Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (01): 404-420.DOI: 10.16085/j.issn.1000-6613.2018-1222
• Materials science and technology • Previous Articles Next Articles
Xiangqian ZHANG(),Bin HE,Xiaoling DONG,Chengyu YE,Anhui LU()
Received:
2018-06-12
Revised:
2018-08-31
Online:
2019-01-05
Published:
2019-01-05
Contact:
Anhui LU
通讯作者:
陆安慧
作者简介:
张向倩(1987—),女,博士研究生,研究方向为多孔纳米炭设计合成及储能应用。E-mail:<email>xiangqianzhang@dlut.edu.cn</email>。|陆安慧,教授,博士生导师,研究方向为能源存储与催化转化应用研究。E-mail:<email>anhuilu@dlut.edu.cn</email>。
基金资助:
CLC Number:
Xiangqian ZHANG, Bin HE, Xiaoling DONG, Chengyu YE, Anhui LU. Design and synthesis of porous carbon materials for energy storage[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 404-420.
张向倩, 何斌, 董晓玲, 叶成玉, 陆安慧. 多孔炭材料设计合成及电化学储能应用[J]. 化工进展, 2019, 38(01): 404-420.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1222
1 | CANDELARIA S L , SHAO Y Y , ZHOU W , et al .Nanostructured carbon for energy storage and conversion[J]. Nano Energy, 2012, 1:195-220. |
2 | LU A H , HAO G P , SUN Q , et al .Chemical synthesis of carbon materials with intriguing nanostructure and morphology[J].Macromol. Chem. Phys., 2012, 213: 1107-1131. |
3 | DAWSON E A , PARKES G M B , Barnes P A , et al .An investigation of the porosity of carbons prepared by constant rate activation in air[J].Carbon, 2003, 41: 571-578. |
4 | WANG H L , GAO Q M , HU J . High hydrogen storage capacity of porous carbons prepared by using activated carbon[J].AmJ. Chem. Soc. , 2009, 131(20): 7016-7022. |
5 | WU X Y , SHI Z Q , TJANDRA R , et al . Nitrogen-enriched porous carbon nanorods templated by cellulose nanocrystals as high performance supercapacitor electrodes[J]. J.Mater Chem.A, 2015, 3: 23768-23777. |
6 | HE X J , LI X J , MA H, et al . ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials[J]. J. Power Sources, 2017, 340: 183-191. |
7 | SUN F , LIU X Y , WU H B , et al . In situ high-level nitrogen doping into carbon nanospheres and boosting of capacitive charge storage in both anode and cathode for a high-energy 4.5V full-carbon lithium-ion capacitor[J]. Nano Lett. , 2018, 18: 3368-3376. |
8 | TANG J , LIU J , LI C L , et al . Synthesis of nitrogen-doped mesoporous carbon spheres with extra large pores through assembly of diblock copolymer micelles[J]. Angew. Chem. Int. Ed. , 2015, 54: 588-593. |
9 | QIAN D , LEI C , WANG E M , et al . A method for creating microporous carbon materials with excellent CO2-adsorption capacity and selectivity[J]. Chem. Sus. Chem. , 2014, 7: 291-298. |
10 | SUN Q , LI W C , LU A H . Insight into structure-dependent self-activation mechanism in a confined nanospace of core-shell nanocomposites[J]. Small, 2013, 9: 2086-2090. |
11 | CAO X H , TAN C L , SINDOROB M , et al . Hybrid micro-/nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion[J]. Chem. Soc. Rev. , 2017, 46: 2660-2677. |
12 | 王焕磊, 高秋明 . 多孔碳材料的模板法制备、活化处理及储能应用[J]. 高等学校化学学报, 2011, 32(3): 462-470. |
WANG H L , GAO Q M . Template synthesis, activation and energy storage application of porous carbon materials[J]. Chemical Journal of Chinese Universities, 2011, 32(3): 462-470. | |
13 | XIE X Y , HE X J , SHAO X L , et al . Synthesis of layered microporous carbons from coal tar by directing, space-confinement and self-sacrificed template strategy for supercapacitors[J]. Electrochimica Acta, 2017, 246: 634-642. |
14 | WANG J C , KASKEL S . KOH activation of carbon-based materials for energy storage[J]. J. Mater. Chem. , 2012, 22: 23710-23725. |
15 | SEVILLA M , MOKAYA R . Energy storage applications of activated carbons: supercapacitors and hydrogen storage[J]. Energy Environ. Sci. , 2014, 7: 1250-1280. |
16 | GONG Y N , LI D L , LUO C Z , et al . Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors[J]. Green Chem. , 2017, 19: 4132-4140. |
17 | 传秀云, 周述慧 . 模板法合成中孔炭材料[J]. 新型炭材料, 2011, 26(2): 151-160. |
CHUAN X Y , ZHOU S H . Preparation of mesoporous carbons by a template method[J]. New Carbon Materials, 2011, 26(2): 151-160. | |
18 | RYOO R , JOO S H , JUN S N . Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation[J]. The Journal of Physical Chemistry B, 1999, 103(37): 7743-7746. |
19 | NISHIHARA H , YANG Q H , HOU P X , et al . A possible buckybowl-like structure of zeolite templated carbon[J]. Carbon, 2009, 47: 1220-1230. |
20 | KIM K , LEE T , KWON Y , et al . Lanthanum-catalyse synthesis of microporous 3D graphene-like carbons in a zeolite template [J]. Nature, 2016, 535: 131-135. |
21 | LI W , LIU J , ZHAO D . Mesoporous materials for energy conversion and storage devices [J]. Nat. Rev. Mater. , 2016, 1: 16023. |
22 | LIANG C D , HONG K L , GEORGES A , et al . Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers[J]. Angewandte Chemie International Edition, 2004, 43: 5785-5789. |
23 | LIU J , YANG T Y , WANG D W , et al . A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres[J]. Nature Communications, 2013, 4: 2798. |
24 | ZHANG F Q , MENG Y , GU D , et al . An aqueous cooperative assembly route to synthesize ordered mesoporous carbons with controlled structures and morphology[J]. Chemistry of Materials, 2006, 18 (22): 5279-5288. |
25 | WEI J , SUN Z K , LUO W , et al . New insight into the synthesis of large-pore ordered mesoporous materials[J].AmJ. Chem. Soc., 2017, 139(5): 1706–1713. |
26 | TANG J , LIU J , LI C L , et al . Synthesis of nitrogen-doped mesoporous carbon spheres with extra-large pores through assembly of diblock copolymer micelles[J]. Angew. Chem. Int. Ed. , 2015, 54: 588-593. |
27 | ZHANG X Q , SUN Q , DONG W , et al . Synthesis of superior carbon nanofibers with large aspect ratio and tunable porosity for electrochemical energy storage[J]. J.Mater.Chem.A, 2013, 1: 9449-9455. |
28 | DONG X L , LU A H , HE B , et al . Highly microporous carbons derived from a complex of glutamic acid and zinc chloride for use in supercapacitors[J]. Journal of Power Sources, 2016, 327: 535-542. |
29 | TIEN B M , XU M W , LIU J F . Synthesis and electrochemical characterization of carbon spheres as anode material for lithium-ion battery[J]. Mater. Lett. , 2010, 64: 1465-1467. |
30 | LI W R , CHEN D H , LI Z , et al . Nitrogen-containing carbon spheres with very large uniform mesopores: the superior electrode materials for EDLC in organic electrolyte[J]. Carbon, 2007, 45: 1757-1763. |
31 | DONG Y R , NISHIYAMA N , EGASHIRA Y , et al . Basic amid acid-assisted synthesis of resorcinol-formaldehyde polymer and carbon nanospheres[J]. Ind. Eng. Chem. Res. , 2008, 47: 4712-4716. |
32 | WANG S , LI W C , HAO G P , et al . Temperature-programmed precise control over the sizes of carbon nanospheres based on benzoxazine chemistry[J]. J.Am.Chem.Soc. , 2011, 133: 15304-15307. |
33 | KIM T W , CHUNG P W , SLOWING I I , et al . Structurally ordered mesoporous carbon nanoparticles as transmembrane delivery vehicle in human cancer cells[J]. Nano Lett. , 2008, 8: 3724-3727. |
34 | HU B , WANG K , WU L H , et al . Engineering carbon materials from the hydrothermal carbonization process of biomass[J]. Adv. Mater. , 2010, 22: 813-828. |
35 | BACCILE N , LAURENT G , BABONNEAU F , et al . Structural characterization of hydrothermal carbon spheres by advanced solid-state MAS 13C NMR investigations[J].J.Phys.Chem.C, 2009, 113: 9644-9654. |
36 | TITIRICI M M , THOMAS A , ANTONIETTI M . Replication and coating of silica templates by hydrothermal carbonization[J]. Adv. Funct. Mater., 2007, 17: 1010-1018. |
37 | SHIN Y , WANG L Q , BAE I T , et al . Hydrothermal syntheses of colloidal carbon spheres from cyclodextrins[J].PhysJ. Chem. C, 2008, 112: 14236-14240. |
38 | YAO C , SHIN Y , WANG L Q , et al . Hydrothermal dehydration of aqueous fructose solutions in a closed system[J].PhysJ. Chem. C, 2007, 111: 15141--=115145. |
39 | CHANG-CHIEN C Y , HSU C H , LEE T Y , et al . Synthesis of carbon and silica hollow spheres with mesoporous shells using polyethylene oxide/phenol formaldehyde polymer blend[J]. Eur.J. Inorg Chem., 2007, 24: 3798-3804. |
40 | JOO J B , KIM P , KIM W , et al . Simple preparation of hollow carbon sphere via templating method[J]. Curr. Appl. Phys. , 2008, 8: 814-817. |
41 | IKEDA S , TACHI K , NG Y H , et al . Selective adsorption of glucose-derived carbon precursor on amino-functionalized porous silica for fabrication of hollow carbon spheres with porous walls[J]. Chem. Mater. , 2007, 19: 4335-4340. |
42 | WANG G H , SUN Q , ZHANG R , et al . Weak acid-base interaction induced assembly for the synthesis of diverse hollow nanospheres[J]. Chem. Mater., 2011, 23: 4537-4542. |
43 | SUN X M , LI Y D . Hollow carbonaceous capsules from glucose solution[J]. J. Colloid. Interface. Sci., 2005, 291: 7-12. |
44 | LI Y , CHEN J F , XU Q , et al . Controllable route to solid and hollow monodisperse carbon nanospheres[J].J.Phys.Chem. C, 2009, 113: 10085-10089. |
45 | HAN J , SONG G , GUO R . A facile solution route for polymeric hollow spheres with controllable size[J]. Adv. Mater., 2006, 18: 3140-3144. |
46 | SUN Z C , BAI F , WU H M , et al . Hydrogen-bonding-assisted self-assembly: monodisperse hollow nanoparticles made easy[J]. J. Am. Chem. Soc., 2009, 131: 13594-13595. |
47 | MCDONALD C J , BOUCK K J , CHAPUT A B , et al . Emulsion polymerization of voided particles by encapsulation of a nonsolvent[J]. Macromolecules, 2000, 33: 1593-1605. |
48 | WANG G H , SUN Q , ZHANG R , et al . Weak acid-base interaction induced assembly for the synthesis of diverse hollow nanospheres[J]. Chem. Mater., 2011, 23: 4537-4542. |
49 | XU F , TANG Z , HUANG S , et al . Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage[J]. Nat Commun, 2015, 6: 7221-7226. |
50 | SUN Q , WANG L M , WANG X , et al . Using hollow carbon nanospheres as a light-induced free radical generator to overcome chemotherapy resistance[J]. J. Am. Chem. Soc., 2015, 137: 1947-1955. |
51 | ZHANG L H , HE B , LI W C , et al . Surface free energy-induced assembly to the synthesis of grid-like multi-cavity carbon spheres with high level in-cavity encapsulation for lithium-sulfur cathode[J]. Adv. Energy Mater. , 2017, 7: 1701518. |
52 | FENG X L . Nanocarbons for advanced energy storage[M]. Germany: Wiley-VCH Verlag GmbH & Co. KgaA, 2015. |
53 | LIU X M , HUANG Z D , OH S W , et al . Carbon nanotube (CNT) -based composites as electrode material for rechargeable Li-ion batteries: a review[J]. Compos. Sci. Technol. , 2012, 72(2): 121-144. |
54 | 楠顶, 黄正宏, 康飞宇, 等 . 锂离子电池负极用纤维状炭材料[J]. 新型炭材料, 2015, 30 (1): 1-11. |
NAN D , HUANG Z H , KANG F Y , et al . Research progress on fibrous carbon materials as anode materials for lithium ion batteries[J]. New Carbon Materials, 2015, 30(1): 1-11. | |
55 | ZHOU Z P , LIU K M , LAI C L , et al . Graphitic carbon nanofibers developed from bundles of aligned electrospun polyacrylonitrile nanofibers containing phosphoric acid[J]. Polymer, 2010, 51(11): 2360-2367. |
56 | THAVASI V , SINGH G , RAMAKRISHNA S . Electrospun nanofibers in energy and environmental applications[J]. Energy Environ. Sci., 2008, 1: 205-221. |
57 | QIAN H S , YU S H , LUO L B , et al . Synthesis of uniform Te@carbon-rich composite nanocables with photoluminescence properties and carbonaceous nanofibers by the hydrothermal carbonization of glucose[J]. Chem. Mater. , 2006, 18(8): 2102-2108. |
58 | ODRIGUEZ N M . A review of catalytically grown carbon nanofibers[J]. J. Mater. Res., 1993, 8(12): 3233-3250. |
59 | MITTAL J , BAHL O P , MATHUR R B . Single step carbonization and graphitization of highly stablized pan fibers[J]. Carbon, 1997, 35: 1196-1197. |
60 | KIM I C , YUN H G , LEE K H . Preparation of asymmetric polyacrylonitrile membrane with small pore size by phase inversion and post-treatment process[J]. J. Membr. Sci., 2002, 199: 75-84. |
61 | ZHENG Z , GUO H , PEI F , et al . High sulfur loading in hierarchical porous carbon rods constructed by vertically oriented porous graphene-like nanosheets for Li-S batteries[J]. Adv. Funct. Mater. , 2016, 26(48): 8952-8959. |
62 | BRYDSON R , WESTWOOD A V K , JIANG X , et al . Investigating the distribution and bonding of light elements alloyed in carbonaceous materials using EELS in the TEM/STEM[J]. Carbon, 1998, 36(7): 1139-1147. |
63 | ARENA U , MASTELLONE M L , CAMINO G , et al . An innovative process for mass production of multi-wall carbon nanotubes by means of low-cost pyrolysis of polyolefins[J]. Polym. Degrad. Stabil. , 2006, 91(4): 763-768. |
64 | REN S H , PRAKASH R , WANG D , et al . Fe3O4 anchored onto helical carbon nanofibers as high-performance anode in lithium-ion batteries[J]. Chem. Sus. Chem., 2012, 5(8): 1397-1400. |
65 | ZHI L J , GORELIK T , FRIEDLEIN R , et al . Solid-state pyrolyses of metal phthalocyanines: a simple approach towards nitrogen-doped CNTs and metal/carbon nanocables[J]. Small, 2005, 1(8/9): 798-801. |
66 | SU P P , XIAO H , ZHAO J , et al . Nitrogen-doped carbon nanotubes derived from Zn-Fe-ZIF nanospheres and their application as efficient oxygen reduction electrocatalysts with in situ generated iron species[J]. Chemical Science, 2013, 4(7): 2941-2946. |
67 | STEINHART M , LIANG C , LYNN G W , et al . Direct synthesis of mesoporous carbon microwires and nanowires[J]. Chem. Mater., 2007, 19(10): 2383-2385. |
68 | CHAE W S , AN M J , LEE S W , et al . Templated carbon nanofiber with mesoporosity and semiconductivity[J].PhysJ. Chem. B, 2006, 110(13): 6447-6450. |
69 | FUJIKAWA D , UOTA M , SAKAI G , et al . Shape-controlled synthesis of nanocarbons from resorcinol-formaldehyde nanopolymers using surfactant-templated vesicular assemblies[J]. Carbon, 2007, 45(6): 1289-1295. |
70 | CHENG Y L , LI T H , FANG C Q , et al . Soft-templated synthesis of mesoporous carbon nanospheres and hollow carbon nanofibers[J]. Appl. Surf. Sci., 2013, 282: 862-869. |
71 | CHEN H , LI Y , TANG X H , et al . Preparation of single-handed helical carbonaceous nanotubes using 3-aminophenol-formaldehyde resin[J]. RSC Adv. , 2015, 5(50): 39946-39951. |
72 | ZHANG X Q , SUN Q , DONG W , et al . Synthesis of superior carbon nanofibers with large aspect ratio and tunable porosity for electrochemical energy storage[J]. J.Mater.Chem.A, 2013, 1(33): 9449-9455. |
73 | SUN Q , ZHANG X Q , HAN F , et al . Controlled hydrothermal synthesis of 1D nanocarbons by surfactant-templated assembly for use as anodes for rechargeable lithium-ion batteries[J]. J. Mater.Chem. , 2012, 22(33): 17049-17054. |
74 | HUANG G , LI Q , YIN D M , et al . Hierarchical porous Te@ZnCo2O4 nanofibers derived from Te@metal-organic frameworks for superior lithium storage capability[J]. Adv. Funct. Mater. , 2017, 27(5): 1604941. |
75 | HE L , ZHANG X Q , LU A H . Two-dimensional carbon-based porous materials: synthesis and applications[J]. Acta Phys: Chim. Sin., 2017, 33 (4): 709-728. |
76 | HAO G P , JIN Z Y , SUN Q , et al . Porous carbon nanosheets with precisely tunable thickness and selective CO2 adsorption properties[J]. Energy Environ. Sci., 2013, 6: 3740-3746. |
77 | WANG S , CHENG F , ZHANG P , et al . Fabrication of high pore volume carbon nanosheets with uniform arrangement of mesopores[J]. Nano Research, 2017, 10(6): 2106-2116. |
78 | ZHANG L H , LI W C , LIU H , et al . Thermoregulated phase transition synthesis of two-dimensional carbon nanoplates rich in sp2 carbon and unimodal ultramicropores for kinetic gas separations[J]. Angew. Chem. Int. Ed., 2018, 57(6): 1632-1635. |
79 | CHENG F , LI W C , LU A H . Interconnected nanoflake network derived from a natural resource for high-performance lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2016, 8: 27843−27849. |
80 | PEKALA R W , MAY S T , KASCHMITTER J L . The aerocapacitor: an electrochemical double-layer energy-storage device[J]. Journal of the Electrochemical Society, 1993, 140(2): 446-451. |
81 | 吴峻峰, 白朔, 刘树和, 等 . 大尺寸各向同性热解炭材料的制备与表征[J]. 新型炭材料, 2006, 21(2): 119. |
WU J F , BAI S , LIU S H , et al . Fabrication and characterization of large isotropic pyrolytic carbons[J]. New Carbon Materials, 2006, 21(2): 119. | |
82 | GATICA J M , GOMEZ D M , HARTI S , et al . Monolithic honeycomb design applied to carbon materials for catalytic methane decomposition[J]. Applied Catalysis A: General, 2013, 458: 21-27. |
83 | OHTA N , NISHI Y , MORISHITA T , et al . Preparation of microporous carbon foams for water vapor in ambient air[J]. New Carbon Materials, 2008, 23(3): 216. |
84 | 吴小辉, 洪孝挺, 南俊民, 等 . 模板法合成多孔炭材料的研究现状[J]. 材料导报A: 综述篇, 2012, 26(4): 61. |
WU X H , HONG X T , NAN J M , et al . Recent progress in the templated synthesis of porous carbon materials[J]. Materials Review, 2012, 26(4): 61. | |
85 | ESTEVEZ L , DUA R , BHANDARI N , et al . A facile approach for the synthesis of monolithic hierarchical porous carbons-high performance materials for amine based CO2 capture and supercapacitor electrode[J]. Energy Environ. Sci., 2013, 6: 1785-1792. |
86 | HAO G P , LI W C , QIAN D , et al . Structurally designed synthesis of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents[J]. Journal of the American Chemical Society, 2011, 133(29): 11378-11388. |
87 | SIMON P , GOGOTSI Y . Materials for electrochemical capacitors[J]. Nat. Mater. , 2008, 7: 845-854. |
88 | 何水剑, 陈卫 . 碳基三维自支撑超级电容器电极材料研究进展[J]. 电化学, 2015, 21(6): 518-533. |
HE S J , CHEN W . Progress of self-supported supercapacitor electrode materials based on carbon substrates[J]. Journal of Electrochemistry, 2015, 21(6): 518-533. | |
89 | PEAN C , DAFFOS B , ROTENBERG B , et al . Confinement, desolvation, and electrosorption effects on the diffusion of ions in nanoporous carbon electrodes[J]. J.Am.Chem.Soc.. 2015, 137: 12627. |
90 | 向宇, 曹高萍 . 双电层电容器储能机理研究概述[J]. 储能科学与技术, 2016(6): 815-826. |
XIANG Y , CAO G P . A review on the mechanism of the energy storage about the electrochemical double-layer capacitors[J]. Energy Storage Science and Technology, 2016(6): 815-826. | |
91 | WANG D W , LI F , LIU M , et al . 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage[J]. Angew. Chem. Int. Ed., 2008, 47: 373-376. |
92 | LIU C , LI F , MA L P, et al . Advanced materials for energy storage[J]. Adv. Mater., 2010, 22: 28-62. |
93 | HUANG Z D , ZHANG B , OH S W , et al . Self-assembled reduced graphene oxide/carbon nanotube thin films as electrodes for supercapacitors[J]. J. Mater. Chem. , 2012, 22: 3591-3599. |
94 | XU Y X , LIN Z Y , ZHONG X , et al . Holey graphene frameworks for highly efficient capacitive energy storage[J]. Nature Communications, 2014, 5: 4554. |
95 | TAO Y , XIE X Y , LV W , et al . Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors[J]. Scientific Reports, 2013, 3: 2975. |
96 | YANG X W , CHENG C , WANG Y F , et al . Liquid-mediated dense integration of graphene materials for compact capacitive energy storage[J]. Science, 2013, 6145(341): 534-537. |
97 | 刘道庆 . 石墨烯基高密度炭材料的制备及其超级电容器性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. |
LIU D Q . Research on preparation and supercapacitive properties of high-density graphene-based carbon materials[D]. Harbin: Harbin Institude of Technology, 2016. | |
98 | WU Z S , PARVEZ K , WINTER A , et al . Layer-by-layer assembled heteroatom-doped graphene films with ultrahigh volumetric capacitance and rate capability for micro-supercapacitors[J]. Advanced Materials, 2014, 26(26): 4552-4558. |
99 | VIX-GUTERL C , FRACKOWIAK E , KRZYSZTOF J , et al . Electrochemical energy storage in ordered porous carbon materials[J]. Carbon, 2005, 43: 1293-1302. |
100 | CHMIOLA J , YUSHIN G , GOGOTSI Y , et al . Anomalous increase in carbon capacitance at pores sizes less than 1 nm[J]. Science, 2006, 313(22): 1760-1763. |
101 | ZHANG L , YANG X , CHEN Y , et al . Controlling the effective surface area and pore size distribution of sp2 carbon materials and their impact on the capacitance performance of these materials[J]. J.Am.Chem.Soc. , 2013, 135: 5921−5929. |
102 | ANIA C O , KHOMENKO V , RAYMUNDO E , et al . The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template[J]. Advanced Functional Materials, 2007, 17: 1828-1836. |
103 | LIU H J , WANG J , WANG C X , et al . Ordered hierarchical mesoporous/microporous carbon derived from mesoporous titanium-carbide/carbon composites and its electrochemical performance in supercapacitor[J]. Advanced Energy Materials, 2011, 1: 1101-1108. |
104 | CHMIOLA J , YUSHINR G , DASH R , et al . Effect of pore size and surface area of carbide derived carbons on specific capacitance[J]. Journal of Power Sources, 2006, 158: 765-772. |
105 | ZHANG H M , LIU J , TIAN Z F , et al . A general strategy toward transition metal carbide/carbon core/shell nanospheres and their application for supercapacitor electrode[J]. Carbon, 2016, 100: 590-599. |
106 | ZHANG H F , HE X J , GU J , et al . Wrinkled porous carbon nanosheets from methylnaphthalene oil for high-performance supercapacitors[J]. Fuel Processing Technology, 2018, 175: 10-16. |
107 | QU W H , GUO Y B , SHEN W Z , et al . Using asphaltene supermolecules derived from coal for the preparation of efficient carbon electrodes for supercapacitors[J]. J.Phys.Chem. C, 2016, 120 (28): 15105–15113. |
108 | DONG X L , WANG S Q , HE B , et al . Highly sp2 hybridized and nitrogen, oxygen dual-doped nanoporous carbon network: synthesis and application for ionic liquid supercapacitors[J]. Micropor. Mesopor. Mater., 2018, 259: 229-237. |
109 | KERISIT S , SCHWENZER B , VIJAYAKUMARM . Effects of oxygen-containing functional groups on supercapacitor performance[J]. J. Phys. Chem. Lett., 2014, 5: 2330−2334. |
110 | FRACKOWIAK E , LOTA G , MACHNIKOWSKI J , et al . Optimisation of supercapacitors using carbons with controlled nanotexture and nitrogen content[J]. Electrochimica Acta, 2006, 51: 2209-2214. |
111 | ZHANG W L , XU C , MA C Q, et al . Nitrogen-superdoped 3D graphene networks for high-performance supercapacitors[J]. Adv. Mater. , 2017, 29(36): 1701677. |
112 | WOOD K N , O'HAYRE R , PYLYPENKO S . Recent progress on nitrogen /carbon structures designed for use in energy and sustainability applications[J]. Energy Environ. Sci., 2014, 7: 1212–1249. |
113 | ZHOU Y , XU X , HUANG Y , et al . Tuning and understanding the supercapacitance of heteroatom-doped graphene[J]. Energy Storage Materials, 2015, 1: 103-111. |
114 | ROLDAN S , GRANDA M , MENENDEZ R , et al . Mechanisms of energy storage in carbon-based supercapacitors modified with a quinoid redox-active electrolyte[J]. J.Phys.Chem.C, 2011, 115(35): 17606-17611. |
115 | BALACH J , BRUNO M M , COTELLA N G , et al . Electrostatic self-assembly of hierarchical porous carbon microparticles[J]. Journal of Power Sources, 2012, 199: 386-394. |
116 | POGNON G , BROUSSE T , DEMARCONNAY L , et al . Performance and stability of electrochemical capacitor based on anthraquinone modified activated carbon[J]. Journal of Power Sources, 2011, 196(8): 4177-4122. |
117 | XU L , SHI R Y , LI H F , et al . Pseudocapacitive anthraquinone modified with reduced graphene oxide for flexible symmetric all-solid-state supercapacitors[J]. Carbon, 2018, 127: 459-468. |
118 | ZHANG X Q , LI W C , HE B , et al . Ultrathin phyllosilicate nanosheets as anode material with superior rate performance for lithium ion batteries[J]. |
Mater J. . Chem. A, 2018, 6(4): 1397-1402. | |
119 | HE B , LI W C , LU A H . High nitrogen-content carbon nanosheets formed using the Schiff-base reaction in a molten salt medium as efficient anode materials for lithium-ion batteries[J].J.Mater.Chem.A, 2015, 3: 579-585. |
120 | GUO B K , WANG X Q , FULVIO P F . Soft-templated mesoporous carbon-carbon nanotube composites for high performance lithium-ion batteries[J]. Adv. Mater. , 2011, 23: 4661-4666. |
121 | ZHAO J J , BULDUM A , HAN J , et al . First-principles study of Li-intercalated carbon nanotube ropes[J]. Phys. Rev. Lett. , 2000, 85: 1706-1709. |
122 | SENAMI M , LKEDA Y , FUKUSHIMA A , et al . Theoretical study of adsorption of lithium atom on carbon nanotube[J]. AIP Adv. , 2011, 1(4): 042106. |
123 | GAO B , BOWER C , LORENTZEN J D , et al . Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes[J]. Chem. Phys. Lett. , 2000, 327(1–2): 69-75. |
124 | YOO E J , KIM J , HOSONO E , et al . Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries[J]. Nano Lett. , 2008, 8 ( 8 ) : 2277-2282. |
125 | WAHID M , PUTHUSSERI D , GAWLI Y , et al . Hard carbons for sodium-ion battery anodes: synthetic strategies, material properties, and storage mechanisms[J]. Chem. Sus. Chem., 2018, 11: 506-526. |
126 | YANG J Q , ZHOU X L , WU D H , et al . S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries[J]. Advanced Materials, 2017, 29: 1604108. |
127 | QIU S , XIAO L , SUSHKO M L , et al . Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage[J]. Adv. Energy Mater., 2017, 7: 1700403. |
128 | DING J , WANG H , LI Z , et al . Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes[J]. ACS Nano, 2013, 7(12): 11004-11015. |
129 | JIN Y , SUN S , OU M , et al . High-performance hard carbon anode: tunable local structures and sodium storage mechanism[J]. ACS Appl. Energy Mater. , 2018, 1: 2295-2305. |
130 | HOU H S , QIU X Q , WEI W F , et al . Carbon anode materials for advanced sodium-ion batteries[J]. Adv. Energy Mater. , 2017, 7: 1602898. |
131 | TANG K , FU L J , WHITE R J , et al . Hollow carbon nanospheres with superior rate capability for sodium-based batteries[J]. Adv. Energy Mater., 2012, 2: 873–877. |
132 | 张强, 程新兵, 黄佳琦, 等 . 碳质材料在锂硫电池中的应用研究进展[J]. 新型炭材料, 2014, 29(4): 241-264. |
ZHANG Q , CHENG X B , HUANG J Q , et al . Review of carbon materials for advanced lithium-sulfur batteries[J]. New Carbon Materials, 2014, 29(4): 241-264. | |
133 | WANG D W , ZENG Q , ZHOU G , et al . Carbon-sulfur composites for Li-S batteries: status and prospects[J].MaterJ. Chem. A, 2013, 1: 9382-9394. |
134 | JAYAPRAKASH N , SHEN J , MOGANTY S S , et al . Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries[J]. Angew. Chem. Int. Ed. , 2011, 50: 5904-5908. |
135 | SUN Q , HE B , ZHANG X Q , et al . Engineering of hollow core-shell interlinked carbon spheres for highly stable lithium-sulfur batteries[J]. ACS Nano, 2015, 9: 8504-8513. |
136 | ZHANG X Q , HE B , LI W C , et al . Hollow carbon nanofibers with dynamic adjustable pore sizes and closed ends as hosts for high-rate lithium-sulfur battery cathodes[J]. Nano Research, 2018, 11(3): 1238-1246. |
137 | HE B , LI W C , YANG C , et al . Incorporating sulfur inside the pores of carbons for advanced lithium-sulfur batteries: an electrolysis approach[J]. ACS Nano, 2016, 10: 1633−1639. |
[1] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[2] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[3] | ZHANG Kai, LYU Qiunan, LI Gang, LI Xiaosen, MO Jiamei. Morphology and occurrence characteristics of methane hydrates in the mud of the South China Sea [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3865-3874. |
[4] | ZHU Wei, QI Penggang, SU Yinhai, ZHANG Shuping, XIONG Yuanquan. Preparation and properties of bio-oil hierarchical porous carbon electrode materials for supercapacitor [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3077-3086. |
[5] | CHEN Yixin, ZHEN Yaoyao, CHEN Ruihao, WU Jiwei, PAN Limei, YAO Chong, LUO Jie, LU Chunshan, FENG Feng, WANG Qingtao, ZHANG Qunfeng, LI Xiaonian. Preparation of platinum based nanocatalysts and their recent progress in hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2904-2915. |
[6] | CHEN Fei, LIU Chengbao, CHEN Feng, QIAN Junchao, QIU Yongbin, MENG Xianrong, CHEN Zhigang. Research progress on graphitic carbon nitride based materials for supercapacitor [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2566-2576. |
[7] | CAI Jiangtao, HOU Liuhua, LAN Yujin, ZHANG Chenchen, LIU Guoyang, ZHU Youyu, ZHANG Jianlan, ZHAO Shiyong, ZHANG Yating. Preparation of pitch-based porous carbon materials and application in supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1895-1906. |
[8] | ZHANG Mengxu, WANG Hongqin, LI Jin, AN Nihong, DAI Yunsheng, QIAN Yin, SHEN Yafeng. Preparation of PtSn/MgAl2O4-sheet catalyst and its PDH reaction performance [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1365-1372. |
[9] | ZHUO Zuyou, SONG Shengnan, HUANG Mingjie, YANG Xuan, LU Beili, CHEN Yandan. Preparation of wheat flour-based hierarchical porous carbon with ultra large specific surface area by synergistic activation of potassium oxalate-urea and its electrochemical energy storage performance [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 925-933. |
[10] | LIU Dan, FAN Yunjie, WANG Huimin, YAN Zheng, LI Pengfei, LI Jiacheng, CAO Xuebo. High value-added functional porous carbon materials from waste PET and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 969-984. |
[11] | TIAN Yazhou, HU Yujing, LI Jiyou, REN Jiangyan, WANG Liwei, WANG Xiuli, DING Ying, CHENG Jue, ZHANG Junying. Synthesis, curing kinetics and properties of vanilla alcohol-based epoxy resin [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 477-484. |
[12] | LIU Peihui, LIU Yuzhe, LI Lin, WANG Shaohui, WANG Tonghua. Activation strategies of the porous carbon with high specific surface area and hierarchical pore structure and its VOCs adsorption performance [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 613-621. |
[13] | LONG Yinying, YANG Jian, GUAN Min, YANG Yiluo, CHENG Zhengbai, CAO Haibing, LIU Hongbin, AN Xingye. Research progress of lignin-based materials in electrode materials for hybrid supercapacitors [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4855-4865. |
[14] | JIN Wei. Microporous carbon modified separator for high performance lithium sulfur batteries [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4386-4396. |
[15] | WANG Hui, LIU Xinyi, WANG Wei, WAN Tong, LI Zongjie, WANG Shaoyu, CHENG Bowen. Research and application of electrospun nanofibers with special morphology: a review [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4341-4356. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |