Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (5): 2646-2664.DOI: 10.16085/j.issn.1000-6613.2020-1196
• Materials science and technology • Previous Articles Next Articles
WANG Siheng(), YANG Xinxin, LIU He, SHANG Shibin, SONG Zhanqian()
Received:
2020-06-28
Online:
2021-05-24
Published:
2021-05-06
Contact:
SONG Zhanqian
通讯作者:
宋湛谦
作者简介:
王思恒(1996—),男,硕士研究生,研究方向为纤维素基功能高分子材料。E-mail:基金资助:
CLC Number:
WANG Siheng, YANG Xinxin, LIU He, SHANG Shibin, SONG Zhanqian. Research progress in preparation and application of conductive hydrogels[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2646-2664.
王思恒, 杨欣欣, 刘鹤, 商士斌, 宋湛谦. 导电水凝胶的制备及应用研究进展[J]. 化工进展, 2021, 40(5): 2646-2664.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1196
制备方法 | 导电介质 | 导电类型 | 阻抗/Ω | 导电率/S·m-1 | 参考文献 |
---|---|---|---|---|---|
引入导电聚合物到水凝胶 | PANI | 电子 | 102~105 | 10-3~101 | [ |
PPy | 102~104 | 10-2~101 | [ | ||
PEDOT∶PSS | 102~103 | 10-1~101 | [ | ||
引入导电颗粒到水凝胶 | 金属 | 电子 | 101~103 | 10-2~101 | [ |
CNT | 103~107 | 10-3~101 | [ | ||
GO | 103~105 | 10-3~100 | [ | ||
引入导电离子到水凝胶 | 离子盐 | 离子 | 102~105 | 10-2~101 | [ |
制备方法 | 导电介质 | 导电类型 | 阻抗/Ω | 导电率/S·m-1 | 参考文献 |
---|---|---|---|---|---|
引入导电聚合物到水凝胶 | PANI | 电子 | 102~105 | 10-3~101 | [ |
PPy | 102~104 | 10-2~101 | [ | ||
PEDOT∶PSS | 102~103 | 10-1~101 | [ | ||
引入导电颗粒到水凝胶 | 金属 | 电子 | 101~103 | 10-2~101 | [ |
CNT | 103~107 | 10-3~101 | [ | ||
GO | 103~105 | 10-3~100 | [ | ||
引入导电离子到水凝胶 | 离子盐 | 离子 | 102~105 | 10-2~101 | [ |
类别 | 水凝胶 | 导电介质 | 导电率 /S·m-1 | 断裂 伸长率/% | 压缩模量 /MPa | 应用 | 参考文献 |
---|---|---|---|---|---|---|---|
PAA基导电水凝胶 | PAA/PANI | PANI | 5.12 | 1160 | N/A | 传感器 | [ |
PAA/BaFe12O19 | BaFe12O19 | 1.22 | N/A | 0.0871 | 传感器 | [ | |
PAA/PEO-b-PLAA/KCl | KCl | 1 | 9800 | N/A | N/A | [ | |
PAA/PDMAPS/IL | PDMAPS/IL | 1.2 | 10000 | 2.2 | 传感器 | [ | |
PAAm基导电水凝胶 | P(AGA-co-AAm)/Fe3+ | Fe3+ | 2.4 | 707 | 36.1 | N/A | [ |
PAAm/GO | GO | 8.865 | N/A | N/A | 电池 | [ | |
PAAm/SiO2/H3PO4 | H3PO4 | 1.7 | 1500 | N/A | 超级电容器 | [ | |
PAAm/LiCl | LiCl | 1 | 1000 | N/A | 触摸屏 | [ | |
PVA基导电水凝胶 | PVA/HPC/NaCl | NaCl | 3.4 | 975 | N/A | 传感器 | [ |
PVA/PANI | PANI | 19 | 416 | 2.68 | 超级电容器 | [ | |
PVA/植酸 | 植酸 | 13.4 | 1100 | N/A | 传感器 | [ | |
PVA/PDA/GO | GO | 2.7 | 415 | N/A | 传感器 | [ | |
PVA/丝素蛋白/硼砂 | 硼砂 | 63 | 5000 | N/A | 传感器 | [ | |
PEG基导电水凝胶 | (PEG/PEDOT)∶(PSS/H2SO4) | PEDOT∶(PSS/H2SO4) | 1.69 | N/A | 0.021 | 组织工程支架 | [ |
PEG/PEDOT | PEDOT | N/A | N/A | 1.28 | 传感器 | [ | |
PEG/AgNWs | AgNWs | N/A | 100 | 0.016 | 传感器 | [ | |
PEG/Na2SO4 | Na2SO4 | N/A | N/A | N/A | 离子电路 | [ |
类别 | 水凝胶 | 导电介质 | 导电率 /S·m-1 | 断裂 伸长率/% | 压缩模量 /MPa | 应用 | 参考文献 |
---|---|---|---|---|---|---|---|
PAA基导电水凝胶 | PAA/PANI | PANI | 5.12 | 1160 | N/A | 传感器 | [ |
PAA/BaFe12O19 | BaFe12O19 | 1.22 | N/A | 0.0871 | 传感器 | [ | |
PAA/PEO-b-PLAA/KCl | KCl | 1 | 9800 | N/A | N/A | [ | |
PAA/PDMAPS/IL | PDMAPS/IL | 1.2 | 10000 | 2.2 | 传感器 | [ | |
PAAm基导电水凝胶 | P(AGA-co-AAm)/Fe3+ | Fe3+ | 2.4 | 707 | 36.1 | N/A | [ |
PAAm/GO | GO | 8.865 | N/A | N/A | 电池 | [ | |
PAAm/SiO2/H3PO4 | H3PO4 | 1.7 | 1500 | N/A | 超级电容器 | [ | |
PAAm/LiCl | LiCl | 1 | 1000 | N/A | 触摸屏 | [ | |
PVA基导电水凝胶 | PVA/HPC/NaCl | NaCl | 3.4 | 975 | N/A | 传感器 | [ |
PVA/PANI | PANI | 19 | 416 | 2.68 | 超级电容器 | [ | |
PVA/植酸 | 植酸 | 13.4 | 1100 | N/A | 传感器 | [ | |
PVA/PDA/GO | GO | 2.7 | 415 | N/A | 传感器 | [ | |
PVA/丝素蛋白/硼砂 | 硼砂 | 63 | 5000 | N/A | 传感器 | [ | |
PEG基导电水凝胶 | (PEG/PEDOT)∶(PSS/H2SO4) | PEDOT∶(PSS/H2SO4) | 1.69 | N/A | 0.021 | 组织工程支架 | [ |
PEG/PEDOT | PEDOT | N/A | N/A | 1.28 | 传感器 | [ | |
PEG/AgNWs | AgNWs | N/A | 100 | 0.016 | 传感器 | [ | |
PEG/Na2SO4 | Na2SO4 | N/A | N/A | N/A | 离子电路 | [ |
类别 | 水凝胶 | 导电介质 | 导电率 /S·m-1 | 断裂伸长率/% | 压缩模量 /MPa | 应用 | 参考 文献 |
---|---|---|---|---|---|---|---|
明胶基导电水凝胶 | 明胶/(NH4)2SO4 | (NH4)2SO4 | 5 | 300 | 6.41 | N/A | [ |
明胶/PANI | PANI | 4.54×10-2 | N/A | N/A | 组织工程支架 | [ | |
明胶/MWNT | MWNT | 5×10-2 | 160 | N/A | 传感器 | [ | |
明胶/AgNWs/Na2SO4 | AgNWs/Na2SO4 | 10 | 350 | N/A | 传感器 | [ | |
海藻酸盐基导电水凝胶 | 海藻酸钠/PAAm/CaCl2 | CaCl2 | N/A | 2422 | N/A | 传感器 | [ |
海藻酸钠/PAAm/PAA/ZnSO4 | ZnSO4 | N/A | 4200 | N/A | 传感器 | [ | |
海藻酸钠/PAAm/CNT/(PEDOT∶PSS) | CNT/(PEDOT∶PSS) | 0.048 | 1000 | N/A | 超级电容器 | [ | |
海藻酸钠/PAAm/Na2SO4 | Na2SO4 | 1.49 | 2400 | N/A | 超级电容器 | [ | |
壳聚糖基导电水凝胶 | 壳聚糖/PAAm/PPy | PPy | 0.3 | 500 | 136.3 | 创面修复 | [ |
壳聚糖/AgNWs/AgNO3 | AgNWs/AgNO3 | 0.48 | N/A | N/A | 传感器 | [ | |
壳聚糖/AgNWs/CuSO4 | AgNWs/CuSO4 | 0.25 | N/A | N/A | 传感器 | [ | |
壳聚糖/PANI | PANI | 743.7 | N/A | N/A | N/A | [ | |
纤维素基导电水凝胶 | 纤维素/PANI | PANI | 3.47 | N/A | 4 | 超级电容器 | [ |
纤维素/[Bmim]Cl | [Bmim]Cl | 4 | 100 | N/A | 传感器 | [ | |
纤维素/(NH4)2S2O8 | (NH4)2S2O8 | 0.016 | 126 | 0.036 | 传感器 | [ | |
纤维素/PAAm/ZnSO4/MnSO4 | ZnSO4/MnSO4 | 2.28 | 1400 | N/A | 电池 | [ |
类别 | 水凝胶 | 导电介质 | 导电率 /S·m-1 | 断裂伸长率/% | 压缩模量 /MPa | 应用 | 参考 文献 |
---|---|---|---|---|---|---|---|
明胶基导电水凝胶 | 明胶/(NH4)2SO4 | (NH4)2SO4 | 5 | 300 | 6.41 | N/A | [ |
明胶/PANI | PANI | 4.54×10-2 | N/A | N/A | 组织工程支架 | [ | |
明胶/MWNT | MWNT | 5×10-2 | 160 | N/A | 传感器 | [ | |
明胶/AgNWs/Na2SO4 | AgNWs/Na2SO4 | 10 | 350 | N/A | 传感器 | [ | |
海藻酸盐基导电水凝胶 | 海藻酸钠/PAAm/CaCl2 | CaCl2 | N/A | 2422 | N/A | 传感器 | [ |
海藻酸钠/PAAm/PAA/ZnSO4 | ZnSO4 | N/A | 4200 | N/A | 传感器 | [ | |
海藻酸钠/PAAm/CNT/(PEDOT∶PSS) | CNT/(PEDOT∶PSS) | 0.048 | 1000 | N/A | 超级电容器 | [ | |
海藻酸钠/PAAm/Na2SO4 | Na2SO4 | 1.49 | 2400 | N/A | 超级电容器 | [ | |
壳聚糖基导电水凝胶 | 壳聚糖/PAAm/PPy | PPy | 0.3 | 500 | 136.3 | 创面修复 | [ |
壳聚糖/AgNWs/AgNO3 | AgNWs/AgNO3 | 0.48 | N/A | N/A | 传感器 | [ | |
壳聚糖/AgNWs/CuSO4 | AgNWs/CuSO4 | 0.25 | N/A | N/A | 传感器 | [ | |
壳聚糖/PANI | PANI | 743.7 | N/A | N/A | N/A | [ | |
纤维素基导电水凝胶 | 纤维素/PANI | PANI | 3.47 | N/A | 4 | 超级电容器 | [ |
纤维素/[Bmim]Cl | [Bmim]Cl | 4 | 100 | N/A | 传感器 | [ | |
纤维素/(NH4)2S2O8 | (NH4)2S2O8 | 0.016 | 126 | 0.036 | 传感器 | [ | |
纤维素/PAAm/ZnSO4/MnSO4 | ZnSO4/MnSO4 | 2.28 | 1400 | N/A | 电池 | [ |
1 | AHMED Enas M. Hydrogel: Preparation, characterization, and applications: a review[J]. Journal of Advanced Research, 2015, 6(2): 105-121. |
2 | MIN Jihong, PATEL Madhumita, Wongun KOH. Incorporation of conductive materials into hydrogels for tissue engineering applications[J]. Polymers, 2018, 10(10): 1078. |
3 | RONG Qinfeng, LEI Wenwei, LIU Mingjie. Conductive hydrogels as smart materials for flexible electronic devices[J]. Chemistry:a European Journal, 2018, 24(64): 16930-16943. |
4 | KIM Sun Hong, JUNG Sungmook, YOON In Seon, et al. Ultrastretchable conductor fabricated on skin‐like hydrogel-elastomer hybrid substrates for skin electronics[J]. Advanced Materials, 2018, 30(26): 1800109. |
5 | KOOK Geon, JEONG Sohyeon, KIM Mi Kyung, et al. Fabrication of highly dense silk fibroin biomemristor array and its resistive switching characteristics[J]. Advanced Materials Technologies, 2020, 5(4): 1900991. |
6 | PAN Shaowu, ZHANG Feilong, CAI Pingqiang, et al. Mechanically interlocked hydrogel-elastomer hybrids for on-skin electronics[J]. Advanced Functional Materials, 2020, 30(29): 1909540. |
7 | DAUTTA Manik, ALSHETAIWI Muhannad, ESCOBAR Alberto, et al. Multi-functional hydrogel-interlayer RF/NFC resonators as a versatile platform for passive and wireless biosensing[J]. Advanced Electronic Materials, 2020, 6(4): 1901311. |
8 | DING Hanyuan, XIN Zeqin, YANG Yueyang, et al. Ultrasensitive, low-voltage operational, and asymmetric ionic sensing hydrogel for multipurpose applications[J]. Advanced Functional Materials, 2020, 30(12): 1909616. |
9 | KHAZAELI Ali, Gabrielle GODBILLE-CARDONA, BARZ Dominik P J. A novel flexible hybrid battery-supercapacitor based on a self-assembled vanadium-graphene hydrogel[J]. Advanced Functional Materials, 2020, 30(21): 1910738. |
10 | LIU Yudong, LU Nan, LIU Fengya, et al. Highly strong and tough double‐crosslinked hydrogel electrolyte for flexible supercapacitors[J]. ChemElectroChem, 2020, 7(4): 1007-1015. |
11 | DISTLER Thomas, BOCCACCINI Aldo R. 3D printing of electrically conductive hydrogels for tissue engineering and biosensors: a review[J]. Acta Biomaterialia, 2020, 101: 1-13. |
12 | ZHAO Fei, SHI Ye, PAN Lijia, et al. Multifunctional nanostructured conductive polymer gels: synthesis, properties, and applications[J]. Accounts of Chemical Research, 2017, 50(7): 1734-1743. |
13 | DENG Hua, LIN Lin, JI Mizhi, et al. Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials[J]. Progress in Polymer Science, 2014, 39(4): 627-655. |
14 | SHI Ye, PENG Lele, DING Yu, et al. Nanostructured conductive polymers for advanced energy storage[J]. Chemical Society Reviews, 2015, 44(19): 6684-6696. |
15 | Hyunwoo YUK, LU Baoyang, ZHAO Xuanhe. Hydrogel bioelectronics[J]. Chemical Society Reviews, 2019, 48(6): 1642-1667. |
16 | WANG Zhiwen, ZHOU Hongwei, LAI Jialiang, et al. Extremely stretchable and electrically conductive hydrogels with dually synergistic networks for wearable strain sensors[J]. Journal of Materials Chemistry C, 2018, 6(34): 9200-9207. |
17 | Yooyong LEE, KANG Hoyoung, GWON Seok Hyeon, et al. A strain‐insensitive stretchable electronic conductor: PEDOT:PSS/acrylamide organogels[J]. Advanced Materials, 2016, 28(8): 1636-1643. |
18 | DING Qinqin, XU Xinwu, YUE Yiying, et al. Nanocellulose-mediated electroconductive self-healing hydrogels with high strength, plasticity, viscoelasticity, stretchability, and biocompatibility toward multifunctional applications[J]. ACS Applied Materials & Interfaces, 2018, 10(33): 27987-28002. |
19 | ZHANG Rui, RUAN Hengzhi, ZHOU Tianxu, et al. High-performance poly(acrylic acid) hydrogels formed with a block copolymer crosslinker containing amino-acid derivatives[J]. Soft Matter, 2019, 15(37): 7381-7389. |
20 | CHOI Suji, HAN Sang Ihn, KIM Dokyoon, et al. High-performance stretchable conductive nanocomposites: materials, processes, and device applications[J]. Chemical Society Reviews, 2019, 48(6): 1566-1595. |
21 | GAN Donglin, HAN Lu, WANG Menghao, et al. Conductive and tough hydrogels based on biopolymer molecular templates for controlling in situ formation of polypyrrole nanorods[J]. ACS Applied Materials & Interfaces, 2018, 10(42): 36218-36228. |
22 | ADHIKARI Sarbani, BANERJI P. Polyaniline composite by in situ polymerization on a swollen PVA gel[J]. Synthetic Metals, 2009, 159(23/24): 2519-2524. |
23 | LIN Jianming, TANG Qunwei, HU De, et al. Electric field sensitivity of conducting hydrogels with interpenetrating polymer network structure[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 346(1): 177-183. |
24 | BAJPAI A K, BAJPAI J, SONI S N. Designing polyaniline (PANI) and polyvinyl alcohol (PVA) based electrically conductive nanocomposites: preparation, characterization and blood compatible study[J]. Journal of Macromolecular Science A, 2009, 46(8): 774-782. |
25 | LI Wanwan, GAO Fengxian, WANG Xiaoqian, et al. Strong and robust polyaniline-based supramolecular hydrogels for flexible supercapacitors[J]. Angewandte Chemie, 2016, 128(32): 9342-9347. |
26 | WU Qian, WEI Junjie, XU Bing, et al. A robust, highly stretchable supramolecular polymer conductive hydrogel with self-healability and thermo-processability[J]. Scientific Reports, 2017, 7(1): 41566. |
27 | ZHANG Wei, FENG Pan, CHEN Jian, et al. Electrically conductive hydrogels for flexible energy storage systems[J]. Progress in Polymer Science, 2019, 88: 220-240. |
28 | FAN Zhanxi, ZHANG Hua. Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials[J]. Chemical Society Reviews, 2016, 45(1): 63-82. |
29 | BAEI Payam, Sasan JALILI-FIROOZINEZHAD, Sareh RAJABI-ZELETI, et al. Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering[J]. Materials Science & Engineering, C: Materials for Biological Applications, 2016, 63: 131-141. |
30 | Yumi AHN, Hyungjin LEE, Donghwa LEE, et al. Highly conductive and flexible silver nanowire-based microelectrodes on biocompatible hydrogel[J]. ACS Applied Materials & Interfaces, 2014, 6(21): 18401-18407. |
31 | NAVAEI Ali, SAINI Harpinder, CHRISTENSON Wayne, et al. Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs[J]. Acta Biomaterialia, 2016, 41: 133-146. |
32 | LIN Fengcai, WANG Zi, SHEN Yanping, et al. Natural skin-inspired versatile cellulose biomimetic hydrogels[J]. Journal of Materials Chemistry A, 2019, 7(46): 26442-26455. |
33 | SHAO Hui, WU Yih-Chyng, LIN Zifeng, et al. Nanoporous carbon for electrochemical capacitive energy storage[J]. Chemical Society Reviews, 2020, 49(10): 3005-3039. |
34 | MENG Zheng, STOLZ Robert M, MENDECKI Lukasz, et al. Electrically-transduced chemical sensors based on two-dimensional nanomaterials[J]. Chemical Reviews, 2019, 119(1): 478-598. |
35 | PARK Junggeon, CHOI Jang Hee, KIM Semin, et al. Micropatterned conductive hydrogels as multifunctional muscle-mimicking biomaterials: graphene-incorporated hydrogels directly patterned with femtosecond laser ablation[J]. Acta Biomaterialia, 2019, 97: 141-153. |
36 | HAN Jingquan, WANG Huixiang, YUE Yiying, et al. A self-healable and highly flexible supercapacitor integrated by dynamically cross-linked electro-conductive hydrogels based on nanocellulose-templated carbon nanotubes embedded in a viscoelastic polymer network[J]. Carbon, 2019, 149: 1-18. |
37 | XIA Shan, SONG Shixin, JIA Fei, et al. A flexible, adhesive and self-healable hydrogel-based wearable strain sensor for human motion and physiological signal monitoring[J]. Journal of Materials Chemistry B, 2019, 7(30): 4638-4648. |
38 | LI Huili, LV Tian, SUN Huanhuan, et al. Ultrastretchable and superior healable supercapacitors based on a double cross-linked hydrogel electrolyte[J]. Nature Communications, 2019, 10(1): 536. |
39 | XU Yuxin, SHENG Kaixuan, LI Chun, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano, 2010, 4(7): 4324-4330. |
40 | KEPLINGER Christoph, SUN Jeong-Yun, Choon Chiang FOO, et al. Stretchable, transparent, ionic conductors[J]. Science, 2013, 341(6149): 984-987. |
41 | YANG Canhui, SUO Zhigang. Hydrogel ionotronics[J]. Nature Reviews Materials, 2018, 3(6): 125-142. |
42 | Hae-Ryung LEE, KIM Chong-Chan, SUN Jeong-Yun. Stretchable ionics: a promising candidate for upcoming wearable devices[J]. Advanced Materials, 2018, 30(42): 1704403. |
43 | RAY P C, YU H T, FU P P. Toxicity and environmental risks of nanomaterials: challenges and future needs[J]. Journal of Environmental Science and Health C: Environmental Carcinogenesis & Ecotoxicology Reviews, 2009, 27(1): 1-35. |
44 | ZHAO Shiwei, TSENG Peter, GRASMAN Jonathan, et al. Programmable hydrogel ionic circuits for biologically matched electronic interfaces[J]. Advanced Materials, 2018, 30(25): 1800598. |
45 | WANG Lingyun, DAOUD Walid A. Hybrid conductive hydrogels for washable human motion energy harvester and self-powered temperature-stress dual sensor[J]. Nano Energy, 2019, 66: 104080. |
46 | LIU Hao, LI Moxiao, LIU Shaobao, et al. Spatially modulated stiffness on hydrogels for soft and stretchable integrated electronics[J]. Materials Horizons, 2020, 7(1): 203-213. |
47 | LIU Yanjun, CAO Wentao, MA Mingguo, et al. Ultrasensitive wearable soft strain sensors of conductive, self-healing, and elastic hydrogels with synergistic “soft and hard” hybrid networks[J]. ACS Applied Materials & Interfaces, 2017, 9(30): 25559-25570. |
48 | LEI Zhouyue, WANG Quankang, SUN Shengtong, et al. A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing[J]. Advanced Materials, 2017, 29(22): 1700321. |
49 | EELKEMA Rienk, PICH Andrij. Pros and cons: supramolecular or macromolecular: what is best for functional hydrogels with advanced properties?[J]. Advanced Materials, 2020, 32(20): 1906012. |
50 | GYLES Desireé Alesa, CASTRO Lorena Diniz, SILVA José Otávio Carréra, et al. A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations[J]. European Polymer Journal, 2017, 88: 373-392. |
51 | YIN Mingjie, YAO Mian, GAO Shaorui, et al. Rapid 3D patterning of poly(acrylic acid) ionic hydrogel for miniature pH sensors[J]. Advanced Materials, 2016, 28(7): 1394-1399. |
52 | MAHINROOSTA Mostafa, JOMEH FARSANGI Zohreh, ALLAHVERDI Ali, et al. Hydrogels as intelligent materials: a brief review of synthesis, properties and applications[J]. Materials Today Chemistry, 2018, 8: 42-55. |
53 | GU Hongbo, ZHANG Hongyuan, MA Chao, et al. Smart strain sensing organic-inorganic hybrid hydrogels with nano barium ferrite as the cross-linker[J]. Journal of Materials Chemistry C, 2019, 7(8): 2353-2360. |
54 | LIAO Haiyang, ZHOU Fenglin, ZHANG Zhanzhan, et al. A self-healable and mechanical toughness flexible supercapacitor based on polyacrylic acid hydrogel electrolyte[J]. Chemical Engineering Journal, 2019, 357: 428-434. |
55 | LEI Zhouyue, WU Peiyi. A highly transparent and ultra-stretchable conductor with stable conductivity during large deformation[J]. Nature Communications, 2019, 10(1): 3429. |
56 | ZHANG Qiang, LIU Libin, PAN Chenguang, et al. Review of recent achievements in self-healing conductive materials and their applications[J]. Journal of Materials Science, 2018, 53(1): 27-46. |
57 | Xiau Yeen LEE, FAN Hwee Wen, Hui Jing KOH. Characterization of electrically conductive hydrogels-polyaniline/polyacrylamide and graphene/polyacrylamide[J]. Materials Science Forum, 2020, 977: 59-64. |
58 | TRAN Van Tron, MREDHA Md Tariful Islam, PATHAK Suraj Kumar, et al. Conductive tough hydrogels with a staggered ion-coordinating structure for high self-recovery rate[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24598-24608. |
59 | CHEN Jiayi, XIE Pu, ZHANG Zeping. Reduced graphene oxide/polyacrylamide composite hydrogel scaffold as biocompatible anode for microbial fuel cell[J]. Chemical Engineering Journal, 2019, 361: 615-624. |
60 | HUANG Yan, ZHONG Ming, SHI Fukuan, et al. An intrinsically stretchable and compressible supercapacitor containing a polyacrylamide hydrogel electrolyte[J]. Angewandte Chemie : International Edition, 2017, 56(31): 9141-9145. |
61 | KIM Chong-Chan, Hyun-Hee LEE, Kyu Hwan OH, et al. Highly stretchable, transparent ionic touch panel[J]. Science, 2016, 353(6300): 682-687. |
62 | WEN Nan, JIANG Bojun, WANG Xiaojing, et al. Overview of polyvinyl alcohol nanocomposite hydrogels for electro-skin, actuator, supercapacitor and fuel cell[J]. The Chemical Record, 2020, 20: 1-21. |
63 | ZHOU Yang, WAN Changjin, YANG Yongsheng, et al. Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics[J]. Advanced Functional Materials, 2019, 29(1): 1806220. |
64 | LI Le, ZHANG Yu, LU Hengyi, et al. Cryopolymerization enables anisotropic polyaniline hybrid hydrogels with superelasticity and highly deformation-tolerant electrochemical energy storage[J]. Nature Communications, 2020, 11(1): 62. |
65 | ZHANG Shuai, ZHANG Yihan, LI Bo, et al. One-step preparation of a highly stretchable, conductive, and transparent poly(vinyl alcohol)-phytic acid hydrogel for casual writing circuits[J]. ACS Applied Materials & Interfaces, 2019, 11(35): 32441-32448. |
66 | WANG Man, CHEN Yujie, KHAN Rajwali, et al. A fast self-healing and conductive nanocomposite hydrogel as soft strain sensor[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 567: 139-149. |
67 | YANG Ningning, QI Ping, REN Jing, et al. Polyvinyl alcohol/silk fibroin/borax hydrogel ionotronics: a highly stretchable, self-healable, and biocompatible sensing platform[J]. ACS Applied Materials & Interfaces, 2019, 11(26): 23632-23638. |
68 | ZHU Junmin. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering[J]. Biomaterials, 2010, 31(17): 4639-4656. |
69 | KIM Yong Seok, Kanghee CHO, Hyun Jong LEE, et al. Highly conductive and hydrated peg-based hydrogels for the potential application of a tissue engineering scaffold[J]. Reactive and Functional Polymers, 2016, 109: 15-22. |
70 | SHIN Dongsik, MATHARU Zimple, YOU Jungmok, et al. Sensing conductive hydrogels for rapid detection of cytokines in blood[J]. Advanced Healthcare Materials, 2016, 5(6): 659-664. |
71 | Jong Min LEE, MOON Joo Yoon, KIM Tae Hyun, et al. Conductive hydrogel/nanowire micropattern-based sensor for neural stem cell differentiation[J]. Sensors and Actuators B: Chemical, 2018, 258: 1042-1050. |
72 | SHI Zhijun, GAO Xing, ULLAH Muhammad Wajid, et al. Electroconductive natural polymer-based hydrogels[J]. Biomaterials, 2016, 111: 40-54. |
73 | LIU Chunlin, ZHANG HuiJie, YOU Xiangyu, et al. Electrically conductive tough gelatin hydrogel[J]. Advanced Electronic Materials, 2020, 6(4): 2000040. |
74 | LI Longchao, GE Juan, GUO Baolin, et al. In situ forming biodegradable electroactive hydrogels[J]. Polymer Chemistry, 2014, 5(8): 2880-2890. |
75 | HSIAO Liyin, JING Lin, LI Kerui, et al. Carbon nanotube-integrated conductive hydrogels as multifunctional robotic skin[J]. Carbon, 2020, 161: 784-793. |
76 | JING Xin, WANG Xinyi, MI Haoyang, et al. Stretchable gelatin/silver nanowires composite hydrogels for detecting human motion[J]. Materials Letters, 2019, 237: 53-56. |
77 | Kuen Yong LEE, MOONEY David J. Alginate: properties and biomedical applications[J]. Progress in Polymer Science, 2012, 37(1): 106-126. |
78 | DVIR Tal, TIMKO Brian P, BRIGHAM Mark D, et al. Nanowired three-dimensional cardiac patches[J]. Nature Nanotechnology, 2011, 6(11): 720-725. |
79 | XIA Shan, SONG Shixin, GAO Guanghui. Robust and flexible strain sensors based on dual physically cross-linked double network hydrogels for monitoring human-motion[J]. Chemical Engineering Journal, 2018, 354: 817-824. |
80 | HUANG Hailong, HAN Lu, LI Junfeng, et al. Super-stretchable, elastic and recoverable ionic conductive hydrogel for wireless wearable, stretchable sensor[J]. Journal of Materials Chemistry A, 2020, 8(20): 10291-10300. |
81 | ZENG Juan, DONG Liubing, SHA Wuxin, et al. Highly stretchable, compressible and arbitrarily deformable all-hydrogel soft supercapacitors[J]. Chemical Engineering Journal, 2020, 383: 123098. |
82 | SAMI EL-BANNA Fatma, MAHFOUZ Magdy Elsayed, LEPORATTI Stefano, et al. Chitosan as a natural copolymer with unique properties for the development of hydrogels[J]. Applied Sciences, 2019, 9(11): 2193. |
83 | Celil ULUTüRK, ALEMDAR Neslihan. Electroconductive 3D polymeric network production by using polyaniline/chitosan-based hydrogel[J]. Carbohydrate Polymers, 2018, 193: 307-315. |
84 | JIN Xiaoqiang, JIANG Huihong, LI Guoqi, et al. Stretchable, conductive PAni-PAAm-GOCS hydrogels with excellent mechanical strength, strain sensitivity and skin affinity[J]. Chemical Engineering Journal, 2020, 394: 124901. |
85 | ZHAO Dawei, ZHU Ying, CHENG Wanke, et al. Cellulose-based flexible functional materials for emerging intelligent electronics[J]. Advanced Materials, 2020, 32: 2000619. |
86 | WANG Hongfei, WU Juan, QIU Jun, et al. In situ formation of a renewable cellulose hydrogel electrolyte for high-performance flexible all-solid-state asymmetric supercapacitors[J]. Sustainable Energy & Fuels, 2019, 3(11): 3109-3115. |
87 | ZHAO Dawei, ZHU Ying, CHENG Wanke, et al. A dynamic gel with reversible and tunable topological networks and performances[J]. Matter, 2020, 2(2): 390-403. |
88 | TONG Ruiping, CHEN Guangxue, PAN Danhong, et al. Highly stretchable and compressible cellulose ionic hydrogels for flexible strain sensors[J]. Biomacromolecules, 2019, 20(5): 2096-2104. |
89 | WANG Donghong, LI Hongfei, LIU Zhuoxin, et al. A nanofibrillated cellulose/polyacrylamide electrolyte-based flexible and sewable high-performance Zn-MnO2 battery with superior shear resistance[J]. Small, 2018, 14(51): 1803978. |
90 | Helen H. HSU, LIU Yuqing, WANG Ying, et al. Mussel-inspired autonomously self-healable all-in-one supercapacitor with biocompatible hydrogel[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(18): 6935-6948. |
91 | ZHANG Haoxiang, NIU Wenbin, ZHANG Shufen. Extremely stretchable, sticky and conductive double-network ionic hydrogel for ultra-stretchable and compressible supercapacitors[J]. Chemical Engineering Journal, 2020, 387: 124105. |
92 | LIU Zhikang, CHEN Jisi, ZHAN Yang, et al. Fe3+ cross-linked polyaniline/cellulose nanofibril hydrogels for high-performance flexible solid-state supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(21): 17653-17660. |
93 | PENG Hui, LV Yaya, WEI Ganggang, et al. A flexible and self-healing hydrogel electrolyte for smart supercapacitor[J]. Journal of Power Sources, 2019, 431: 210-219. |
94 | ZHOU Hongwei, WANG Zhiwen, ZHAO Weifeng, et al. Robust and sensitive pressure/strain sensors from solution processable composite hydrogels enhanced by hollow-structured conducting polymers[J]. Chemical Engineering Journal, 2021, 403: 126307. |
95 | SUN Hongling, ZHAO Yi, WANG Chunfeng, et al. Ultra-stretchable, durable and conductive hydrogel with hybrid double network as high performance strain sensor and stretchable triboelectric nanogenerator[J]. Nano Energy, 2020, 76: 105035. |
96 | FAN Ling, XIE Jinliang, ZHENG Yaping, et al. Antibacterial, self-adhesive, recyclable, and tough conductive composite hydrogels for ultrasensitive strain sensing[J]. ACS Applied Materials & Interfaces, 2020, 12(19): 22225-22236. |
97 | WANG Zifeng, LI Hongfei, TANG Zijie, et al. Hydrogel electrolytes for flexible aqueous energy storage devices[J]. Advanced Functional Materials, 2018, 28(48): 1804560. |
98 | MA Longtao, CHEN Shengmei, WANG Donghong, et al. Super-stretchable zinc-air batteries based on an alkaline-tolerant dual-network hydrogel electrolyte[J]. Advanced Energy Materials, 2019, 9(12): 1803046. |
99 | HUANG Shuo, WAN Fang, BI Songshan, et al. A self-healing integrated all-in-one zinc-ion battery[J]. Angewandte Chemie: International Edition, 2019, 58(13): 4313-4317. |
100 | LI Qingxin, CUI Ximing, PAN Qinmin. Self-healable hydrogel electrolyte toward high-performance and reliable quasi-solid-state Zn-MnO2 batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(42): 38762-38770. |
[1] | HU Tingyuan, LI Pingfan, WANG Wei, LIU Zhuang, JU Xiaojie, XIE Rui, CHU Liangyin. Research pogress of functional hydrogel materials for soft supercapacitors [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1578-1593. |
[2] | PAN Yumei, XU Jian, CHEN Qiang, WU Shishan. Research progress of intelligent hydrogels in biological drug carrying [J]. Chemical Industry and Engineering Progree, 2016, 35(S1): 202-208. |
[3] | GONG Guisheng, LIU Jingbo, ZHONG Yupeng, LIN Qiang, ZHANG Faai. Self-healing performance of poly(vinyl alcohol) hydrogel [J]. Chemical Industry and Engineering Progree, 2016, 35(08): 2507-2512. |
[4] | DING Qi,XING Xiaodong,LI Lixia . Enzyme immobilization on porous semi-interpenetrating thermosensitive hydrogel carriers via thiol-based click reaction [J]. Chemical Industry and Engineering Progree, 2014, 33(04): 971-976. |
[5] | ZHANG Ling,SUN Xiaofeng,JING Zhanxin,NIU Tengyun,LIU Baichen. Swelling property of hemicellulose/carbon nanotube composite gel [J]. Chemical Industry and Engineering Progree, 2013, 32(08): 1881-1886. |
[6] | LI Fan,ZHANG Jinlong,YIN Yuji. Research progress of high mechanical strength hydrogels for biomedical application [J]. Chemical Industry and Engineering Progree, 2012, 31(11): 2511-2519. |
[7] | WEI Qingbo,GAO Loujun,FU Feng,ZHANG Yuqi,MA Rongxuan. Preparation and swelling kinetics of PAAm-g-PEG/PVPpH-responsive semi-IPN hydrogels [J]. Chemical Industry and Engineering Progree, 2012, 31(01 ): 163-168. |
[8] | LIAO Liewen,GONG Tao,ZHOU Jing,ZHOU Xinhua,CUI Yingde . Advance in intelligent hydrogels based on N,N ′-dimethylaminoethyl methacrylate [J]. Chemical Industry and Engineering Progree, 2011, 30(2): 345-. |
[9] | SHI Yanru1,LI Qi1,WANG Li1,WANG Aiqin2. Progress in hydrogels with three-dimensional cross-linked polymeric networks for the adsorption of heavy metal ions and dyes [J]. Chemical Industry and Engineering Progree, 2011, 30(10): 2294-. |
[10] | LI Fengjuan,LIN Wei,CHENG Qingsu,MU Changdao. Synthesis and characterization of pH-sensitive collagen-based hydrogels [J]. Chemical Industry and Engineering Progree, 2009, 28(3): 441-. |
[11] |
WANG Pin,CUI Yingde,YIN Guoqiang,HE Ming,ZHANG Buning.
[J]. Chemical Industry and Engineering Progree, 2009, 28(12): 2169-. |
[12] | GONG Zheng,DING Shanshan,YIN Yuji,CUI Yuanlu,YAO Kangde. Optimized design of hydrogels for tissue engineering [J]. Chemical Industry and Engineering Progree, 2008, 27(11): 1743-. |
[13] | LIU Yong,CUI Yingde,YIN Guoqiang,LI Xinming,CHEN Xunjun,ZHANG Buning. Intelligent hydrogels for controlled release of drug [J]. Chemical Industry and Engineering Progree, 2008, 27(10): 1593-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |