Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (5): 2595-2605.DOI: 10.16085/j.issn.1000-6613.2022-1236
• Materials science and technology • Previous Articles Next Articles
XU Yuzhen(), JIANG Dahua(), LIU Jingtao, CHEN Pu
Received:
2022-07-01
Revised:
2022-08-09
Online:
2023-06-02
Published:
2023-05-10
Contact:
JIANG Dahua
通讯作者:
蒋达华
作者简介:
徐玉珍(1997—),女,硕士研究生,主要从事相变储能材料的研究。E-mail:834932634@qq.com。
基金资助:
CLC Number:
XU Yuzhen, JIANG Dahua, LIU Jingtao, CHEN Pu. Preparation and properties of fly ash based phase change energy storage materials[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2595-2605.
徐玉珍, 蒋达华, 刘景滔, 陈璞. 粉煤灰基相变储能材料的制备及性能[J]. 化工进展, 2023, 42(5): 2595-2605.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1236
PCM | 熔化温度/℃ | 实际熔化潜热/J·g-1 | 理论熔化潜热/J·g-1 | 凝固温度/℃ | 实际凝固潜热/J·g-1 | 理论凝固潜热/J·g-1 | CA-OD的结晶度/% |
---|---|---|---|---|---|---|---|
CA-OD | 29.19 | 166.06 | — | 25.82 | 165.52 | — | 100.00 |
CA-OD/FA | 27.44 | 37.18 | 39.85 | 24.71 | 34.89 | 39.72 | 93.29 |
PCM | 熔化温度/℃ | 实际熔化潜热/J·g-1 | 理论熔化潜热/J·g-1 | 凝固温度/℃ | 实际凝固潜热/J·g-1 | 理论凝固潜热/J·g-1 | CA-OD的结晶度/% |
---|---|---|---|---|---|---|---|
CA-OD | 29.19 | 166.06 | — | 25.82 | 165.52 | — | 100.00 |
CA-OD/FA | 27.44 | 37.18 | 39.85 | 24.71 | 34.89 | 39.72 | 93.29 |
PCM | 相变温度/℃ | 相变潜热/J·g-1 | 应用效果 | 参考文献 |
---|---|---|---|---|
LA/MA | 31.10 | 45.30 | 复合材料具有显著的调温性能 | [ |
CA/PA | 24.33 | 66.36 | 该相变涂层具有优异的蓄热性能和温度调节性能 | [ |
LA/MA/PA/SA | 32.93 | 87.67 | 在低温相变储能领域具有良好的应用前景 | [ |
LA/MA/SA | 29.74 | 151.64 | PCM石膏板具有更好的储热性能和更长的热舒适时间 | [ |
月桂醇/硬脂醇 | 22.93 | 205.79 | 是一种可用于建筑热能储存和室内舒适性的材料 | [ |
CA/PA | 21.78 | 154.70 | 复合材料适用于建筑节能领域 | [ |
PCM | 相变温度/℃ | 相变潜热/J·g-1 | 应用效果 | 参考文献 |
---|---|---|---|---|
LA/MA | 31.10 | 45.30 | 复合材料具有显著的调温性能 | [ |
CA/PA | 24.33 | 66.36 | 该相变涂层具有优异的蓄热性能和温度调节性能 | [ |
LA/MA/PA/SA | 32.93 | 87.67 | 在低温相变储能领域具有良好的应用前景 | [ |
LA/MA/SA | 29.74 | 151.64 | PCM石膏板具有更好的储热性能和更长的热舒适时间 | [ |
月桂醇/硬脂醇 | 22.93 | 205.79 | 是一种可用于建筑热能储存和室内舒适性的材料 | [ |
CA/PA | 21.78 | 154.70 | 复合材料适用于建筑节能领域 | [ |
1 | YUN B Y, YANG S, CHO H M, et al. Design and analysis of phase change material based floor heating system for thermal energy storage[J]. Environmental Research, 2019, 173: 480-488. |
2 | 顾庆军, 费华, 王林雅, 等. 脂肪酸相变储能材料热性能研究进展[J]. 化工进展, 2019, 38(6): 2825-2834. |
GU Qingjun, FEI Hua, WANG Linya, et al. Research progress on thermal properties of fatty acid phase change energy storage materials[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2825-2834. | |
3 | 阚荣强, 李隆键, 崔文智, 等. 太阳能热风相变蓄热采暖系统实验研究[J]. 重庆理工大学学报(自然科学), 2019, 33(11): 168-172. |
KAN Rongqiang, LI Longjian, CUI Wenzhi, et al. Experimental study on hot air PCM thermal storage system for building heating[J]. Journal of Chongqing University of Technology (Natural Science), 2019, 33(11): 168-172. | |
4 | 蒋达华, 廖绍璠, 张鑫林, 等. 十八酸-十四酸二元相变材料的热性能研究[J]. 化工新型材料, 2020, 48(9): 141-144. |
JIANG Dahua, LIAO Shaofan, ZHANG Xinlin, et al. Study on thermal property of SA-MA binary phase change material[J]. New Chemical Materials, 2020, 48(9): 141-144. | |
5 | 蔡伟, 孙志高, 马鸿凯, 等. 月桂酸-十四醇二元复合相变材料的相变特性[J]. 太阳能学报, 2017, 38(9): 2493-2497. |
CAI Wei, SUN Zhigao, MA Hongkai, et al. Phase transition properties of LA-TD binary composite phase change materials[J]. Acta Energiae Solaris Sinica, 2017, 38(9): 2493-2497. | |
6 | 蒋达华, 杨昊天, 徐玉珍, 等. 硅藻土定形相变材料的制备及影响因素研究[J]. 非金属矿, 2021, 44(5): 19-22. |
JIANG Dahua, YANG Haotian, XU Yuzhen, et al. Preparation and influencing factors of diatomite shape phase change material[J]. Non-Metallic Mines, 2021, 44(5): 19-22. | |
7 | 贾超, 唐炳涛, 张淑芬, 等. 超声辅助溶胶-凝胶法制备硬脂酸/SiO2定形相变储能材料[J]. 复合材料学报, 2012, 29(1): 85-90. |
JIA Chao, TANG Bingtao, ZHANG Shufen, et al. Synthesis of stearic acid/SiO2 hybrid phase change materials by ultrasound assisted[J]. Acta Materiae Compositae Sinica, 2012, 29(1): 85-90. | |
8 | HAN Pengju, LU Lixin, QIU Xiaolin, et al. Preparation and characterization of macrocapsules containing microencapsulated PCMs (phase change materials) for thermal energy storage[J]. Energy, 2015, 91: 531-539. |
9 | XIE Ning, LUO Jianmin, LI Zhongping, et al. Salt hydrate/expanded vermiculite composite as a form-stable phase change material for building energy storage[J]. Solar Energy Materials and Solar Cells, 2019, 189: 33-42. |
10 | 王小鹏, 张毅, 沈振球, 等. 熔融插层法制备蒙脱石基石蜡复合相变储能材料[J]. 硅酸盐学报, 2011, 39(4): 624-629. |
WANG Xiaopeng, ZHANG Yi, SHEN Zhenqiu, et al. Melting intercalation method to prepare montmorillonite based paraffin composite phase change energy storage material[J]. Journal of the Chinese Ceramic Society, 2011, 39(4): 624-629. | |
11 | 苗扬, 李丽萍. 聚乙烯类/石蜡木塑相变储能材料的制备与性能[J]. 材料导报, 2016, 30(14): 62-66. |
MIAO Yang, LI Liping. Preparation and properties of polyethylene/paraffin wood-plastic composite phase change materials[J]. Materials Review, 2016, 30(14): 62-66. | |
12 | 蒯子函, 闫霆, 吴韶飞, 等. 硬脂醇/膨胀石墨复合相变材料的制备及储热性能[J]. 化工进展, 2021, 40(S1): 301-310. |
KUAI Zihan, YAN Ting, WU Shaofei, et al. Fabrication and heat storage properties of stearyl alcohol/expanded graphite composite phase change materials[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 301-310. | |
13 | SARI Ahmet, Alper BIÇER. Preparation and thermal energy storage properties of building material-based composites as novel form-stable PCMs[J]. Energy and Buildings, 2012, 51: 73-83. |
14 | SUN Dan, WANG Lijiu. Utilization of paraffin/expanded perlite materials to improve mechanical and thermal properties of cement mortar[J]. Construction and Building Materials, 2015, 101: 791-796. |
15 | LI Chuanchang, FU Liangjie, OUYANG Jing, et al. Enhanced performance and interfacial investigation of mineral-based composite phase change materials for thermal energy storage[J]. Scientific Reports, 2013, 3, 1908. |
16 | SONG Shaokun, DONG Lijie, CHEN Shun, et al. Stearic-capric acid eutectic/activated-attapulgiate composite as form-stable phase change material for thermal energy storage[J]. Energy Conversion and Management, 2014, 81: 306-311. |
17 | MEI Dandan, ZHANG Bing, LIU Ruichao, et al. Preparation of stearic acid/halloysite nanotube composite as form-stable PCM for thermal energy storage[J]. International Journal of Energy Research, 2011, 35(9): 828-834. |
18 | 陈智博, 钱艳峰, 高美玲, 等. 粉煤灰基复合相变材料储热性能的研究进展[J]. 赤峰学院学报(自然科学版),2021, 37(8): 59-66. |
CHEN Zhibo, QIAN Yanfeng, GAO Meiling, et al. Research progress on thermal storage properties of fly ash based composite phase change materials[J]. Journal of Chifeng University (Natural Science Edition), 2021, 37(8): 59-66. | |
19 | GENC Z K, CANBAY C A, ACAR S S, et al. Preparation and thermal properties of heterogeneous composite phase change materials based on camphene-palmitic acid[J]. Journal of Thermal Analysis and Calorimetry, 2015, 120(3): 1679-1688. |
20 | CANBAY C A, GENC Z K, ACAR S S, et al. Preparation and thermodynamic properties of camphene/stearic acid composites as phase-change materials in buildings[J]. International Journal of Thermophysics, 2014, 35(8): 1526-1537. |
21 | CHEN Yong, HUANG Yinghao, WU Min. Fly ash/paraffin composite phase change material used to treat thermal and mechanical properties of expansive soil in cold regions[J]. Journal of Renewable Materials, 2022, 10(4): 1153-1173. |
22 | Gökhan HEKIMOĞLU, Memduh NAS, OUIKHALFAN Mohammed, et al. Thermal management performance and mechanical properties of a novel cementitious composite containing fly ash/lauric acid-myristic acid as form-stable phase change material[J]. Construction and Building Materials, 2021, 274: 122105-122118. |
23 | 宗建军, 廖传华. 超临界二氧化碳萃取葡萄籽油工艺优化[J]. 化工进展, 2018, 37(2): 485-491. |
ZONG Jianjun, LIAO Chuanhua. Optimization of grape seed oil extracted with supercritical carbon dioxide[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 485-491. | |
24 | 贺远鹏. 响应曲面法复配混凝剂处理海上生产返排液[J]. 化工进展, 2021, 40(S1): 439-445. |
HE Yuanpeng. Treatment of offshore production flowback fluid with composite flocculant by response surface methodology[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 439-445. | |
25 | 孔祥飞, 王路, 乔旭. 氮化铝基复合相变材料的制备及性能研究[J]. 河北工业大学学报, 2021, 50(2): 37-42. |
KONG Xiangfei, WANG Lu, QIAO Xu. Preparation and properties of composite phase change materials based on aluminum nitride[J]. Journal of Hebei University of Technology, 2021, 50(2): 37-42. | |
26 | 孟多, 赵康, 王东旭. 二元脂肪酸/硅藻土助滤剂定形相变复合材料的制备及性能[J]. 复合材料学报, 2018, 35(9): 2558-2565. |
MENG Duo, ZHAO Kang, WANG Dongxu. Preparation and properties of binary fatty acid mixture/diatomite filter aid form-stable phase change composite[J]. Acta Materiae Compositae Sinica, 2018, 35(9): 2558-2565. | |
27 | 孙建忠, 吴子钊. 建材用相变工质材料渗出程度评价方法的研究[J]. 新型建筑材料, 2004, 31(7): 43-46. |
SUN Jianzhong, WU Zizhao. Study on evaluation method of exudation degree of phase change working fluid for building materials[J]. New Building Materials, 2004, 31(7): 43-46. | |
28 | LIU Peng, GU Xiaobin, RAO Jun, et al. Preparation and thermal properties of lauric acid/raw fly ash/carbon nanotubes composite as phase change material for thermal energy storage[J]. Fullerenes, Nanotubes, and Carbon Nanostructures, 2020, 28(11): 934-944. |
29 | LIU Peng, GU Xiaobin, ZHANG Zhikai, et al. Capric acid hybridizing fly ash and carbon nanotubes as a novel shape-stabilized phase change material for thermal energy storage[J]. ACS Omega, 2019, 4(12): 14962-14969. |
30 | GU Xiaobin, LIU Peng, PENG Lihua, et al. Low cost, eco-friendly, modified fly ash-based shape-stabilized phase change material with enhanced thermal storage capacity and heat transfer efficiency for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2021, 232: 111343. |
31 | QIU Feng, SONG Shaokun, LI Denian, et al. Experimental investigation on improvement of latent heat and thermal conductivity of shape-stable phase-change materials using modified fly ash[J]. Journal of Cleaner Production, 2020, 246: 118952. |
32 | 王鑫, 方建华, 吴江, 等. 改性SiO2杂化层相变微胶囊的制备与表征[J]. 化工进展, 2020, 39(4): 1431-1438. |
WANG Xin, FANG Jianhua, WU Jiang, et al. Preparation and characterization of SiO2 hybrid phase change microcapsules[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1431-1438. | |
33 | 顾庆军, 费华, 王林雅, 等. 癸酸-十六醇作为相变储能材料的相变特性[J]. 化工进展, 2019, 38(11): 5033-5039. |
GU Qingjun, FEI Hua, WANG Linya, et al. Phase transition properties of capric acid-hexadecanol as phase change energy storage material[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 5033-5039. | |
34 | DU Wenqing, FEI Hua, PAN Yucheng, et al. Development of capric acid-stearic acid-palmitic acid low-eutectic phase change material with expanded graphite for thermal energy storage[J]. Construction and Building Materials, 2022, 320: 126309. |
35 | RATHORE P K S, SHUKLA S K. Improvement in thermal properties of PCM/Expanded vermiculite/expanded graphite shape stabilized composite PCM for building energy applications[J]. Renewable Energy, 2021, 176: 295-304. |
36 | LIU Peng, GU Xiaobin, BIAN Liang, et al. Capric acid/intercalated diatomite as form-stable composite phase change material for thermal energy storage[J]. Journal of Thermal Analysis and Calorimetry, 2019, 138(1): 359-368. |
37 | SONG Huiping, LEI Xu, XUE Fangbin, et al. Composite phase-change coating with coal-fly-ash-based zeolite as carrier[J]. Progress in Organic Coatings, 2019, 136: 105238. |
38 | 张圆圆, 杨建森. 脂肪酸相变材料的封装制备及热工性质[J]. 材料导报, 2020, 34(16): 16144-16148. |
ZHANG Yuanyuan, YANG Jiansen. Packaging preparation and thermal properties of fatty acid phase change materials[J]. Materials Reports, 2020, 34(16): 16144-16148. | |
39 | 舒钊, 钟珂, 肖鑫, 等. 硅藻土基脂肪酸定型相变材料的制备与表征[J]. 硅酸盐学报, 2022, 50(6): 1652-1660. |
SHU Zhao, ZHONG Ke, XIAO Xin, et al. Preparation and characterization of fatty acid stabilized composite phase change materials based on diatomite for construction[J]. Journal of the Chinese Ceramic Society, 2022, 50(6): 1652-1660. | |
40 | PHILIP N, VEERAKUMAR C, SREEKUMAR A. Lauryl alcohol and stearyl alcohol eutectic for cold thermal energy storage in buildings: Preparation, thermophysical studies and performance analysis [J]. Journal of Energy Storage, 2020, 31: 101600. |
41 | 费华, 顾庆军, 王林雅, 等. 癸酸-棕榈酸二元复合相变材料的相变特性研究[J]. 太阳能学报, 2020, 41(1): 80-85. |
FEI Hua, GU Qingjun, WANG Linya, et al. Phase transition properties of capric-palmitic acid binary composite phase change materials[J]. Acta Energiae Solaris Sinica, 2020, 41(1): 80-85. | |
42 | 邓建红, 费华, 王林雅, 等. 癸酸-石蜡/膨胀石墨定形相变材料的制备及性能[J]. 化工进展, 2020, 39(11): 4537-4543. |
DENG Jianhong, FEI Hua, WANG Linya, et al. Preparation and properties of capric acid-paraffin/expanded graphite form-stable phase change materials[J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4537-4543. | |
43 | 杨颖, 董昭, 童明伟, 等. 十六醇-癸酸/粉煤灰定形相变材料的制备及热性能分析[J]. 化工新型材料, 2014, 42(5): 95-98. |
YANG Ying, DONG Zhao, TONG Mingwei, et al. Preparation and thermal performance characteristics of cetyl alcohol-decylic acid/fly ash shape-stabilized phase change materials[J]. New Chemical Materials, 2014, 42(5): 95-98. |
[1] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[2] | SHI Yu, ZHAO Yunchao, FAN Zhixuan, JIANG Dahua. Experimental study on the optimum phase change temperature of phase change roofs in hot summer and cold winter areas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4828-4836. |
[3] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[4] | SONG Weitao, SONG Huiping, FAN Zhenlian, FAN Biao, XUE Fangbin. Research progress of fly ash in anti-corrosion coatings [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4894-4904. |
[5] | LI Weihua, YU Qianwen, YIN Junquan, WU Yinkai, SUN Yingjie, WANG Yan, WANG Huawei, YANG Yufei, LONG Yuyang, HUANG Qifei, GE Yanchen, HE Yiyang, ZHAO Lingyan. Leaching behavior of heavy metals from broken ton bags filled with fly ash in acid rain environment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4917-4928. |
[6] | WANG Jiansheng, ZHANG Huipeng, LIU Xueling, FU Yuguo, ZHU Jianxiao. Analysis of flow and heat transfer characteristics in porous media reservoir [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4212-4220. |
[7] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[8] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
[9] | TANG Lei, ZENG Desen, LING Ziye, ZHANG Zhengguo, FANG Xiaoming. Research progress of phase change materials and their application systems for cool storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4322-4339. |
[10] | YANG Pengwei, YU Linzhu, WANG Fangfang, JIANG Haoxuan, ZHAO Guangjin, LI Qi, DU Mingzhe, MA Shuangchen. Application prospect, challenge and development of ammonia energy storage in new power system [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4432-4446. |
[11] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[12] | ZHANG Chenyu, WANG Ning, XU Hongtao, LUO Zhuqing. Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2332-2342. |
[13] | CHEN Fei, LIU Chengbao, CHEN Feng, QIAN Junchao, QIU Yongbin, MENG Xianrong, CHEN Zhigang. Research progress on graphitic carbon nitride based materials for supercapacitor [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2566-2576. |
[14] | LI Weihua, WU Yinkai, SUN Yingjie, YIN Junquan, XIN Mingxue, ZHAO Youjie. Progress on evaluation methods for toxic leaching of heavy metals from MSW incineration fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2666-2677. |
[15] | WAN Maohua, ZHANG Xiaohong, AN Xingye, LONG Yinying, LIU Liqin, GUAN Min, CHENG Zhengbai, CAO Haibing, LIU Hongbin. Research progress on the applications of MXene in the fields of biomass based energy storage nanomaterials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1944-1960. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |