Chemistry, 2020, 37(3): 301-306. | |
60 | WANG W, VAHABI H, MOVAFAGHI S, et al. Superomniphobic surfaces with improved mechanical durability: synergy of hierarchical texture and mechanical interlocking[J]. Advanced Materials Interfaces, 2019, 6(18): 1900538. |
61 | BU Y M, ZHANG S Y, CAI Y J, et al. Fabrication of durable antibacterial and superhydrophobic textiles viain situ synthesis of silver nanoparticle on tannic acid-coated viscose textiles[J]. Cellulose, 2019, 26(3): 2109-2122. |
62 | WANG W, LIU Y, LIU Y, et al. Direct laser writing of superhydrophobic PDMS elastomers for controllable manipulation via marangoni effect[J]. Advanced Functional Materials, 2017, 27(44): 1702946. |
63 | CHEN S S, LI X, LI Y, et al. Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric[J]. ACS Nano, 2015, 9(4): 4070-4076. |
64 | LIN D M, ZENG X R, LI H Q, et al. One-pot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction[J]. Journal of Colloid and Interface Science, 2019, 533: 198-206. |
65 | KIM H, HAN H, LEE S, et al. Nonfluorinated superomniphobic surfaces through shape-tunable mushroom-like polymeric micropillar arrays[J]. ACS Applied Materials & Interfaces, 2019, 11(5): 5484-5491. |
[1] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[2] | LIU Yang, WANG Yungang, XIU Haoran, ZOU Li, BAI Yanyuan. Optimal carbonization process of walnut shell based on dynamic analysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 94-103. |
[3] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[4] | LI Xuejia, LI Peng, LI Zhixia, JIN Dunshang, GUO Qiang, SONG Xufeng, SONG Peng, PENG Yuelian. Experimental comparation on anti-scaling and anti-wetting ability of hydrophilic and hydrophobic modified membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4458-4464. |
[5] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[6] | CHEN Junjun, FEI Chang’en, DUAN Jintang, GU Xueping, FENG Lianfang, ZHANG Cailiang. Research progress on chemical modification of polyether ether ketone for the high bioactivity [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4015-4028. |
[7] | ZHANG Chao, YANG Peng, LIU Guanglin, ZHAO Wei, YANG Xufei, ZHANG Wei, YU Bo. Influence of surface microstructure on arrayed microjet flow boiling heat transfer [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4193-4203. |
[8] | LI Runlei, WANG Ziyan, WANG Zhimiao, LI Fang, XUE Wei, ZHAO Xinqiang, WANG Yanji. Efficient catalytic performance of CuO-CeO2/TiO2 for CO oxidation at low-temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4264-4274. |
[9] | WANG Xin, WANG Bingbing, YANG Wei, XU Zhiming. Anti-scale and anti-corrosion properties of PDA/PTFE superhydrophobic coating on metal surface [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4315-4321. |
[10] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[11] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
[12] | ZHANG Kai, LYU Qiunan, LI Gang, LI Xiaosen, MO Jiamei. Morphology and occurrence characteristics of methane hydrates in the mud of the South China Sea [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3865-3874. |
[13] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[14] | CHEN Xiangli, LI Qianqian, ZHANG Tian, LI Biao, LI Kangkang. Research progress on self-healing oil/water separation membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3600-3610. |
[15] | CHEN Sen, YIN Pengyuan, YANG Zhenglu, MO Yiming, CUI Xili, SUO Xian, XING Huabin. Advances in the intelligent synthesis of functional solid materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3340-3348. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |