Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (4): 1698-1707.DOI: 10.16085/j.issn.1000-6613.2022-1124
• Chemical processes and equipment • Previous Articles Next Articles
WANG Wenhao1(), HE Lidong1(), WANG Xuezhi2, YAN Ze2, JIA Xingyun1, LIU Chunrui1
Received:
2022-06-15
Revised:
2022-07-17
Online:
2023-05-08
Published:
2023-04-25
Contact:
HE Lidong
王文昊1(), 何立东1(), 王学志2, 闫泽2, 贾兴运1, 刘春瑞1
通讯作者:
何立东
作者简介:
王文昊(1998—),男,硕士研究生,研究方向为密封流体激振机理及抑制方法。E-mail:wangwenhao9872@163.com。
基金资助:
CLC Number:
WANG Wenhao, HE Lidong, WANG Xuezhi, YAN Ze, JIA Xingyun, LIU Chunrui. Leakage characteristics of labyrinth, honeycomb and honeycomb-labyrinth seals under eccentric conditions[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1698-1707.
王文昊, 何立东, 王学志, 闫泽, 贾兴运, 刘春瑞. 偏心工况下梳齿、蜂窝与蜂窝-梳齿密封的泄漏特性[J]. 化工进展, 2023, 42(4): 1698-1707.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1124
参数 | 梳齿 密封 | 3.2mm蜂窝 密封 | 1.6mm蜂窝 密封 |
---|---|---|---|
密封直径d/mm | 55 | 55 | 55 |
密封间隙c/mm | 0.15 | 0.15 | 0.15 |
齿高/芯格深度h/mm | 3.2 | 3.2 | 3.2 |
齿厚/芯格壁厚t/mm | 0.5 | 0.1 | 0.1 |
齿距P/mm | 4.1 | — | — |
芯格宽度s/mm | — | 3.2 | 1.6 |
密封长度L/mm | 25.1 | 24 | 24 |
齿数/芯格层数n | 7 | 8 | 14 |
参数 | 梳齿 密封 | 3.2mm蜂窝 密封 | 1.6mm蜂窝 密封 |
---|---|---|---|
密封直径d/mm | 55 | 55 | 55 |
密封间隙c/mm | 0.15 | 0.15 | 0.15 |
齿高/芯格深度h/mm | 3.2 | 3.2 | 3.2 |
齿厚/芯格壁厚t/mm | 0.5 | 0.1 | 0.1 |
齿距P/mm | 4.1 | — | — |
芯格宽度s/mm | — | 3.2 | 1.6 |
密封长度L/mm | 25.1 | 24 | 24 |
齿数/芯格层数n | 7 | 8 | 14 |
密封类型 | 泄漏率 /m3·h-1 | 相对梳齿密封的泄漏率变化率/% |
---|---|---|
梳齿密封-光轴(原型) | 3.64 | — |
1.6mm蜂窝密封-光滑轴 | 3.07 | -15.7 |
3.2mm蜂窝密封-光滑轴 | 2.98 | -18.1 |
1.6mm蜂窝-梳齿组合密封 | 6.21 | 70.6 |
3.2mm蜂窝-梳齿组合密封 | 6.36 | 74.7 |
密封类型 | 泄漏率 /m3·h-1 | 相对梳齿密封的泄漏率变化率/% |
---|---|---|
梳齿密封-光轴(原型) | 3.64 | — |
1.6mm蜂窝密封-光滑轴 | 3.07 | -15.7 |
3.2mm蜂窝密封-光滑轴 | 2.98 | -18.1 |
1.6mm蜂窝-梳齿组合密封 | 6.21 | 70.6 |
3.2mm蜂窝-梳齿组合密封 | 6.36 | 74.7 |
密封类型 | 无偏心时泄漏率/m3·h-1 | 径向偏心时泄漏率/m3·h-1 | 泄漏率变化率/% |
---|---|---|---|
梳齿密封-光滑轴 | 3.81 | 4.40 | 15.5 |
1.6mm蜂窝密封-光滑轴 | 3.64 | 4.10 | 12.6 |
3.2mm蜂窝密封-光滑轴 | 3.11 | 3.40 | 9.5 |
1.6mm蜂窝-梳齿组合密封 | 5.95 | 6.50 | 9.3 |
3.2mm蜂窝-梳齿组合密封 | 4.81 | 5.15 | 7.0 |
密封类型 | 无偏心时泄漏率/m3·h-1 | 径向偏心时泄漏率/m3·h-1 | 泄漏率变化率/% |
---|---|---|---|
梳齿密封-光滑轴 | 3.81 | 4.40 | 15.5 |
1.6mm蜂窝密封-光滑轴 | 3.64 | 4.10 | 12.6 |
3.2mm蜂窝密封-光滑轴 | 3.11 | 3.40 | 9.5 |
1.6mm蜂窝-梳齿组合密封 | 5.95 | 6.50 | 9.3 |
3.2mm蜂窝-梳齿组合密封 | 4.81 | 5.15 | 7.0 |
密封类型 | 无偏心时泄漏率/m3·h-1 | 角向偏心时泄漏率/m3·h-1 | 泄漏率变化率/% |
---|---|---|---|
梳齿密封-光滑轴 | 4.01 | 4.30 | 7.3 |
1.6mm蜂窝密封-光滑轴 | 3.79 | 4.00 | 5.6 |
3.2mm蜂窝密封-光滑轴 | 2.94 | 3.10 | 5.4 |
1.6mm蜂窝-梳齿组合密封 | 4.85 | 5.05 | 4.1 |
3.2mm蜂窝-梳齿组合密封 | 4.60 | 4.70 | 2.2 |
密封类型 | 无偏心时泄漏率/m3·h-1 | 角向偏心时泄漏率/m3·h-1 | 泄漏率变化率/% |
---|---|---|---|
梳齿密封-光滑轴 | 4.01 | 4.30 | 7.3 |
1.6mm蜂窝密封-光滑轴 | 3.79 | 4.00 | 5.6 |
3.2mm蜂窝密封-光滑轴 | 2.94 | 3.10 | 5.4 |
1.6mm蜂窝-梳齿组合密封 | 4.85 | 5.05 | 4.1 |
3.2mm蜂窝-梳齿组合密封 | 4.60 | 4.70 | 2.2 |
1 | VANCE John M, MURPHY Brian, ZEIDAN Fouad. Machinery vibration and rotordynamics[M]. Hoboken, NJ: Wiley, 2010 |
2 | CHUPP Raymond E, HENDRICKS Robert C, LATTIME Scott B, et al. Sealing in turbomachinery[J]. Journal of Propulsion and Power, 2006, 22(2): 313-349. |
3 | 李盼, 李勇, 曹丽华, 等. 一种新型蜂窝密封的封严特性[J]. 化工进展, 2018, 37(5): 1655-1663. |
LI Pan, LI Yong, CAO Lihua, et al. Sealing characteristics of a new honeycomb seal[J]. Chemical Industry and Engineering Progress, 2018, 37(5): 1655-1663. | |
4 | 曹丽华, 王佳欣, 李盼, 等. 汽轮机高压级叶顶间隙泄漏流的掺混作用分析[J]. 化工进展, 2017, 36(8): 2859-2865. |
CAO Lihua, WANG Jiaxin, LI Pan, et al. Analysis on mixing process of tip shroud leakage flow in high-pressure stage of steam turbine[J]. Chemical Industry and Engineering Progress, 2017, 36(8): 2859-2865. | |
5 | JOHNSTON J R. Performance and reliability improvements for heavy-duty gas turbines[C] //International Gas Turbine Conference and Exhibition GE Power Systems, California, USA, 1987. |
6 | WILLENBORG K, SCHRAMM V, KIM S, et al. Influence of a honeycomb facing on the heat transfer in a stepped labyrinth seal[J]. Journal of Engineering for Gas Turbines and Power, 2002, 124(1): 133-139. |
7 | 田爱梅, 朱梓根. 涡轮泵转子稳定性计算[J]. 推进技术, 2000, 21(3): 43-45. |
TIAN Aimei, ZHU Zigen. Calculation for rotor stability in turbopumps[J]. Journal of Propulsion Technology, 2000, 21(3): 43-45. | |
8 | 丁军, 索双富, 张妙恬. 高温气冷堆主氦风机主轴的迷宫密封泄漏特性[J]. 润滑与密封, 2022, 47(7): 49-53. |
DING Jun, SUO Shuangfu, ZHANG Miaotian. Leakage characteristics of labyrinth seal of the main helium fan used for high temperature gas cooled reactor[J]. Lubrication Engineering, 2022, 47(7): 49-53. | |
9 | 顾承璟, 张万福, 潘渤, 等. 倾斜齿迷宫密封动力特性与减振机理研究[J]. 热能动力工程, 2022, 37(5): 23-30, 37. |
GU Chengjing, ZHANG Wanfu, PAN Bo, et al. Study on dynamic characteristics and vibration attenuation mechanism of labyrinth seals with inclined teeth[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(5): 23-30, 37. | |
10 | 白禄, 孙丹, 赵欢, 等. 转/静子齿对迷宫密封泄漏特性与动力特性影响机制研究[J]. 润滑与密封, 2022, 47(3): 40-48. |
BAI Lu, SUN Dan, ZHAO Huan, et al. Research on influence mechanism of rotor/stator teeth on leakage and dynamic characteristics of labyrinth seal[J]. Lubrication Engineering, 2022, 47(3): 40-48. | |
11 | 秦鹏博, 张万福, 曹浩, 等. 偏心迷宫密封动静特性研究[J]. 摩擦学学报, 2020, 40(6): 735-745. |
QIN Pengbo, ZHANG Wanfu, CAO Hao, et al. Static and dynamic characteristics of eccentric labyrinth seals[J]. Tribology, 2020, 40(6): 735-745. | |
12 | 宋占宽, 曾永忠, 刘小兵, 等. 基于CFD偏置迷宫密封泄漏特性研究[J]. 机床与液压, 2018, 46(21): 150-153, 179. |
SONG Zhankuan, ZENG Yongzhong, LIU Xiaobing, et al. Study on leakage characteristics of eccentric labyrinth seal based on CFD tools[J]. Machine Tool & Hydraulics, 2018, 46(21): 150-153, 179. | |
13 | 孙婷梅. 迷宫密封流场及其动力特性计算[D]. 杭州: 浙江大学, 2008. |
SUN Tingmei. Flow field of labyrinth seal and calculation of its dynamic characteristics[D]. Hangzhou: Zhejiang University, 2008. | |
14 | 贾兴运, 徐国印, 张海, 等. 转子振动对T型交错式迷宫密封性能影响[J]. 推进技术, 2017, 38(6): 1370-1378. |
JIA Xingyun, XU Guoyin, ZHANG Hai, et al. Effects of rotor vibration on T type labyrinth seal performance[J]. Journal of Propulsion Technology, 2017, 38(6): 1370-1378. | |
15 | 贾兴运, 王嘉宁, 张海, 等. 转子振动对直通式迷宫密封性能的影响[J]. 推进技术, 2016, 37(8): 1461-1468. |
JIA Xingyun, WANG Jianing, ZHANG Hai, et al. Effects of rotor vibration on straight-through labyrinth seal performance[J]. Journal of Propulsion Technology, 2016, 37(8): 1461-1468. | |
16 | 王庆峰. 旋转直通式迷宫气封流场力多参数影响规律研究[D]. 北京: 北京化工大学, 2018. |
WANG Qingfeng. Effect of the multi-parameters on the fluid-induced force of the rotary straight-through labyrinth gas seal[D]. Beijing: Beijing University of Chemical Technology, 2018. | |
17 | SCHRAMM V, WILLENBORG K, KIM S, et al. Influence of a honeycomb facing on the flow through a stepped labyrinth seal[J]. Journal of Engineering for Gas Turbines and Power, 2002, 124(1): 140-146. |
18 | STOCKER H L, COX D M, HOLLE G F. Aerodynamic performance of conventional and advanced design labyrinth seals with solid-smooth abradable, and honeycomb lands[R]. Cleveland: NASA Lewis Research Center 1977. |
19 | SOULAS Thomas, ANDRES Luis San. A bulk flow model for off-centered honeycomb gas seals[J]. Journal of Engineering for Gas Turbines and Power, 2007, 129(1): 185-194. |
20 | 李志刚, 李军, 丰镇平. 蜂窝密封流动特性的数值研究和泄漏量计算公式的构造[J]. 机械工程学报, 2011, 47(2): 142-148. |
LI Zhigang, LI Jun, FENG Zhenping. Numerical investigation on discharge behavior and predication formula establishment of leakage flow rate of honeycomb seal[J]. Journal of Mechanical Engineering, 2011, 47(2): 142-148. | |
21 | 孙丹, 王猛飞, 艾延廷, 等. 蜂窝密封泄漏特性理论与实验[J]. 航空学报, 2017, 38(4): 420512. |
SUN Dan, WANG Mengfei, AI Yanting, et al. Theoretical and experimental study of leakage characteristics of honeycomb seal[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4): 420512. | |
22 | 姜铁骝, 曹丽华, 付亚辉, 等. 蜂窝芯格尺寸对蜂窝密封流动特性的影响[J]. 润滑与密封, 2016, 41(6): 29-34. |
JIANG Tieliu, CAO Lihua, FU Yahui, et al. Influence of honeycomb cell size on flow characteristics of honeycomb seal[J]. Lubrication Engineering, 2016, 41(6): 29-34. | |
23 | NAYAK Kali Charan. Effect of rotation on leakage and windage heating in labyrinth seals with honeycomb lands[J]. Journal of Engineering for Gas Turbines and Power, 2020, 142(8): 081001. |
24 | CHOI Dong-Chun, RHODE David L. Development of a two-dimensional computational fluid dynamics approach for computing three-dimensional honeycomb labyrinth leakage[J]. Journal of Engineering for Gas Turbines and Power, 2004, 126(4): 794-802. |
25 | 何振鹏, 王宇博, 王伟韬, 等. 蜂窝结构对篦齿-蜂窝密封封严性能的影响[J]. 润滑与密封, 2020, 45(8): 26-35. |
HE Zhenpeng, WANG Yubo, WANG Weitao, et al. Effect of honeycomb structure on sealing performance of labyrinth-honeycomb seal[J]. Lubrication Engineering, 2020, 45(8): 26-35. | |
26 | LI Jun, KONG Shengru, YAN Xin, et al. Numerical investigations on leakage performance of the rotating labyrinth honeycomb seal[J]. Journal of Engineering for Gas Turbines and Power, 2010, 132(6): 1. |
27 | 李军, 邓清华, 丰镇平. 蜂窝汽封和迷宫式汽封流动性能比较的数值研究[J]. 中国电机工程学报, 2005, 25(16): 108-111, 131. |
LI Jun, DENG Qinghua, FENG Zhenping. Comparison of the flow characteristics for the honeycomb and labyrinth seal using numerical simulation[J]. Proceedings of the CSEE, 2005, 25(16): 108-111, 131. | |
28 | 向新, 晏鑫, 李志刚, 等. 迷宫蜂窝密封泄漏特性的实验测量和数值研究[J]. 西安交通大学学报, 2022, 56(11): 72-82. |
XIANG Xin, YAN Xin, LI Zhigang, et al. Experimental measurement and numerical investigation on the leakage flow characteristics of labyrinth honeycomb seal[J]. Journal of Xi’an Jiaotong University, 2022, 56(11): 72-82. | |
29 | 杨兴辰, 张万福, 顾承璟, 等. 迷宫-蜂窝混合型密封静态稳定性与泄漏特性研究[J]. 摩擦学学报, 2021, 41(5): 738-748. |
YANG Xingchen, ZHANG Wanfu, GU Chengjing, et al. Leakage performance and static stability of hybrid labyrinth-honeycomb seals[J]. Tribology, 2021, 41(5): 738-748. |
[1] | XIAO Hui, ZHANG Xianjun, LAN Zhike, WANG Suhao, WANG Sheng. Advances in flow and heat transfer research of liquid metal flowing across tube bundles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 10-20. |
[2] | ZHAO Chen, MIAO Tianze, ZHANG Chaoyang, HONG Fangjun, WANG Dahai. Heat transfer characteristics of ethylene glycol aqueous solution in slit channel under negative pressure [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 148-157. |
[3] | HUANG Yiping, LI Ting, ZHENG Longyun, QI Ao, CHEN Zhenglin, SHI Tianhao, ZHANG Xinyu, GUO Kai, HU Meng, NI Zeyu, LIU Hui, XIA Miao, ZHU Kai, LIU Chunjiang. Hydrodynamics and mass transfer characteristics of a three-stage internal loop airlift reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 175-188. |
[4] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[5] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[6] | XU Ruosi, TAN Wei. Flow field simulation and fluid-structure coupling analysis of C-tube pool boiling two-phase flow model [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 47-55. |
[7] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[8] | LUO Cheng, FAN Xiaoyong, ZHU Yonghong, TIAN Feng, CUI Louwei, DU Chongpeng, WANG Feili, LI Dong, ZHENG Hua’an. CFD simulation of liquid distribution in different distributors in medium-low temperature coal tar hydrogenation reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4538-4549. |
[9] | ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572. |
[10] | BU Zhicheng, JIAO Bo, LIN Haihua, SUN Hongyuan. Review on computational fluid dynamics (CFD) simulation and advances in pulsating heat pipes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4167-4181. |
[11] | WANG Shuo, ZHANG Yaxin, ZHU Botao. Prediction of erosion life of coal water slurry pipeline based on grey prediction model [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3431-3442. |
[12] | CHEN Weiyang, SONG Xin, YIN Yaran, ZHANG Xianming, ZHU Chunying, FU Taotao, MA Youguang. Effect of liquid viscosity on bubble interface in the rectangular microchannel [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3468-3477. |
[13] | YUAN Shouzheng, CHEN Xiao, JIANG Ming, YU Yaxiong, ZHOU Qiang. The influence of the wall on the mesoscale drag force in a gas-solid downer [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2272-2281. |
[14] | LIU Houli, GU Zhonghao, YANG Kang, ZHANG Li. Effect of groove width on pool boiling heat transfer characteristics in 3D printing groove structure [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2282-2288. |
[15] | QI Chenglu, ZHANG Zhongliang, WANG Mingchao, LI Yaopeng, GONG Xiaohui, SUN Peng, ZHENG Bin. Effects of built-in tube bundle arrangements on solid particle flow characteristics in heat exchangers [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2306-2314. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |