化工进展 ›› 2022, Vol. 41 ›› Issue (10): 5456-5464.DOI: 10.16085/j.issn.1000-6613.2021-2618
收稿日期:
2021-12-24
修回日期:
2022-03-23
出版日期:
2022-10-20
发布日期:
2022-10-21
通讯作者:
黄国勇,王春霞
作者简介:
王锡民(1997—),男,硕士研究生,研究方向为生物质材料电化学机理。E-mail:XMWang18810371350@163.com。
基金资助:
WANG Ximin(), WEI Xiaoran, FENG Ying, HUANG Guoyong(), WANG Chunxia()
Received:
2021-12-24
Revised:
2022-03-23
Online:
2022-10-20
Published:
2022-10-21
Contact:
HUANG Guoyong, WANG Chunxia
摘要:
离子选择性电极作为一种常见的电位型化学传感器,具有结构简单、制作成本低、易微型化、可穿戴化等特点,被广泛应用到工业分析、环境监测、生物医疗等领域。固态转导层作为全固态离子选择性电极的组成部件之一,对电极的性能起着至关重要影响。碳基材料具有良好的离子-电子信号转换效率和化学稳定性,被认为是理想的固态转导层材料。本文阐述了碳基材料在全固态离子选择性电极中的响应机理,综述了石墨烯、碳纳米管、多孔碳材料及其他碳基材料作为固态转导层材料的研究进展,分析对比了上述材料的导电性、电容性、比表面积、疏水性等性能,并展望了其未来的发展趋势。
中图分类号:
王锡民, 魏潇然, 冯瑛, 黄国勇, 王春霞. 碳基全固态离子选择性电极材料研究进展[J]. 化工进展, 2022, 41(10): 5456-5464.
WANG Ximin, WEI Xiaoran, FENG Ying, HUANG Guoyong, WANG Chunxia. Studies on all solid-state ion-selective electrodes based on carbon derived materials[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5456-5464.
碳基材料 | 检测离子 | 检测限 | 稳定性 | 灵敏度 |
---|---|---|---|---|
化学还原氧化石墨烯(CRGNO) | K+ | 10-6.2mol/L | (12.6±1.1)μV/h | 58.4mV/decade |
还原型氧化石墨烯(RGO) | Ca2+ | 10-6.2mol/L | 10μV/h | 29.5mV/decade |
三维石墨烯海绵(3D GS) | Cu2+ | 2.5×10-9mol/L | 2μV/h | (28.6±0.7)mV/decade |
石墨烯/金纳米颗粒 | K+ | 10-5.9mol/L | 36μV/h | (59.6±0.2)mV/decade |
单壁碳纳米管(SWCNTs) | K+ | 10-6mol/L | 27.4μV/h | 58.1mV/decade |
多壁碳纳米管(MWCNTs) | Na+ | 7.08×10-7mol/L | — | 58mV/decade |
二茂铁功能化多壁碳纳米管(Fc-MWCNT) | K+ | 4×10-7mol/L | 15μV/h | — |
三维有序大孔碳(3DOMC) | K+ | 10-6.2mol/L | 11.7μV/h | 56.4mV/decade |
空心碳纳米球(HCN) | Ca2+ | 10-5mol/L | 20μV/h | 28mV/decade |
有序介孔碳(OMC) | K+ | 10-5.27mol/L | (28±1.9)μV/h | (63.5±0.6)mV/decade |
碳黑(CB) | K+/Na+/Ca2+ | 10-4mol/L | — | (59.2/59.2/29.6)mV/decade |
表1 各离子选择性电极的性能比较
碳基材料 | 检测离子 | 检测限 | 稳定性 | 灵敏度 |
---|---|---|---|---|
化学还原氧化石墨烯(CRGNO) | K+ | 10-6.2mol/L | (12.6±1.1)μV/h | 58.4mV/decade |
还原型氧化石墨烯(RGO) | Ca2+ | 10-6.2mol/L | 10μV/h | 29.5mV/decade |
三维石墨烯海绵(3D GS) | Cu2+ | 2.5×10-9mol/L | 2μV/h | (28.6±0.7)mV/decade |
石墨烯/金纳米颗粒 | K+ | 10-5.9mol/L | 36μV/h | (59.6±0.2)mV/decade |
单壁碳纳米管(SWCNTs) | K+ | 10-6mol/L | 27.4μV/h | 58.1mV/decade |
多壁碳纳米管(MWCNTs) | Na+ | 7.08×10-7mol/L | — | 58mV/decade |
二茂铁功能化多壁碳纳米管(Fc-MWCNT) | K+ | 4×10-7mol/L | 15μV/h | — |
三维有序大孔碳(3DOMC) | K+ | 10-6.2mol/L | 11.7μV/h | 56.4mV/decade |
空心碳纳米球(HCN) | Ca2+ | 10-5mol/L | 20μV/h | 28mV/decade |
有序介孔碳(OMC) | K+ | 10-5.27mol/L | (28±1.9)μV/h | (63.5±0.6)mV/decade |
碳黑(CB) | K+/Na+/Ca2+ | 10-4mol/L | — | (59.2/59.2/29.6)mV/decade |
1 | TURNER Anthony P F. Biosensors: sense and sensibility[J]. Chemical Society Reviews, 2013, 42(8): 3184-3196. |
2 | FRANT M S, ROSS J W. Electrode for sensing fluoride ion activity in solution[J]. Science, 1966, 154(3756): 1553-1555. |
3 | CUNNINGHAM L, FREISER H. Coated-wire ion-selective electrodes[J]. Analytica Chimica Acta, 1986, 180: 271-279. |
4 | ABRAMOVA Natalia, Javier MORAL-VICO, SOLEY Jordi, et al. Solid contact ion sensor with conducting polymer layer copolymerized with the ion-selective membrane for determination of calcium in blood serum[J]. Analyst, 2016, 943: 50-57. |
5 | HERNáNDEZ R, RIU J, RIUS F X. Determination of calcium ion in sap using carbon nanotube-based ion-selective electrodes[J]. Analytical Chemistry, 2010, 135(8): 1979-1985. |
6 | YIN Tanji, PAN Dawei, QIN Wei. All-solid-state polymeric membrane ion-selective miniaturized electrodes based on a nanoporous gold film as solid contact[J]. Analytical Chemistry, 2014, 86(22): 11038-11044. |
7 | IVANOVA N M, LEVIN M B, MIKHELSON K N. Problems and prospects of solid contact ion-selective electrodes with ionophore-based membranes[J]. Russian Chemical Bulletin, 2012, 61(5): 926-936. |
8 | Xavier RIUS-RUIZ F, Diego BEJARANO-NOSAS, BLONDEAU Pascal, et al. Disposable planar reference electrode based on carbon nanotubes and polyacrylate membrane[J]. Analytical Chemistry, 2011, 83(14): 5783-5788. |
9 | PING Jianfeng, WANG Yixian, WU Jian, et al. Development of an all-solid-state potassium ion-selective electrode using graphene as the solid-contact transducer[J]. Electrochemistry Communications, 2011, 13(12): 1529-1532. |
10 | LAI Chunze, FIERKE Melissa A, STEIN Andreas, et al. Ion-selective electrodes with three-dimensionally ordered macroporous carbon as the solid contact[J]. Analytical Chemistry, 2007, 79(12): 4621-4626. |
11 | FIERKE Melissa A, LAI Chunze, Philippe BÜHLMANN, et al. Effects of architecture and surface chemistry of three-dimensionally ordered macroporous carbon solid contacts on performance of ion-selective electrodes[J]. Analytical Chemistry, 2010, 82(2): 680-688. |
12 | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. |
13 | Rafael HERNÁNDEZ, Jordi RIU, BOBACKA Johan, et al. Reduced graphene oxide films as solid transducers in potentiometric all-solid-state ion-selective electrodes[J]. The Journal of Physical Chemistry C, 2012, 116(42): 22570-22578. |
14 | STANKOVICH Sasha, DIKIN Dmitriy A, PINER Richard D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7): 1558-1565. |
15 | PING Jianfeng, WANG Yixian, YING Yibin, et al. Application of electrochemically reduced graphene oxide on screen-printed ion-selective electrode[J]. Analytical Chemistry, 2012, 84(7): 3473-3479. |
16 | GARLAND Nate T, MCLAMORE Eric S, CAVALLARO Nicholas D, et al. Flexible laser-induced graphene for nitrogen sensing in soil[J]. ACS Applied Materials & Interfaces, 2018, 10(45): 39124-39133. |
17 | HJORT Robert G, SOARES Raquel R A, LI Jingzhe, et al. Hydrophobic laser-induced graphene potentiometric ion-selective electrodes for nitrate sensing[J]. Mikrochimica Acta, 2022, 189(3): 122. |
18 | HE Qing, Suprem R DAS, GARLAND Nathaniel T, et al. Enabling inkjet printed graphene for ion selective electrodes with postprint thermal annealing[J]. ACS Applied Materials & Interfaces, 2017, 9(14): 12719-12727. |
19 | AN Qingbo, GAN Shiyu, XU Jianan, et al. A multichannel electrochemical all-solid-state wearable potentiometric sensor for real-time sweat ion monitoring[J]. Electrochemistry Communications, 2019, 107: 106553. |
20 | LI Jinghui, QIN Wei. A freestanding all-solid-state polymeric membrane Cu2+-selective electrode based on three-dimensional graphene sponge[J]. Analytica Chimica Acta, 2019, 1068: 11-17. |
21 | YOON Jo Hee, PARK Hong Jun, PARK Seung Hwa, et al. Electrochemical characterization of reduced graphene oxide as an ion-to-electron transducer and application of screen-printed all-solid-state potassium ion sensors[J]. Carbon Letters, 2020, 30(1): 73-80. |
22 | SUN Qinqin, LI Wanzhen, SU Bin. Highly hydrophobic solid contact based on graphene-hybrid nanocomposites for all solid state potentiometric sensors with well-formulated phase boundary potentials[J]. Journal of Electroanalytical Chemistry, 2015, 740: 21-27. |
23 | Magdalena PIĘK, FENDRYCH Katarzyna, SMAJDOR Joanna, et al. High selective potentiometric sensor for determination of nanomolar con-centration of Cu(Ⅱ) using a polymeric electrode modified by a graphene/7,7,8,8-tetracyanoquinodimethane nanoparticles[J]. Talanta, 2017, 170: 41-48. |
24 | Magdalena PIĘK, PIECH Robert, Beata PACZOSA-BATOR. All-solid-state nitrate selective electrode with graphene/tetrathiafulvalene nanocomposite as high redox and double layer capacitance solid contact[J]. Electrochimica Acta, 2016, 210: 407-414. |
25 | TAKAMATSU Hiroki, OHBA Tomonori. Water adsorption control by surface nanostructures on graphene-related materials by grand canonical Monte Carlo simulations[J]. Langmuir, 2021, 37(50): 14646-14656. |
26 | MAO Shun, LU Ganhua, CHEN Junhong. Three-dimensional graphene-based composites for energy applications[J]. Nanoscale, 2015, 7(16): 6924-6943. |
27 | BOEVA Zhanna A, LINDFORS Tom. Few-layer graphene and polyaniline composite as ion-to-electron transducer in silicone rubber solid-contact ion-selective electrodes[J]. Sensors and Actuators B: Chemical, 2016, 224: 624-631. |
28 | LI Jinghui, YIN Tanji, QIN Wei. An effective solid contact for an all-solid-state polymeric membrane Cd2+-selective electrode: three-dimensional porous graphene-mesoporous platinum nanoparticle composite[J]. Sensors and Actuators B: Chemical, 2017, 239: 438-446. |
29 | LIU Yuandong, ZHANG Limin, MO Jingwen, et al. Ion selective electrode mediated by transfer layer of graphene oxide for detection of Ca2+ with highly sensitivity and selectivity[J]. Journal of the Electrochemical Society, 2022, 169(1): 016514. |
30 | SCHROEDER Vera, SAVAGATRUP Suchol, HE Maggie, et al. Carbon nanotube chemical sensors[J]. Chemical Reviews, 2019, 119(1): 599-663. |
31 | ZHAO Fengnian, WU Jian, YING Yibin, et al. Carbon nanomaterial-enabled pesticide biosensors: design strategy, biosensing mechanism, and practical application[J]. TrAC Trends in Analytical Chemistry, 2018, 106: 62-83. |
32 | JIANG Chengmei, LAN Lingyi, YAO Yao, et al. Recent progress in application of nanomaterial-enabled biosensors for ochratoxin A detection[J]. Trends in Analytical Chemistry, 2018, 102: 236-249. |
33 | Daniel QUESADA-GONZÁLEZ, Arben MERKOÇI. Nanomaterial-based devices for point-of-care diagnostic applications[J]. Chemical Society Reviews, 2018, 47(13): 4697-4709. |
34 | WEN Lei, LI Feng, CHENG Huiming. Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices[J]. Advanced Materials, 2016, 28(22): 4306-4337. |
35 | CRESPO Gastón A, GUGSA Derese, MACHO Santiago, et al. Solid-contact pH-selective electrode using multi-walled carbon nanotubes[J]. Analytical and Bioanalytical Chemistry, 2009, 395(7): 2371-2376. |
36 | PARRA Enrique J, CRESPO Gastón A, Jordi RIU, et al. Ion-selective electrodes using multi-walled carbon nanotubes as ion-to-electron transducers for the detection of perchlorate[J]. Analyst, 2009, 134(9): 1905-1910. |
37 | MOUSAVI Zekra, TETER Agnieszka, LEWENSTAM Andrzej, et al. Comparison of multi-walled carbon nanotubes and poly(3-octylthiophene) as ion-to-electron transducers in all-solid-state potassium ion-selective electrodes[J]. Electroanalysis, 2011, 23(6): 1352-1358. |
38 | YUAN Dajing, ANTHIS Alexandre H C, AFSHAR Majid Ghahraman, et al. All-solid-state potentiometric sensors with a multiwalled carbon nanotube inner transducing layer for anion detection in environmental samples[J]. Analytical Chemistry, 2015, 87(17): 8640-8645. |
39 | CUARTERO María, DEL RÍO Jonathan Sabaté, BLONDEAU Pascal, et al. Rubber-based substrates modified with carbon nanotubes inks to build flexible electrochemical sensors[J]. Analytica Chimica Acta, 2014, 827: 95-102. |
40 | NOVELL Marta, GUINOVART Tomàs, BLONDEAU Pascal, et al. A paper-based potentiometric cell for decentralized monitoring of Li levels in whole blood[J]. Lab on a Chip, 2014, 14(7): 1308-1314. |
41 | VAISMAN Linda, Daniel WAGNER H, MAROM Gad. The role of surfactants in dispersion of carbon nanotubes[J]. Advances in Colloid and Interface Science, 2006, 128: 37-46. |
42 | JAWORSKA Ewa, LEWANDOWSKI Wiktor, Józef MIECZKOWSKI, et al. Simple and disposable potentiometric sensors based on graphene or multi-walled carbon nanotubes—Carbon-plastic potentiometric sensors[J]. Analyst, 2013, 138(8): 2363-2371. |
43 | Cristina OCAÑA, ABRAMOVA Natalia, BRATOV Andrey, et al. Calcium-selective electrodes based on photo-cured polyurethane-acrylate membranes covalently attached to methacrylate functionalized poly(3,4-ethylenedioxythiophene) as solid-contact[J]. Talanta, 2018, 186: 279-285. |
44 | MOUSAVI Zekra, BOBACKA Johan, LEWENSTAM Andrzej, et al. Poly(3,4-ethylenedioxythiophene) (PEDOT) doped with carbon nanotubes as ion-to-electron transducer in polymer membrane-based potassium ion-selective electrodes[J]. Journal of Electroanalytical Chemistry, 2009, 633(1): 246-252. |
45 | RAJABI Hamid Reza, ROUSHANI Mahmoud, SHAMSIPUR Mojtaba. Development of a highly selective voltammetric sensor for nanomolar detection of mercury ions using glassy carbon electrode modified with a novel ion imprinted polymeric nanobeads and multi-wall carbon nanotubes[J]. Journal of Electroanalytical Chemistry, 2013, 693: 16-22. |
46 | MALIK Lateef Ahmad, PANDITH Altaf Hussain, BASHIR Arshid, et al. Zinc oxide-decorated multiwalled carbon nanotubes: a selective electrochemical sensor for the detection of Pb(Ⅱ) ion in aqueous media[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(9): 6178-6189. |
47 | MU Jiahui, WONG Shao Ing, LI Qiang, et al. Fishbone-derived N-doped hierarchical porous carbon as an electrode material for supercapacitor[J]. Journal of Alloys and Compounds, 2020, 832: 154950. |
48 | NEAL Justin N, WESOLOWSKI David J, HENDERSON Douglas, et al. Ion distribution and selectivity of ionic liquids in microporous electrodes[J]. The Journal of Chemical Physics, 2017, 146(17): 174701. |
49 | PARK Suji, MAIER Claudia S, KOLEY Dipankar. Anodic stripping voltammetry on a carbon-based ion-selective electrode[J]. Electrochimica Acta, 2021, 390: 138855. |
50 | HU Jinbo, ZOU Xu U, STEIN Andreas, et al. Ion-selective electrodes with colloid-imprinted mesoporous carbon as solid contact[J]. Analytical Chemistry, 2014, 86(14): 7111-7118. |
51 | HU Jinbo, ZHAO Wenyang, Philippe BÜHLMANN, et al. Paper-based all-solid-state ion-sensing platform with a solid contact comprising colloid-imprinted mesoporous carbon and a redox buffer[J]. ACS Applied Nano Materials, 2018, 1(1): 293-301. |
52 | ANDREDAKIS George E, MOSCHOU Elizabeth A, MATTHAIOU Katherine, et al. Theoretical and experimental studies of metallated phenanthroline derivatives as carriers for the optimization of the nitrate sensor[J]. Analytica Chimica Acta, 2001, 439(2): 273-280. |
53 | VAMVAKAKI Maria, CHANIOTAKIS Nikolas A. Solid-contact ion-selective electrode with stable internal electrode[J]. Analytica Chimica Acta, 1996, 320(1): 53-61. |
54 | WEBER Andrew W, O'NEIL Glen D, KOUNAVES Samuel P. Solid contact ion-selective electrodes for in situ measurements at high pressure[J]. Analytical Chemistry, 2017, 89(9): 4803-4807. |
55 | DAI Runying, MA Xue, XU Quan, et al. Controllable synthesis of three-dimensional nitrogen-doped hierarchical porous carbon and its application in the detection of lead[J]. RSC Advances, 2019, 9(33): 18902-18908. |
56 | GULDI Dirk M. Fullerenes: three dimensional electron acceptor materials[J]. Chemical Communications, 2000(5): 321-327. |
57 | JANDA Pavel, KRIEG Torsten, DUNSCH Lothar. Nanostructuring of highly ordered C60 films by charge transfer[J]. Advanced Materials, 1998, 10(17): 1434-1438. |
58 | XIE Qingshan, Eduardo PEREZ-CORDERO, ECHEGOYEN Luis. Electrochemical detection of C60 6- and C70 6-: enhanced stability of fullerides in solution[J]. Journal of the American Chemical Society, 1992, 114(10): 3978-3980. |
59 | KROTO H W, HEATH J R, OBRIEN S C, et al. Long carbon chain molecules in circumstellar shells[J]. The Astrophysical Journal Letters, 1987, 314: 352. |
60 | FOUSKAKI Maria, NIKOS Chaniotakis. Fullerene-based electrochemical buffer layer for ion-selective electrodes[J]. Analyst, 2008, 133(8): 1072-1075. |
61 | LI Jinghui, YIN Tanji, QIN Wei. An all-solid-state polymeric membrane Pb2+-selective electrode with bimodal pore C60 as solid contact[J]. Analytica Chimica Acta, 2015, 876: 49-54. |
62 | YE Junjin, LI Fenghua, GAN Shiyu, et al. Using sp2-C dominant porous carbon sub-micrometer spheres as solid transducers in ion-selective electrodes[J]. Electrochemistry Communications, 2015, 50: 60-63. |
63 | ZHAO Lijun, JIANG Ying, WEI Huan, et al. In vivo measurement of calcium ion with solid-state ion-selective electrode by using shelled hollow carbon nanospheres as a transducing layer[J]. Analytical Chemistry, 2019, 91(7): 4421-4428. |
64 | JIANG Zidengya, XI Xin, QIU Shi, et al. Ordered mesoporous carbon sphere-based solid-contact ion-selective electrodes[J]. Journal of Materials Science, 2019, 54(21): 13674-13684. |
65 | JIANG Chengmei, YAO Yao, CAI Yalu, et al. All-solid-state potentiometric sensor using single-walled carbon nanohorns as transducer[J]. Sensors and Actuators B: Chemical, 2019, 283: 284-289. |
66 | Beata PACZOSA-BATOR. All-solid-state selective electrodes using carbon black[J]. Talanta, 2012, 93: 424-427. |
67 | MOUSAVI Maral P S, AINLA Alar, TAN Edward K W, et al. Ion sensing with thread-based potentiometric electrodes[J]. Lab on a Chip, 2018, 18(15): 2279-2290. |
68 | TIMOFEEV V V, LEVIN M B, STARIKOVA A A, et al. Solid-contact ion-selective electrodes with copper hexacyanoferrate in the transducer layer[J]. Russian Journal of Electrochemistry, 2018, 54(4): 400-408. |
69 | SAMSONOVA Elisaveta N, LUTOV Viktor M, MIKHELSON Konstantin N. Solid-contact ionophore-based electrode for determination of pH in acidic media[J]. Journal of Solid State Electrochemistry, 2009, 13(1): 69-75. |
70 | IVANOVA Nataliya M, PODESHVO Irina V, GOIKHMAN Mikhail Ya, et al. Potassium-selective solid contact electrodes with poly(amidoacid) Cu(I) complex, electron-ion exchanging resin and different sorts of carbon black in the transducer layer[J]. Sensors and Actuators B: Chemical, 2013, 186: 589-596. |
71 | Beata PACZOSA-BATOR. Ion-selective electrodes with superhydrophobic polymer/carbon nanocomposites as solid contact[J]. Carbon, 2015, 95: 879-887. |
72 | VEDIYAPPAN Veeramania, RAJESH Madhua, CHEN Shenming, et al. Heteroatom-enriched porous carbon/nickel oxide nanocomposites as enzyme-free highly sensitive sensors for detection of glucose. Sensors and Actuators B: Chemical, 2015, 221: 1384-1390. |
73 | KIM Dongwon, KIM Jong Min, JEON Youngmoo, et al. Novel two-step activation of biomass-derived carbon for highly sensitive electrochemical determination of acetaminophen[J]. Sensors and Actuators B: Chemical, 2018, 259: 50-58. |
74 | WANG Shuqi, WU Yongjin, GU Yang, et al. Wearable sweatband sensor platform based on gold nanodendrite array as efficient solid contact of ion-selective electrode[J]. Analytical Chemistry, 2017, 89(19): 10224-10231. |
[1] | 朱子翼, 张英杰, 董鹏, 孟奇, 曾晓苑, 章艳佳, 吉金梅, 和秋谷, 黎永泰, 李雪. 高性能钠离子电池负极材料的研究进展[J]. 化工进展, 2019, 38(05): 2222-2232. |
[2] | 李烁, 姚楠. 掺氮碳基材料在费托合成反应中的应用[J]. 化工进展, 2015, 34(11): 3933-3937. |
[3] | 刘贵, 宁平, 李凯, 汤立红, 宋辛, 王驰. 介质阻挡放电等离子体改性碳基材料研究进展[J]. 化工进展, 2015, 34(07): 1905-1912. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |