化工进展 ›› 2022, Vol. 41 ›› Issue (10): 5465-5473.DOI: 10.16085/j.issn.1000-6613.2021-2561
张珂1(), 屈小虎1, 朱元军2, 林建英1(), 赵志换1, 樊惠玲3
收稿日期:
2021-12-16
修回日期:
2022-02-26
出版日期:
2022-10-20
发布日期:
2022-10-21
通讯作者:
林建英
作者简介:
张珂(1998—),女,硕士研究生,研究方向为功能材料合成。E-mail:zhangke1158@tyut.edu.cn。
基金资助:
ZHANG Ke1(), QU Xiaohu1, ZHU Yuanjun2, LIN Jianying1(), ZHAO Zhihuan1, FAN Huiling3
Received:
2021-12-16
Revised:
2022-02-26
Online:
2022-10-20
Published:
2022-10-21
Contact:
LIN Jianying
摘要:
金属有机框架材料是由金属离子/团簇和具有一定刚性结构的有机配体通过配位键连接而成的多孔晶体材料,具有多孔、比表面积大、结构多样、表面易修饰等特点,在能源、化工、医药领域具有广泛的应用。机械化学合成法是指通过机械能诱导化学反应的方法,由于其绿色环保、耗时短、效率高、应用范围广、副反应少的特点近年来受到广泛关注,在制备金属有机框架材料方面同样表现出显著的优势。研磨法是机械化学合成法中重要的一种。为了解生物金属骨架材料的机械化学法合成概况及最新进展,本文介绍了研磨法制备金属有机框架材料的经典案例,尤其着重介绍了应用于医药领域的金属有机框架材料的合成,研究进展表明研磨法是一种绿色高效的合成方法,为金属有机框架材料在医药领域的广泛应用提供了可能,具有良好的发展前景。
中图分类号:
张珂, 屈小虎, 朱元军, 林建英, 赵志换, 樊惠玲. 研磨法制备金属有机框架材料的新进展[J]. 化工进展, 2022, 41(10): 5465-5473.
ZHANG Ke, QU Xiaohu, ZHU Yuanjun, LIN Jianying, ZHAO Zhihuan, FAN Huiling. Progress in preparation of metal-organic framework materials by grinding[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5465-5473.
MOF | 制备方法 | 制备内容 | 参考文献 |
---|---|---|---|
MIL-78 | 无溶剂研磨法 | 首次利用金属氢化物作为金属前体,副产物仅为氢气 | [ |
Cu(INA)2 | 无溶剂研磨法 | 首次应用于MOF的合成 | [ |
Cu3(BTC)2/HKUST-1 | 无溶剂研磨法 | 对60个潜在反应进行研究,证实金属盐和有机配体之间的反应十分普遍;发现其与制备Cu(INA)2的差别 | [ |
ZIF-8 | 无溶剂研磨法 | 氧化物为金属前体,副产物仅为水 | [ |
MIL-101(Cr) | 无溶剂研磨法 | 首次在不添加溶剂和氢氟酸的情况下快速合成MIL-101(Cr) | [ |
MOF-5 | 无溶剂研磨法 | 几分钟内快速合成,并证实反应物的摩尔比影响比表面积值 | [ |
Zn2(5-aip)2(bpy) | 无溶剂研磨法 | 首次合成该材料 | [ |
OPA-MOF | 无溶剂研磨法 | 得到三种草酸磷酸胺金属有机骨架材料 | [ |
[Cu(ade)(OAc)]·xH2O·yHOAc | 液体辅助研磨法 | 添加少量溶剂后会使无溶剂研磨法下不发生的化学反应发生 | [ |
CuCl2(Dace) | 液体辅助研磨法 | 首次利用液体辅助研磨法合成一维网状骨架。 | [ |
Zn(C4H2O4) | 液体辅助研磨法 | 首次以金属氧化物为前体,通过液体辅助研磨法合成金属-有机聚合物,扩展了MOFs材料的可能性。 | [ |
HKUST-1 | 液体辅助研磨法 | HKUST-1材料BET甚至高于电化学和溶剂热合成的该MOF材料,液体辅助研磨法有望成为制备MOFs材料的有效手段 | [ |
Zn-MOF-74 | 液体辅助研磨法 | 首次使用机械化学法合成Zn-MOF-74,利用原位检测技术首次发现该反应的逐级反应机制 | [ |
Ni3(BTC)2·12H2O | 液体辅助研磨法 | 液体辅助研磨法可以提高MOF产率 | [ |
Mg2(dobdc) | 液体辅助研磨法 | 这种策略在合成其他同源物(Mn,Co,Ni,Cu,Zn)方面具有一般性, Mg2(m-dobdc)是首次报道的这种骨架的永久多孔变体 | [ |
Zn2(ta)2(dabco) | 离子液体辅助研磨法 | 盐离子模板效应可能是影响MOFs材料合成的重要因素 | [ |
ZIF-8 | 离子液体辅助研磨法 | ZIF-8的合成强烈依赖于弱酸铵盐的使用,并非阴离子模板效应 | [ |
表1 机械化学法合成MOFs的经典案例
MOF | 制备方法 | 制备内容 | 参考文献 |
---|---|---|---|
MIL-78 | 无溶剂研磨法 | 首次利用金属氢化物作为金属前体,副产物仅为氢气 | [ |
Cu(INA)2 | 无溶剂研磨法 | 首次应用于MOF的合成 | [ |
Cu3(BTC)2/HKUST-1 | 无溶剂研磨法 | 对60个潜在反应进行研究,证实金属盐和有机配体之间的反应十分普遍;发现其与制备Cu(INA)2的差别 | [ |
ZIF-8 | 无溶剂研磨法 | 氧化物为金属前体,副产物仅为水 | [ |
MIL-101(Cr) | 无溶剂研磨法 | 首次在不添加溶剂和氢氟酸的情况下快速合成MIL-101(Cr) | [ |
MOF-5 | 无溶剂研磨法 | 几分钟内快速合成,并证实反应物的摩尔比影响比表面积值 | [ |
Zn2(5-aip)2(bpy) | 无溶剂研磨法 | 首次合成该材料 | [ |
OPA-MOF | 无溶剂研磨法 | 得到三种草酸磷酸胺金属有机骨架材料 | [ |
[Cu(ade)(OAc)]·xH2O·yHOAc | 液体辅助研磨法 | 添加少量溶剂后会使无溶剂研磨法下不发生的化学反应发生 | [ |
CuCl2(Dace) | 液体辅助研磨法 | 首次利用液体辅助研磨法合成一维网状骨架。 | [ |
Zn(C4H2O4) | 液体辅助研磨法 | 首次以金属氧化物为前体,通过液体辅助研磨法合成金属-有机聚合物,扩展了MOFs材料的可能性。 | [ |
HKUST-1 | 液体辅助研磨法 | HKUST-1材料BET甚至高于电化学和溶剂热合成的该MOF材料,液体辅助研磨法有望成为制备MOFs材料的有效手段 | [ |
Zn-MOF-74 | 液体辅助研磨法 | 首次使用机械化学法合成Zn-MOF-74,利用原位检测技术首次发现该反应的逐级反应机制 | [ |
Ni3(BTC)2·12H2O | 液体辅助研磨法 | 液体辅助研磨法可以提高MOF产率 | [ |
Mg2(dobdc) | 液体辅助研磨法 | 这种策略在合成其他同源物(Mn,Co,Ni,Cu,Zn)方面具有一般性, Mg2(m-dobdc)是首次报道的这种骨架的永久多孔变体 | [ |
Zn2(ta)2(dabco) | 离子液体辅助研磨法 | 盐离子模板效应可能是影响MOFs材料合成的重要因素 | [ |
ZIF-8 | 离子液体辅助研磨法 | ZIF-8的合成强烈依赖于弱酸铵盐的使用,并非阴离子模板效应 | [ |
MOF | 制备方法 | 制备内容 | 参考文献 |
---|---|---|---|
ZnCl2(gabapentin)2,CuCl2(gabapentin)2 | 无溶剂研磨法,药物作配体 | 以活性药物成分为配位络合物,为药物传递方面的应用提供了新思路 | [ |
LnCl3(gabapentin) x,Ln=La3+、Ce3+、Nd3+和Er3+ | 无溶剂研磨法,药物作配体 | 首次报道研磨法制备含镧系元素的药物配位网络结构 | [ |
Ag x (asa) y | 无溶剂研磨法,药物作配体 | 水杨酸和银离子的协同作用,为BioMOFs的合成策略提供新思路 | [ |
Cu2(Fluf)4(Eth)2,Cu2(Fluf)4(H2O)2 | 液体辅助研磨法 | 机械化学法中,氟芬那酸首次作为有机配体 | [ |
[Ag2(PA)2]2·8H2O | 液体辅助研磨法,药物作配体 | 机械化学法是发现旧药物新晶型的一种极好的可持续、高效和快速的途径 | [ |
Mg(H2O)6(ibu)2·2H2O | 液体辅助研磨法,药物作配体 | 通过合成MOFs材料改善药物的溶解性 | [ |
Mg(H2O) x (nap)2 | 液体辅助研磨法,药物作配体 | 制备了三种不同水合形式的萘普生镁,为高水合盐提供了初步的结构模型 | [ |
Bi(sal) x R y | 离子液体辅助研磨法,药物作配体 | 为水杨酸铋的合成提供新途径 | [ |
IBU@HKUST-1 | 无溶剂研磨法 | 将包含药物成分的生物活性分子作为分子簇前体,再和有机配体连接,生成负载药物的MOF,载药量达58.5%(质量分数) | [ |
Zn(C4H2O4) | 液体辅助研磨法 | 首次以金属氧化物为前体,通过液体辅助研磨法合成金属-有机聚合物,扩展了MOFs材料的可能性 | [ |
MgMuc(H2O)4 | 液体辅助研磨法 | 机械化学法中,黏液酸首次作为有机配体 | [ |
[Cu(ade)(OAc)]·xH2O·yHOAc | 液体辅助研磨法 | 添加少量溶剂后会使无溶剂研磨法下不发生的化学反应发生 | [ |
K-β-CD | 无溶剂研磨法 | 首次通过机械化学法合成CD-MOF,并成功封装难溶性药物水杨酸、阿魏酸和白藜芦醇 | [ |
Cu3(BTC)2 | 无溶剂研磨法,液体辅助研磨 | 利用机械化学法成功制备出比表面积高于其他方法(热溶剂法,电化学法)的MOF材料 | [ |
Zn-MOF-74 | 液体辅助研磨法 | 首次使用机械化学法合成Zn-MOF-74,利用原位检测技术首次发现该反应的逐级反应机制,即由致密结构转化为多孔结构 | [ |
ZIF-8 | 无溶剂研磨法,离子液体辅助研磨 | 由多孔结构逐步转变为紧密堆积结构 | [ |
MIL-100(Fe) | 液体辅助研磨法,无溶剂研磨 | 利用机械化学法成功制备MIL-100(Fe)材料,并成功封装5-氟尿嘧啶、咖啡因和阿司匹林 | [ |
表2 机械化学法应用在BioMOFs的经典案例
MOF | 制备方法 | 制备内容 | 参考文献 |
---|---|---|---|
ZnCl2(gabapentin)2,CuCl2(gabapentin)2 | 无溶剂研磨法,药物作配体 | 以活性药物成分为配位络合物,为药物传递方面的应用提供了新思路 | [ |
LnCl3(gabapentin) x,Ln=La3+、Ce3+、Nd3+和Er3+ | 无溶剂研磨法,药物作配体 | 首次报道研磨法制备含镧系元素的药物配位网络结构 | [ |
Ag x (asa) y | 无溶剂研磨法,药物作配体 | 水杨酸和银离子的协同作用,为BioMOFs的合成策略提供新思路 | [ |
Cu2(Fluf)4(Eth)2,Cu2(Fluf)4(H2O)2 | 液体辅助研磨法 | 机械化学法中,氟芬那酸首次作为有机配体 | [ |
[Ag2(PA)2]2·8H2O | 液体辅助研磨法,药物作配体 | 机械化学法是发现旧药物新晶型的一种极好的可持续、高效和快速的途径 | [ |
Mg(H2O)6(ibu)2·2H2O | 液体辅助研磨法,药物作配体 | 通过合成MOFs材料改善药物的溶解性 | [ |
Mg(H2O) x (nap)2 | 液体辅助研磨法,药物作配体 | 制备了三种不同水合形式的萘普生镁,为高水合盐提供了初步的结构模型 | [ |
Bi(sal) x R y | 离子液体辅助研磨法,药物作配体 | 为水杨酸铋的合成提供新途径 | [ |
IBU@HKUST-1 | 无溶剂研磨法 | 将包含药物成分的生物活性分子作为分子簇前体,再和有机配体连接,生成负载药物的MOF,载药量达58.5%(质量分数) | [ |
Zn(C4H2O4) | 液体辅助研磨法 | 首次以金属氧化物为前体,通过液体辅助研磨法合成金属-有机聚合物,扩展了MOFs材料的可能性 | [ |
MgMuc(H2O)4 | 液体辅助研磨法 | 机械化学法中,黏液酸首次作为有机配体 | [ |
[Cu(ade)(OAc)]·xH2O·yHOAc | 液体辅助研磨法 | 添加少量溶剂后会使无溶剂研磨法下不发生的化学反应发生 | [ |
K-β-CD | 无溶剂研磨法 | 首次通过机械化学法合成CD-MOF,并成功封装难溶性药物水杨酸、阿魏酸和白藜芦醇 | [ |
Cu3(BTC)2 | 无溶剂研磨法,液体辅助研磨 | 利用机械化学法成功制备出比表面积高于其他方法(热溶剂法,电化学法)的MOF材料 | [ |
Zn-MOF-74 | 液体辅助研磨法 | 首次使用机械化学法合成Zn-MOF-74,利用原位检测技术首次发现该反应的逐级反应机制,即由致密结构转化为多孔结构 | [ |
ZIF-8 | 无溶剂研磨法,离子液体辅助研磨 | 由多孔结构逐步转变为紧密堆积结构 | [ |
MIL-100(Fe) | 液体辅助研磨法,无溶剂研磨 | 利用机械化学法成功制备MIL-100(Fe)材料,并成功封装5-氟尿嘧啶、咖啡因和阿司匹林 | [ |
1 | BALA Peter, ACHIMOVICOVA Marcela, BALA Matej, et al. Hallmarks of mechanochemistry: from nanoparticles to technology[J]. Chem. Soc. Rev., 2013, 42(18): 7571-7637. |
2 | DELOGU Francesco, GORRASI Giuliana, SORRENTINO Andrea. Fabrication of polymer nanocomposites via ball milling: present status and future perspectives[J]. Progress in Materials Science, 2017, 86: 75-126. |
3 | STOLLE A, SZUPPA T, LEONHARDT S E S, et al. Ball milling in organic synthesis:solution and challenges[J]. Chem. Soc. Rev., 2011, 40(5): 2317-2329. |
4 | ALEZI Dalal, BELMABKHOUT Youssef, SUYETIN Mikhail, et al. MOF crystal chemistry paving the way to gas storage needs: aluminum-based soc-MOF for CH4, O2, and CO2 storage[J]. Journal of the American Chemical Society, 2015, 137(41): 13308-13318. |
5 | 纪穆为, 卢萍, 刘静, 等. 金属有机框架化合物(MOFs)的研究状况[J]. 山东化工, 2011, 40(2): 42-46. |
JI Muwei, LU Ping, LIU Jing, et al. The process of study on metal-organic frameworks(MOFs)[J]. Shandong Chemical Industry, 2011, 40(2): 42-46. | |
6 | YANG D, ORTUNO M A, BERNALES V, et al. Structure and dynamics of Zr6O8 metal-organic framework node surfaces probed with ethanol dehydration as a catalytic test reaction[J]. Journal of the American Chemical Society, 2018, 140(10): 3751-3759. |
7 | Sarwar BEG, RAHMAN Mahfoozur, JAIN Atul, et al. Nanoporous metal organic frameworks as hybrid polymer-metal composites for drug delivery and biomedical applications[J]. Drug Discovery Today, 2017, 22(4): 625-637. |
8 | 马艾华, 胡庭维, 贾庆明, 等. 金属-有机骨架用于各类药物的控释载体[J]. 功能材料, 2016, 47(3): 3033-3039. |
MA Aihua, HU Tingwei, JIA Qingming, et al. Metal-organic frameworks used as delivery vehicles for therapeutic agents[J]. Journal of Functional Materials, 2016, 47(3): 3033-3039. | |
9 | MUNN A S, DUNNE P W, TANG S V Y, et al. Large-scale continuous hydrothermal production and activation of ZIF-8[J]. Chem. Commun., 2015, 51(64): 12811-12814. |
10 | SAFAEI Mohadeseh, FOROUGHI Mohammad Mehdi, EBRAHIMPOOR Nasser, et al. A review on metal-organic frameworks: synthesis and applications[J]. Trends in Analytical Chemistry, 2019, 118: 401-425. |
11 | SUN Yujia, ZHOU Hongcai. Recent progress in the synthesis of metal-organic frameworks[J]. Science and Technology of Advanced Materials, 2015, 16(5): 054202. |
12 | RUBIO-MARTINEZ M, AVCI-CAMUR C, THORNTON A W, et al. New synthetic routes towards MOF production at scale[J]. Chem. Soc. Rev., 2017, 46(11): 3453-3480. |
13 | 张素珍, 杨蓉, 龚乐, 等. 二维金属有机框架材料的制备及其应用[J]. 化工进展, 2021, 40(11): 6195-6210. |
ZHANG Suzhen, YANG Rong, GONG Le, et al. Research on preparation and application of 2D MOFs[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6195-6210. | |
14 | 陈丹丹, 衣晓虹, 王崇臣. 机械化学法制备金属-有机骨架及其复合物研究进展[J]. 无机化学学报, 2020, 36(10): 1805-1821. |
CHEN Dandan, YI Xiaohong, WANG Chongchen. Preparation of metal-organic frameworks and their composites using mechanochemical methods[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(10): 1805-1821. | |
15 | CRAWFORD Deborah, CASABAN Jose, HAYDON Robert, et al. Synthesis by extrusion: continuous, large-scale preparation of MOFs using little or no solvent[J]. Chemical Science, 2015, 6(3): 1645-1649. |
16 | JIA Chunmei, WANG Jing, FENG Xiao, et al. Efficient vapour-assisted aging and liquid-assisted grinding synthesis of a microporous copper-adeninate framework[J]. CrystEngComm, 2014, 16(29): 6552-6555. |
17 | SINGH N K, HARDI M, BALEMA V P. Mechanochemical synthesis of an yttrium based metal-organic framework[J]. Chemical Communications, 2013, 49(10): 972-974. |
18 | CHEN Dong, ZHAO Jiahua, ZHANG Pengfei, et al. Mechanochemical synthesis of metal-organic frameworks[J]. Polyhedron, 2019, 162: 59-64. |
19 | SAEED Tooba, NAEEM Abdul, DIN Israf Ud, et al. Structure, nomenclature and viable synthesis of micro/nanoscale metal organic frameworks and their remarkable applications in adsorption of organic pollutants[J]. Microchemical Journal, 2020, 159: 105579. |
20 | JAMES S L, ADAMS C J, BOLM C, et al. Mechanochemistry: opportunities for new and cleaner synthesis[J]. Chemical Society Reviews, 2012, 41(1): 413-447. |
21 | LI Peng, CHENG Fangfang, XIONG Weiwei, et al. New synthetic strategies to prepare metal-organic frameworks[J]. Inorganic Chemistry Frontiers, 2018, 5(11): 2693-2708. |
22 | Jean-Louis DO, FRISCIC Tomislav. Mechanochemistry: a force of synthesis[J]. ACS Central Science, 2017, 3(1): 13-19. |
23 | PICHON Anne, Ana LAZUEN-GARAY, JAMES Stuart L. Solvent-free synthesis of a microporous metal organic framework[J]. CrystEngComm, 2006, 8(3): 211-214. |
24 | PICHON Anne, JAMES Stuart L. An array-based study of reactivity under solvent-free mechanochemical conditions insights and trends[J]. CrystEngComm, 2008, 10(12): 1839-1847. |
25 | YUAN Wenbing, GARAY Ana Lazuen, PICHON Anne, et al. Study of the mechanochemical formation and resulting properties of an archetypal MOF: Cu3(BTC)2 (BTC=1,3,5-benzenetricarboxylate)[J]. CrystEngComm, 2010, 12(12): 4063-4065. |
26 | TANAKA Shunsuke, KIDA Koj, NAGAOKA Takuya, et al. Mechanochemical dry conversion of zinc oxide to zeolitic imidazolate framework[J]. Chemical Communications, 2013, 49(72): 7884-7886. |
27 | LENG Kunyue, SUN Yinyong, LI Xiaolin, et al. Rapid synthesis of metal-organic frameworks MIL-101(Cr) without the addition of solvent and hydrofluoric acid[J]. Crystal Growth & Design, 2016, 16(3): 1168-1171. |
28 | Daofei LYU, CHEN Yongwei, LI Yujie, et al. Efficient mechanochemical synthesis of MOF-5 for linear alkanes adsorption[J]. Journal of Chemical & Engineering Data, 2017, 62(7): 2030-2036. |
29 | CHEN Yongwe, WU Houxiao, YUAN Yinuo, et al. Highly rapid mechanochemical synthesis of a pillar-layer metal-organic framework for efficient CH4/N2 separation[J]. Chemical Engineering Journal, 2020, 385: 123836. |
30 | DU Yaxiao, XU Xuebin, MA Fei, et al. Solvent-free synthesis of iron-based metal-organic frame-works (MOFs) as slow release fertilizers[J]. Polymers, 2021, 13(4): 561. |
31 | BRAGA D, CURZI M, JOHANSSON A, et al. Simple and quantitative mechanochemical preparation of a porous crystalline material based on a 1D coordination network for uptake of small molecules[J]. Angewandte Chemie International Edition, 2006, 45(1): 142-146. |
32 | FRISCIC Tomisla, FABIAN Laszlo. Mechanochemical conversion of a metal oxide into coordination polymers and porous frameworks using liquid-assisted grinding (LAG)[J]. CrystEngComm, 2009, 11(5): 743-745. |
33 | KLIMAKOW M, KLOBES P, THUENEMANN A F, et al. Mechanochemical synthesis of metal-organic frameworks: a fast and facile approach toward quantitative yields and high specific surface areas[J]. Chemistry of Materials, 2010, 22(18): 5216-5221. |
34 | KLIMAKOW Maria, KLOBES Peter, RADEMANN Klaus, et al. Characterization of mechanochemically synthesized MOFs[J]. Microporous and Mesoporous Materials, 2012, 154: 113-118. |
35 | JULIEN P A, UZAREVIC K, KATSENIS A D, et al. In situ monitoring and mechanism of the mechanochemical formation of a microporous MOF-74 framework[J]. Journal of the American Chemical Society, 2016, 138(9): 2929-2932. |
36 | ZHANG Ren, TAO Chengan, CHEN Rui, et al. Ultrafast synthesis of Ni-MOF in one minute by ball milling.nanomaterials[J]. Nanomaterials, 2018, 8(12): 1067. |
37 | WANG Zihao, LI Zongzhe, Marcus NG, et al. Rapid mechanochemical synthesis of metal-organic frameworks using exogenous organic base[J]. Dalton Transactions, 2020, 49(45): 16238-16244. |
38 | FRISCIC T, REID D G, HALASZ I, et al. Ion- and liquid-assisted grinding: improved mechanochemical synthesis of metal-organic frameworks reveals salt inclusion and anion templating[J]. Angewandte Chemie-International Edition, 2010, 49(4): 712-715. |
39 | BELDON P, FABIAN L, STEIN R S, et al. Rapid room-temperature synthesis of zeolitic imidazolate frameworks by using mechanochemistry[J]. Angewandte Chemie, 2010, 122(50): 9834-9837. |
40 | CAI Hong, HUANG Yongliang, LI Dan. Biological metal-organic frameworks: structures, host-guest chemistry and bio-applications[J]. Coordination Chemistry Reviews, 2019, 378: 207-221. |
41 | ANDRE V, QUARESMA S, SILVA J L F DA, et al. Exploring mechanochemistry to turn organic bio-relevant molecules into metal-organic frameworks: a short review[J]. Beilstein Journal of Organic Chemistry, 2017, 13: 2416-2427. |
42 | BRAGA Dario, GREPIONI Fabrizia, MAINI Lucia, et al. Simple and quantitative mechanochemical preparation of the first zinc and copper complexes of the neuroleptic drug gabapentin[J]. CrystEngComm, 2008, 10(5): 469-471. |
43 | QUARESMA S, ANDRE V, ANTUNES A M M, et al. Gabapentin coordination networks: mechanochemical synthesis and behavior under shelf conditions[J]. Crystal Growth & Design, 2013, 13(11): 5007-5017. |
44 | BRAGA Dario, GREPIONI Fabrizia, ANDRE Vania, et al. Drug-containing coordination and hydrogen bonding networks obtained mechanochemically[J]. Crystengcomm, 2009, 11(12): 2618-2621. |
45 | QUARESMA Silvia, ANDRE Vania, FERNANDES Auguste, et al. Mechanochemistry—A green synthetic methodology leading to metallodrugs, metallopharmaceuticals and bio-inspired metal-organic frameworks[J]. Inorganica Chimica Acta, 2017, 455: 309-318. |
46 | ZABRANSKY M, ALVES P C, BRAVO C, et al. From pipemidic acid molecular salts to metal complexes and BioMOFs using mechanochemistry[J]. CrystEngComm, 2021, 23(5): 1099-1109. |
47 | CHOW E H H, STROBRIDGE F C, FRISCIC T. Mechanochemistry of magnesium oxide revisited: facile derivatisation of pharmaceuticals using coordination and supramolecular chemistry[J]. Chemical Communications, 2010, 46(34): 6368-6370. |
48 | FRISCIC T, HALASZ I, STROBRIDGE F C, et al. A rational approach to screen for hydrated forms of the pharmaceutical derivative magnesium naproxen using liquid-assisted grinding[J]. CrystEngComm, 2011, 13(9): 3125-3129. |
49 | ANDRE Vania, HARDEMAN Andrew, HALASZ Ivan, et al. Mechanosynthesis of the metallodrug bismuth subsalicylate from Bi2O3 and structure of bismuth salicylate without auxiliary organic ligands[J]. Angewandte Chemie, 2011, 50(34): 7858-7861. |
50 | NAWROCKI Jan, PROCHOWICZ Daniel, WISNIEWSKI Andrzej, et al. Development of an SBU-based mechanochemical approach for drug- loaded MOFs[J]. European Journal of Inorganic Chemistry, 2020(10): 796-800. |
51 | KANG Hye Ji, CHOI Yong Han, Ll Woo JOO, et al. Mechanochemical synthesis of CD-MOFs and application as a cosmetic ingredient[J]. Korean Chemical Society, 2021, 42(5): 737-739. |
52 | PILLONI Martina, PADELLA Franco, ENNAS Guido, et al. Liquid-assisted mechanochemical synthesis of an iron carboxylate Metal Organic Framework and its evaluation in diesel fuel desulfurization[J]. Microporous and Mesoporous Materials, 2015, 213: 14-21. |
53 | SOUZA B E, MOSLEIN A F, TITOV K, et al. Green reconstruction of MIL-100(Fe) in water for high crystallinity and enhanced guest encapsulation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(22): 8247-8255. |
54 | CHEN Qing, CHEN Qiwei, ZHUANG Chong, et al. Controlled release of drug molecules in metal-organic framework material HKUST-1[J]. Inorganic Chemistry Communications, 2017, 79: 78-81. |
55 | SUN Keke, LI Ling, HE Yuqi, et al. Preparation and drug-delivery properties of HKUST-1/GO hybrid[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(1): 242-245. |
56 | HU Jiaqi, CHEN Yi, ZHANG Hui, et al. TEA-assistant synthesis of MOF-74 nanorods for drug delivery and in-vitro magnetic resonance imaging[J]. Microporous and Mesoporous Materials, 2021, 315: 110900. |
57 | HU Jiaqi, CHEN Yi, ZHANG Hui, et al. Controlled syntheses of Mg-MOF-74 nanorods for drug delivery[J]. Journal of Solid State Chemistry, 2021, 294: 121853. |
58 | WANG Qiuxiang, SUN Yue, LI Shangfei, et al. Synthesis and modification of ZIF-8 and its application in drug delivery and tumor therapy[J]. RSC Advances, 2020, 10(62):37600-37620. |
59 | ZHENG Haoquan, ZHANG Yuning, LIU Leifeng, et al. One-pot synthesis of metal organic frameworks with encapsulated target molecules and their applications for controlled drug delivery[J]. Journal of the American Chemical Society, 2016, 138(3): 962-968. |
60 | AHERZADE Seyed Dariush, SOLEIMANNEJAD Janet, TARLANI Aliakbar. Application of metal-organic framework nano-MIL-100(Fe) for sustainable release of doxycycline and tetracycline[J]. Nanomaterials, 2017, 7(8): 215. |
[1] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[2] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[3] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[4] | 李洞, 王倩倩, 张亮, 李俊, 付乾, 朱恂, 廖强. 非水系纳米流体热再生液流电池串联堆性能特性[J]. 化工进展, 2023, 42(8): 4238-4246. |
[5] | 李润蕾, 王子彦, 王志苗, 李芳, 薛伟, 赵新强, 王延吉. CuO-CeO2/TiO 2 高效催化CO低温氧化反应性能[J]. 化工进展, 2023, 42(8): 4264-4274. |
[6] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[7] | 俞俊楠, 俞建峰, 程洋, 齐一搏, 化春键, 蒋毅. 基于深度学习的变宽度浓度梯度芯片性能预测[J]. 化工进展, 2023, 42(7): 3383-3393. |
[8] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[9] | 龚鹏程, 严群, 陈锦富, 温俊宇, 苏晓洁. 铁酸钴复合碳纳米管活化过硫酸盐降解铬黑T的性能及机理[J]. 化工进展, 2023, 42(7): 3572-3581. |
[10] | 储甜甜, 刘润竹, 杜高华, 马嘉浩, 张孝阿, 王成忠, 张军营. 有机胍催化脱氢型RTV硅橡胶的制备和可降解性能[J]. 化工进展, 2023, 42(7): 3664-3673. |
[11] | 朱雅静, 徐岩, 简美鹏, 李海燕, 王崇臣. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029-3048. |
[12] | 蒋博龙, 崔艳艳, 史顺杰, 常嘉城, 姜楠, 谭伟强. 过渡金属Co3O4/ZnO-ZIF氧还原催化剂Co/Zn-ZIF模板法制备及其产电性能[J]. 化工进展, 2023, 42(6): 3066-3076. |
[13] | 张耀丹, 孙若溪, 陈鹏程. 以级联反应为基础的多酶共固定载体研究进展[J]. 化工进展, 2023, 42(6): 3167-3176. |
[14] | 杨家添, 唐金铭, 梁恣荣, 黎胤宏, 胡华宇, 陈渊. 新型淀粉基高吸水树脂抑尘剂的制备及其应用[J]. 化工进展, 2023, 42(6): 3187-3196. |
[15] | 王保文, 刘同庆, 张港, 李炜光, 林德顺, 王梦家, 马晶晶. CuFe2O4改性脱硫渣氧载体与褐煤的反应特性[J]. 化工进展, 2023, 42(6): 2884-2894. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |