化工进展 ›› 2024, Vol. 43 ›› Issue (8): 4262-4272.DOI: 10.16085/j.issn.1000-6613.2023-1196
• 化工过程与装备 • 上一篇
郑庆雨1(), 金光远1(
), 冯文凯1, 朱正山1, 周逸凡1, 滕厚场2, 李臻峰1, 宋春芳1, 宋飞虎1, 李静1
收稿日期:
2023-07-14
修回日期:
2023-10-14
出版日期:
2024-08-15
发布日期:
2024-09-02
通讯作者:
金光远
作者简介:
郑庆雨(1999—),女,硕士研究生,研究方向为微波制备生物柴油。E-mail:zqyu1002@163.com。
基金资助:
ZHENG Qingyu1(), JIN Guangyuan1(
), FENG Wenkai1, ZHU Zhengshan1, ZHOU Yifan1, TENG Houchang2, LI Zhenfeng1, SONG Chunfang1, SONG Feihu1, LI Jing1
Received:
2023-07-14
Revised:
2023-10-14
Online:
2024-08-15
Published:
2024-09-02
Contact:
JIN Guangyuan
摘要:
为克服传统管式反应器混合效率差和传统加热方式传热速率低而导致的反应器性能限制,本文提出了一种基于混沌对流强化的管式微波反应器,即采用混沌C型几何管道,通过COMSOL软件对流体混合过程和微波加热过程分别进行多物理仿真模拟,探究低雷诺数(Re)下流体混合特性和电磁热特性。分析得出:当Re≥15时,混沌C型管道内出现明显混沌流动,通过增加雷诺数可以提高涡流强度,以促进均匀混合;混沌C型几何周期数的增加会产生更多的扰动数,不断改变流体运动方向,从而提高传热性能;混沌管道内电场分布较平面管道更复杂,微波能量利用率更高;依据雷诺数和功率分析混合和电磁热特性二者耦合的相关性,初步揭示了二者耦合机理。
中图分类号:
郑庆雨, 金光远, 冯文凯, 朱正山, 周逸凡, 滕厚场, 李臻峰, 宋春芳, 宋飞虎, 李静. 一种混沌C型几何流动混合耦合电磁热特性数值分析[J]. 化工进展, 2024, 43(8): 4262-4272.
ZHENG Qingyu, JIN Guangyuan, FENG Wenkai, ZHU Zhengshan, ZHOU Yifan, TENG Houchang, LI Zhenfeng, SONG Chunfang, SONG Feihu, LI Jing. Numerical analysis of mixed characteristics of chaotic C-type geometric flows coupling electromagnetic thermal characteristics[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4262-4272.
参数 | 乙醇 | 水 | 参考 |
---|---|---|---|
密度/kg·m-3 | 475.01+4.71×T-0.02×T2+1.84×10-5T3 | 1.034×10-5T3-0.013T2+4.97T+432.26 | COMSOL |
动力黏度/Pa·s | 0.07-6.17×10-4T+1.74×10-6×T2-1.66×10-9T3 | 0.07119-0.004673T+1.640×10-6T2-1.5369×10-9T3 | COMSOL |
分子扩散系数/m2·s-1 | 1.2×10-9 | 1.2×10-9 | COMSOL |
相对介电常数 | 155.7898-0.2622T-(1230.0583-10.6285T+0.03089T2-0.00003T3)×j | [ | |
热导率/W·(m·K)-1 | 0.5711+0.001763T-6.7306×10-6T2 | [ | |
恒压热容/J·(kg·K)-1 | 12010.15-80.41T+0.31T2-5.38×10-4T3+3.63×10-7T4 | [ | |
比热率 | 1 | [ | |
电导率/S·m-1 | 0.3894-3.8667×10-3T+1.2648×10-5T2-1.3438T3 | [ |
表1 流体的主要物性参数
参数 | 乙醇 | 水 | 参考 |
---|---|---|---|
密度/kg·m-3 | 475.01+4.71×T-0.02×T2+1.84×10-5T3 | 1.034×10-5T3-0.013T2+4.97T+432.26 | COMSOL |
动力黏度/Pa·s | 0.07-6.17×10-4T+1.74×10-6×T2-1.66×10-9T3 | 0.07119-0.004673T+1.640×10-6T2-1.5369×10-9T3 | COMSOL |
分子扩散系数/m2·s-1 | 1.2×10-9 | 1.2×10-9 | COMSOL |
相对介电常数 | 155.7898-0.2622T-(1230.0583-10.6285T+0.03089T2-0.00003T3)×j | [ | |
热导率/W·(m·K)-1 | 0.5711+0.001763T-6.7306×10-6T2 | [ | |
恒压热容/J·(kg·K)-1 | 12010.15-80.41T+0.31T2-5.38×10-4T3+3.63×10-7T4 | [ | |
比热率 | 1 | [ | |
电导率/S·m-1 | 0.3894-3.8667×10-3T+1.2648×10-5T2-1.3438T3 | [ |
1 | JULIO Alisson Aparecido Vitoriano, MILESSI Thais Suzane, OCAMPO BATLLE Eric Alberto, et al. Techno-economic and environmental potential of Renewable Diesel as complementation for diesel and biodiesel in Brazil: A comprehensive review and perspectives[J]. Journal of Cleaner Production, 2022, 371: 133431. |
2 | LANDWEHR Katherine R, HILLAS Jessica, Ryan MEAD-HUNTER, et al. Biodiesel feedstock determines exhaust toxicity in 20% biodiesel: 80% mineral diesel blends[J]. Chemosphere, 2023, 310: 136873. |
3 | XU Hui, Longwen OU, LI Yuan, et al. Life cycle greenhouse gas emissions of biodiesel and renewable diesel production in the United States[J]. Environmental Science & Technology, 2022, 56(12): 7512-7521. |
4 | AI Yongjian, ZHANG Feng, WANG Chenlong, et al. Recent progress in lab-on-a-chip for pharmaceutical analysis and pharmacological/toxicological test[J]. TRAC Trends in Analytical Chemistry, 2019, 117: 215-230. |
5 | HAN Wenbo, CHEN Xueye. A review: Applications of ion transport in micro-nanofluidic systems based on ion concentration polarization[J]. Journal of Chemical Technology & Biotechnology, 2020, 95(6): 1622-1631. |
6 | RASHIDI Saman, BAFEKR Haniyeh, VALIPOUR Mohammad Sadegh, et al. A review on the application, simulation, and experiment of the electrokinetic mixers[J]. Chemical Engineering and Processing-Process Intensification, 2018, 126: 108-122. |
7 | Mehdi SALEK M, CARRARA Francesco, FERNANDEZ Vicente, et al. Bacterial chemotaxis in a microfluidic T-maze reveals strong phenotypic heterogeneity in chemotactic sensitivity[J]. Nature Communications, 2019, 10(1): 1877. |
8 | ZHOU Minmin, BAI Dehong, ZONG Yuan, et al. Numerical investigation of turbulent reactive mixing in a novel coaxial jet static mixer[J]. Chemical Engineering and Processing: Process Intensification, 2017, 122: 190-203. |
9 | MAHMOODI Hassan, RAZZAGHI Kiyanoosh, SHAHRAKI Farhad. Improving mixing performance by curved-blade static mixer[J]. AIChE Journal, 2020, 66(11): 1-11. |
10 | LI Yudong, WU Shihan, LIU Yiqian, et al. The coupled mixing action of the jet mixer and swirl mixer: An novel static micromixer[J]. Chemical Engineering Research and Design, 2022, 177: 283-290. |
11 | AMINE KADI Mohamed EL, AWAD Sary, LOUBAR Khaled, et al. Experimental study on the esterification of fat trap grease in a continuous reactor[J]. Waste and Biomass Valorization, 2020, 11(12): 6697-6707. |
12 | STAMENKOVIC O S, LAZIC M L, TODOROVIC Z B, et al. The effect of agitation intensity on alkali-catalyzed methanolysis of sunflower oil[J]. Bioresource Technology, 2007, 98(14): 2688-2699. |
13 | TAN Sak Jie, YU Kok Hwa, Chiang Juay TEO, et al. Numerical assessment of mixing performance for a cross-mixer[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44(8): 353. |
14 | 邹鹏程, 金光远, 李臻峰, 等. 一种具有模式搅拌的微波反应釜内多物理场特性分析[J]. 化工进展, 2022, 41(5): 2301-2310. |
ZOU Pengcheng, JIN Guangyuan, LI Zhenfeng, et al. Analysis of multi-physical field characteristics in a microwave reactor with a mode stirrer[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2301-2310. | |
15 | HASNAIN Maria, ABIDEEN Zainul, Shagufta NAZ, et al. Biodiesel production from new algal sources using response surface methodology and microwave application[J]. Biomass Conversion and Biorefinery, 2023, 13(7): 6213-6228. |
16 | HUANG Dan, Kaiyang MEN, TANG Xiaohong, et al. Microwave intermittent drying characteristics of camellia oleifera seeds[J]. Journal of Food Process Engineering, 2021, 44(1): 1-12. |
17 | SHEN Liuyang, ZHU Yong, LIU Chenghai, et al. Modelling of moving drying process and analysis of drying characteristics for germinated brown rice under continuous microwave drying[J]. Biosystems Engineering, 2020, 195: 64-88. |
18 | MENG Qian, LAN Junqing, HONG Tao, et al. Effect of the rotating metal patch on microwave heating uniformity[J]. Journal of Microwave Power and Electromagnetic Energy, 2018, 52(2): 94-108. |
19 | 吴雁泽, 金光远, 邹鹏程, 等. 基于响应面法对一种连续型矩形微波反应器加热效果的模拟优化[J]. 化学工业与工程, 2021, 38(4): 84-94. |
WU Yanze, JIN Guangyuan, ZOU Pengcheng, et al. Simulation and optimization of heating effect of a continuous rectangular microwave reactor by response surface method[J]. Chemical Industry and Engineering, 2021, 38(4): 84-94. | |
20 | HUANG Kama, LIAO Yinhong. Transient power loss density of electromagnetic pulse in Debye media[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(1): 135-140. |
21 | PANDIT R B, PRASAD Suresh. Finite element analysis of microwave heating of potato—Transient temperature profiles[J]. Journal of Food Engineering, 2003, 60(2): 193-202. |
22 | PITCHAI K, BIRLA S L, SUBBIAH J, et al. Coupled electromagnetic and heat transfer model for microwave heating in domestic ovens[J]. Journal of Food Engineering, 2012, 112(1/2): 100-111. |
23 | PITCHAI K, CHEN J, BIRLA S, et al. A microwave heat transfer model for a rotating multi-component meal in a domestic oven: Development and validation[J]. Journal of Food Engineering, 2014, 128: 60-71. |
24 | 张宇皓. 微波场下液态食品的螺旋连续加热研究[D]. 无锡: 江南大学, 2021. |
ZHANG Yuhao. Study on continous flow microwave system with helical tubes for liquid food heating[D]. Wuxi: Jiangnan University, 2021. | |
25 | BOUKHALKHAL A L, KADI M E A, LASBET Y, et al. A continuous biodiesel production process using a chaotic mixer-reactor[J]. Waste and Biomass Valorization, 2020, 11(11): 6159-6168. |
26 | ZHOU Jie, YANG Xiaoqing, CHU Yue, et al. A novel algorithm approach for rapid simulated microwave heating of food moving on a conveyor belt[J]. Journal of Food Engineering, 2020, 282: 110029. |
27 | ZHU Huacheng, HE Jianbo, HONG Tao, et al. A rotary radiation structure for microwave heating uniformity improvement[J]. Applied Thermal Engineering, 2018, 141: 648-658. |
28 | RAHMANNEZHAD Javad, MIRBOZORGI Seyed ALI. CFD analysis and RSM-based design optimization of novel grooved micromixers with obstructions[J]. International Journal of Heat and Mass Transfer, 2019, 140: 483-497. |
29 | XU Chong, LAN Junqin, YE Jinghua, et al. Design of continuous-flow microwave reactor based on a leaky waveguide [J]. Chemical Engineering Journal, 2023, 452(4): 139690. |
30 | BOUKHALKHAL Ahmed, LASBET Yahia, MAKHLOUF Mohammed, et al. Numerical study of the chaotic flow in three-dimensional open geometry and its effect on the both fluid mixing and heat performances[J]. International Journal of Heat and Technology, 2017, 35(1): 1-10. |
31 | KADI M E A, BOUKHALKHAL A L, LOUBAR K, et al. Chaotic transport in three-dimensional reactors operating in open flows for continuous biodiesel production from rapeseed oil: Numerical and experimental comparative study[J]. Waste and Biomass Valorization, 2023, 14(7): 2285-2298. |
32 | YUAN Shuai, JIANG Bingyan, PENG Tao, et al. An investigation of flow patterns and mixing characteristics in a cross-shaped micromixer within the laminar regime[J]. Micromachines, 2021, 12(4): 462. |
33 | LASBET Yahia, AIDAOUI Lakhdar, LOUBAR Khaled. Effects of the geometry scale on the behaviour of the local physical process of the velocity field in the laminar flow[J]. International Journal of Heat and Technology, 2016, 34(3): 439-445. |
[1] | 蒋静智, 邵国伟, 崔海亭, 李洪涛, 杨奇. 三套管式加肋相变蓄热单元的强化传热特性[J]. 化工进展, 2024, 43(8): 4210-4221. |
[2] | 赵伟刚, 张倩倩, 蓝钰玲, 闫雯, 周晓剑, 范毜仔, 杜官本. 真空绝热板芯材的研究进展与展望[J]. 化工进展, 2024, 43(7): 3910-3922. |
[3] | 何海军, 王乃继. 基于实验与仿真的最优蒸汽管网保温结构确定[J]. 化工进展, 2024, 43(7): 4164-4172. |
[4] | 武西宁, 张宁, 秦佳敏, 徐龙, 魏朝阳, 马晓迅. 低冷量下强化CO2吸收的甲醇基纳米流体性能[J]. 化工进展, 2024, 43(5): 2811-2822. |
[5] | 谢小金, 张晓雪, 刘晓玲, 崇明本, 程党国, 陈丰秋. 单晶多级孔ZSM-5分子筛酸性质对正庚烷催化裂解反应传质性能的影响[J]. 化工进展, 2024, 43(5): 2661-2672. |
[6] | 孙贤, 柳军, 王晓辉, 孙长宇, 陈光进. 含下伏气的第一类天然气水合物藏开发实验与模拟研究进展[J]. 化工进展, 2024, 43(4): 2091-2103. |
[7] | 郭萌, 郭美欣, 魏思佳, 赵玉娇, 贾璇. 初始pH调控对MEC脱硫性能的影响及其微生物作用机制[J]. 化工进展, 2024, 43(4): 2219-2225. |
[8] | 张巧玲, 马祖浩, 于子元, 刘梓俊, 黄铋匀, 杨振东, 马浩然. 微小通道内超临界R134a流动传热特性[J]. 化工进展, 2024, 43(4): 1667-1675. |
[9] | 孙超, 艾诗钦, 刘月婵. 考虑物性变化及壳体传热的新型板壳式换热器板程流动传热数值模拟[J]. 化工进展, 2024, 43(4): 1676-1689. |
[10] | 王彦红, 蒋雷, 薛帅, 李洪伟, 贾玉婷. 预冷通道中超临界甲烷换热特性分析[J]. 化工进展, 2024, 43(4): 1690-1699. |
[11] | 祝妍妮, 王维, 孙闫晨昊, 魏岗, 张大为. 基于单液滴蒸发的离心喷雾干燥数值模拟[J]. 化工进展, 2024, 43(4): 1700-1710. |
[12] | 赵吉隆, 郭宇翔, 陈宏霞, 袁达忠, 杜小泽. 竖直铯热管传热特性的实验和数值模拟[J]. 化工进展, 2024, 43(4): 1711-1719. |
[13] | 钱志广, 王世学, 朱禹, 岳利可. 基于平板热管的高温质子交换膜燃料电池堆启动特性[J]. 化工进展, 2024, 43(4): 1754-1763. |
[14] | 杨东晓, 熊启钊, 王毅, 陈杨, 李立博, 李晋平. 多级孔MOF的制备及其吸附分离应用研究进展[J]. 化工进展, 2024, 43(4): 1882-1896. |
[15] | 王凯, 叶丁丁, 朱恂, 杨扬, 陈蓉, 廖强. 超亲气泡沫铜纳米线电极电化学还原CO2性能[J]. 化工进展, 2024, 43(3): 1232-1240. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 38
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 102
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |