Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (5): 2761-2769.DOI: 10.16085/j.issn.1000-6613.2021-1086
• Resources and environmental engineering • Previous Articles Next Articles
DI Guancheng(
), ZHOU Qiang(
), TAO Xin, SHANG Yu, SONG Tao, LU Ping, XU Guiling
Received:2021-05-21
Revised:2021-07-19
Online:2022-05-24
Published:2022-05-05
Contact:
ZHOU Qiang
狄冠丞(
), 周强(
), 陶信, 尚瑜, 宋涛, 卢平, 徐贵玲
通讯作者:
周强
作者简介:狄冠丞(1998—),男,硕士研究生,研究方向为燃煤汞污染物排放控制。E-mail:基金资助:CLC Number:
DI Guancheng, ZHOU Qiang, TAO Xin, SHANG Yu, SONG Tao, LU Ping, XU Guiling. Preparation of sulfur-doped mesoporous carbon and its mercury removal[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2761-2769.
狄冠丞, 周强, 陶信, 尚瑜, 宋涛, 卢平, 徐贵玲. 掺硫介孔炭的制备及其汞脱除特性[J]. 化工进展, 2022, 41(5): 2761-2769.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1086
| 样品 | 比表面积/m2·g-1 | 平均孔径/nm | 总孔容积/cm3·g-1 | C质量分数/% | S质量分数/% |
|---|---|---|---|---|---|
| MCM-700-1∶6 | 934.351 | 3.517 | 0.821 | 77.94 | 12.24 |
| MCM-800-1∶6 | 944.888 | 3.161 | 0.747 | 80.50 | 11.23 |
| MCM-900-1∶6 | 932.998 | 3.013 | 0.703 | 81.12 | 10.24 |
| MCM-900-1∶5 | 1066.315 | 3.458 | 0.922 | 70.68 | 8.51 |
| MCM-900-1∶7 | 1009.406 | 3.441 | 0.868 | 67.69 | 8.49 |
| 样品 | 比表面积/m2·g-1 | 平均孔径/nm | 总孔容积/cm3·g-1 | C质量分数/% | S质量分数/% |
|---|---|---|---|---|---|
| MCM-700-1∶6 | 934.351 | 3.517 | 0.821 | 77.94 | 12.24 |
| MCM-800-1∶6 | 944.888 | 3.161 | 0.747 | 80.50 | 11.23 |
| MCM-900-1∶6 | 932.998 | 3.013 | 0.703 | 81.12 | 10.24 |
| MCM-900-1∶5 | 1066.315 | 3.458 | 0.922 | 70.68 | 8.51 |
| MCM-900-1∶7 | 1009.406 | 3.441 | 0.868 | 67.69 | 8.49 |
| 1 | NIKSA S, FUJIWARA N. Estimating Hg emissions from coal-fired power stations in China[J]. Fuel, 2009, 88(1): 214-217. |
| 2 | GUFFEY F D, BLAND A E. Thermal pretreatment of low-ranked coal for control of mercury emissions[J]. Fuel Processing Technology, 2004, 85(6/7): 521-531. |
| 3 | WANG H, SHEN C, DUAN Y F, et al. Synergistic effect between H2O and SO2 on mercury removal by activated carbon in O2/CO2 conditions[J]. Journal of Chemical Technology and Biotechnology, 2019, 94(4): 1195-1201. |
| 4 | TANG H J, YOU W Q, WANG Z W, et al. Detrimental effects of SO2 on gaseous mercury(Ⅱ) adsorption and retention by CaO-based sorbent traps: competition and heterogeneous reduction[J]. Journal of Hazardous Materials, 2020, 387: 121679. |
| 5 | ZHOU Q, DUAN Y F, CHEN M M, et al. Effect of flue gas component and ash composition on elemental mercury oxidation/adsorption by NH4Br modified fly ash[J]. Chemical Engineering Journal, 2018, 345: 578-585. |
| 6 | PEARSON R G. Hard and soft acids and bases[J]. Journal of the American Chemical Society, 1973, 85(22): 3533-3539. |
| 7 | PEARSON R G. Acids and bases[J]. Science, 1966, 151(3707): 172-177. |
| 8 | LIU W, VIDIC R D, BROWN T D. Optimization of high temperature sulfur impregnation on activated carbon for permanent sequestration of elemental mercury vapors[J]. Environmental Science & Technology, 2000, 34(3): 483-488. |
| 9 | 沈畅, 王卉, 沈昊天, 等. 烟气抗硫脱汞材料的研究进展[J]. 中南大学学报(自然科学版), 2021, 52(1): 133-143. |
| SHEN Chang, WANG Hui, SHEN Haotian, et al. Research progress on flue gas mercury removal materials with SO2 resistance[J]. Journal of Central South University (Science and Technology), 2021, 52(1): 133-143. | |
| 10 | HUO Q H, WANG Y H, CHEN H J, et al. ZnS/AC sorbent derived from the high sulfur petroleum coke for mercury removal[J]. Fuel Processing Technology, 2019, 191: 36-43. |
| 11 | YAO Y X, VELPARI V, ECONOMY J. Design of sulfur treated activated carbon fibers for gas phase elemental mercury removal[J]. Fuel, 2014, 116: 560-565. |
| 12 | RUMAYOR M, DIAZ-SOMOANO M, LOPEZ-ANTON M A, et al. Mercury compounds characterization by thermal desorption[J]. Talanta, 2013, 114(3): 318-322. |
| 13 | JIA C Q. Production of sulphur and activated carbon: US 6932956[P]. 2005. |
| 14 | LI Chaomin, HOU Jian, YU Yong, et al. Ozone decomposition under the irradiation of 253.7nm in the presence of methyl bromide[J]. Journal of Environmental Sciences, 2000, 12(3): 266-269. |
| 15 | ZHUANG X, WAN Y, FENG C M, et al. Highly efficient adsorption of bulky dye molecules in wastewater on ordered mesoporous carbons[J]. Chemistry of Materials, 2009, 21(4): 706-716. |
| 16 | WANG H, LAM F L Y, HU X J, et al. Ordered mesoporous carbon as an efficient and reversible adsorbent for the adsorption of fullerenes[J]. Langmuir, 2006, 22(10): 4583-4588. |
| 17 | HARTMANN M, VINU A, CHANDRASEKAR G. Adsorption of vitamin E on mesoporous carbon molecular sieves[J]. Chemistry of Materials, 2005, 17(4): 829-833. |
| 18 | VINU A, STREB C, MURUGESAN V, et al. Adsorption of cytochrome C on new mesoporous carbon molecular sieves[J]. The Journal of Physical Chemistry B, 2003, 107(33): 8297-8299. |
| 19 | 祝建中, 杨嘉, DENG Baolin. 有序介孔炭合成、改性及其对汞离子的吸附性能[J]. 新型炭材料, 2008, 23(3): 221-227. |
| ZHU Jianzhong, YANG Jia, DENG Baolin. Synthesis, modification, and characterization of ordered mesoporous carbons for aqueous mercury ion removal[J]. New Carbon Materials, 2008, 23(3): 221-227. | |
| 20 | YE J Q, ZHAO H Q, SONG W, et al. Enhanced electronic conductivity and sodium-ion adsorption in N/S co-doped ordered mesoporous carbon for high-performance sodium-ion battery anode[J]. Journal of Power Sources, 2019, 412: 606-614. |
| 21 | GU Z M, DENG B L, YANG J. Synthesis and evaluation of iron-containing ordered mesoporous carbon (FeOMC) for arsenic adsorption[J]. Microporous and Mesoporous Materials, 2007, 102(1/2/3): 265-273. |
| 22 | WU R P, YE Q, WU K, et al. Adsorption performance of CMK-3 and C-FDU-15 in NO removal at low temperature[J]. Journal of Environmental Sciences, 2020, 87(1): 289-298. |
| 23 | SHIN Y, FRYXELL G, UM W, et al. Sulfur-functionalized mesoporous carbon[J]. Advanced Functional Materials, 2007, 17(15): 2897-2901. |
| 24 | PENG C Y, HE M, CHEN B B, et al. Magnetic sulfur-doped porous carbon for preconcentration of trace mercury in environmental water prior to ICP-MS detection[J]. Analyst, 2017, 142(23): 4570-4579. |
| 25 | 周强.改性吸附剂喷射脱汞的实验及机理研究[D]. 南京: 东南大学,2016. |
| ZHOU Qiang. Experimental and mechanism researches of in-duct mercury removal by modified sorbent injection[D]. Nanjing: Southeast University, 2016. | |
| 26 | 王晨平. SO2活化改性高硫石油焦吸附剂的脱汞特性研究[D]. 南京: 东南大学, 2017. |
| WANG Chenping. Study on the mercury removal characteristics of SO2 activated modified high-sulfur petroleum coke adsorbent[D]. Nanjing: Southeast University, 2017. | |
| 27 | STAVROPOULOS G G, SAMARAS P, SAKELLAROPOULOS G P. Effect of activated carbons modification on porosity, surface structure and phenol adsorption[J]. Journal of Hazardous Materials, 2008, 151(2/3): 414-421. |
| 28 | WEI Y Y, YU D Q, TONG S T, et al. Effects of H2SO4 and O2 on Hg0 uptake capacity and reversibility of sulfur-impregnated activated carbon under dynamic conditions[J]. Environmental Science and Technology, 2015, 49(3): 1706-1712. |
| 29 | 李娜. 载硫活性炭的汞吸附与再生特性研究[D]. 南京: 东南大学, 2019. |
| LI Na. Study on the mercury adsorption and regeneration characteristics of sulfur-loaded activated carbon[D]. Nanjing: Southeast University, 2019. | |
| 30 | SUN P, ZHANG B, ZENG X B, et al. Deep study on effects of activated carbon’s oxygen functional groups for elemental mercury adsorption using temperature programmed desorption method[J]. Fuel, 2017, 200: 100-106. |
| 31 | SHAO H Z, LIU X W, ZHOU Z J, et al. Elemental mercury removal using a novel KI modified bentonite supported by starch sorbent[J]. Chemical Engineering Journal, 2016, 291: 306-316. |
| 32 | XIA Y D, ZHU Y Q, TANG Y. Preparation of sulfur-doped microporous carbons for the storage of hydrogen and carbon dioxide[J]. Carbon, 2012, 50(15): 5543-5553. |
| 33 | 吕维阳, 刘盛余, 能子礼超, 等. 载硫活性炭脱除天然气中单质汞的研究[J]. 中国环境科学, 2016, 36(2): 382-389. |
| Weiyang LYU, LIU Shengyu, NENGZI Lichao, et al. Remove elemental mercury by sulfur-impregnated activated carbon in natural gas[J]. China Environmental Science, 2016, 36(2): 382-389. | |
| 34 | 洪亚光, 段钰锋, 朱纯, 等. 硫改性椰壳活性炭管道喷射脱汞实验研究[J]. 东南大学学报(自然科学版), 2015, 45(3): 521-525. |
| HONG Yaguang, DUAN Yufeng, ZHU Chun, et al. Experimental study on mercury adsorption of S-impregnated coconut shell activated carbon by duct injection[J]. Journal of Southeast University (Natural Science Edition), 2015, 45(3): 521-525. |
| [1] | LAI Shini, JIANG Lixia, LI Jun, HUANG Hongyu, KOBAYASHI Noriyuki. Research progress of ammonia blended fossil fuel [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4603-4615. |
| [2] | WANG Yungang, JIAO Jian, DENG Shifeng, ZHAO Qinxin, SHAO Huaishuang. Experimental analysis of condensation heat transfer and synergistic desulfurization [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4230-4237. |
| [3] | XIU Haoran, WANG Yungang, BAI Yanyuan, ZOU Li, LIU Yang. Combustion characteristics and ash melting behavior of Zhundong coal/municipal sludge blended combustion [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3242-3252. |
| [4] | WANG Baowen, LIU Tongqing, ZHANG Gang, LI Weiguang, LIN Deshun, WANG Mengjia, MA Jingjing. Reaction characteristics of CuFe2O4 modified desulfurization slag oxygen carrier with lignite [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2884-2894. |
| [5] | HE Chuan, WU Guoxun, LI Ang, ZHANG Fajie, BIAN Zijun, LU Chengzheng, WANG Lipeng, ZHAO Min. Characteristics of calcium and magnesium deactivation and regeneration of waste incineration SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2413-2420. |
| [6] | ZHANG Chenguang, FENG Shuo, XING Yuye, SHEN Boxiong, SU Lichao. Research progress of isolated Cu2+ in copper based zeolite NH3-SCR catalyst for diesel vehicles [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1321-1331. |
| [7] | FAN Yunpei, JIN Jing, LIU Dunyu, WANG Jingjie, LIU Qiuqi, XU Kailong. Mercury removal by CaSO4 oxygen carrier during in-situ gasification and chemical-looping combustion of coal [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1638-1648. |
| [8] | ZHANG Qunli, HUANG Haotian, ZHANG Lin, ZHAO Wenqiang, ZHANG Qiuyue. Analysis of condensation waste heat recovery system of spray flue gas source heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 650-657. |
| [9] | CHEN Shuhui, WU Yue, ZHANG Wenxiang, WANG Shanshan, MA Heping. Preparation of ionic organic porous polymer and its coupled desulfurization and decarbonization properties in flue gas [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1028-1038. |
| [10] | LI Xing, HUANG Hongyu, OSAKA Yugo, HUHE Taoli, XIAO Linfa, LI Jun. Study on the influencing factors of the adsorption performance of carbon materials for the sulfur dioxide removal [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4963-4972. |
| [11] | LU Shijian, LIU Ling, LIU Ziwu, GUO Bowen, YU Xulin, LIANG Yan, ZHAO Dongya, ZHU Quanmin. Study of CO2 absorption stability of AEP-DPA-CuO phase change nanofluids [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4555-4561. |
| [12] | LONG Hongming, DING Long, QIAN Lixin, CHUN Tiejun, ZHANG Hongliang, YU Zhengwei. Current situation and development trend of NO x and dioxins emission reduction in sintering flue gas [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3865-3876. |
| [13] | WU Chuanpeng, LI Chuankun, YANG Zhe, GOU Chengdong, GAO Xinjiang. Research progress of SO2 removal by solid adsorbents [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3840-3854. |
| [14] | MO Qianci, YE Haibo, LIN Xingsu, LI Guohua, CHEN Weichong, LU Wei. Energy analysis and energy efficiency improvement strategies of bagasse boiler based on test data [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3350-3359. |
| [15] | KONG Xiangyu, XIE Liang, WANG Yanmin, ZHAI Shangpeng, WANG Jianguo. CO2 capture and resource utilization [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1187-1198. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |