化工进展 ›› 2025, Vol. 44 ›› Issue (9): 5043-5054.DOI: 10.16085/j.issn.1000-6613.2024-1214
• 材料科学与技术 • 上一篇
杨誉淞1,2(
), 唐健1,2, 李银1,2, 杨斌1,2, 张克宇1,2, 张少泽1,2, 姚耀春1,2(
), 胡均贤1,2(
)
收稿日期:2024-07-26
修回日期:2024-11-13
出版日期:2025-09-25
发布日期:2025-09-30
通讯作者:
姚耀春,胡均贤
作者简介:杨誉淞(1999—),男,硕士研究生,研究方向为电解铜箔。E-mail:1281964678@qq.com。
基金资助:
YANG Yusong1,2(
), TANG Jian1,2, LI Yin1,2, YANG Bin1,2, ZHANG Keyu1,2, ZHANG Shaoze1,2, YAO Yaochun1,2(
), HU Junxian1,2(
)
Received:2024-07-26
Revised:2024-11-13
Online:2025-09-25
Published:2025-09-30
Contact:
YAO Yaochun, HU Junxian
摘要:
电解铜箔作为锂离子电池负极材料的重要组成部分,其性能直接关系到电池的电化学特性和安全性。本文系统探讨了电沉积工艺参数和添加剂对铜箔性能的影响,重点分析了铜离子浓度、电解液温度、电流密度和电解液循环等因素对铜箔晶粒尺寸、表面粗糙度和电化学性能的作用。研究表明,适宜的铜离子浓度和电解液温度有助于获得均匀细小的晶粒和更平滑的表面,而电流密度的提高可以在一定程度上提升铜箔的沉积速率和电流效率。添加剂的使用对铜箔的晶粒细化、表面质量和内应力分布具有重要作用,不同添加剂之间的协同和竞争作用需要精细调控以优化铜箔性能。尽管电解铜箔在锂离子电池中的应用已经取得了显著进展,但仍存在提高产品一致性和性能稳定性的挑战。未来的研究和开发工作需要聚焦于提高电解铜箔的生产效率、产品质量以及环境可持续性,同时控制和降低生产成本。
中图分类号:
杨誉淞, 唐健, 李银, 杨斌, 张克宇, 张少泽, 姚耀春, 胡均贤. 电解铜箔微观结构与力学性能影响因素的研究进展[J]. 化工进展, 2025, 44(9): 5043-5054.
YANG Yusong, TANG Jian, LI Yin, YANG Bin, ZHANG Keyu, ZHANG Shaoze, YAO Yaochun, HU Junxian. Advances in research on the influence factors of microstructure and mechanical properties of electrolytic copper foil[J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5043-5054.
| 光亮剂类型 | 光亮效果 | 对表面粗糙度的影响 | 对抗拉强度的影响 | 对断裂延伸率的影响 | 备注 |
|---|---|---|---|---|---|
| 几乎没有效果 | 影响不明确 | 影响不明显 | 变化很小 | 无明显光亮效果 | |
| 效果明显 | 降低粗糙度 | 过量时降低 | 初期增加,过量后降低 | 用量需适当控制 | |
| 效果较差 | 降低粗糙度,效果一般 | 过量时明显降低 | 增加效果较好 | 过量使用影响性能 | |
| 效果明显 | 降低粗糙度,效果显著 | 过量时降低 | 初期增加,过量后降低 | 用量需适当控制 |
表1 四种光亮剂在实验条件下的主要作用效果
| 光亮剂类型 | 光亮效果 | 对表面粗糙度的影响 | 对抗拉强度的影响 | 对断裂延伸率的影响 | 备注 |
|---|---|---|---|---|---|
| 几乎没有效果 | 影响不明确 | 影响不明显 | 变化很小 | 无明显光亮效果 | |
| 效果明显 | 降低粗糙度 | 过量时降低 | 初期增加,过量后降低 | 用量需适当控制 | |
| 效果较差 | 降低粗糙度,效果一般 | 过量时明显降低 | 增加效果较好 | 过量使用影响性能 | |
| 效果明显 | 降低粗糙度,效果显著 | 过量时降低 | 初期增加,过量后降低 | 用量需适当控制 |
| ρ(SPS)/mg·L-1 | ρ(HEC)/mg·L-1 | ρ(钼酸钠)/mg·L-1 | 毛面粗糙度/μm | 剥离强度/N·mm-1 | 劣化率/% |
|---|---|---|---|---|---|
| 1 | 3 | 30 | 7.53 | 1.50 | 7.33 |
| 1 | 5 | 50 | 7.40 | 1.41 | 0.71 |
| 1 | 7 | 70 | 7.50 | 1.47 | 4.08 |
| 3 | 3 | 50 | 7.57 | 1.53 | 0 |
| 3 | 5 | 70 | 7.38 | 1.39 | 4.31 |
| 3 | 7 | 30 | 7.44 | 1.42 | 2.11 |
| 5 | 3 | 70 | 7.53 | 1.49 | 3.73 |
| 5 | 5 | 30 | 7.26 | 1.34 | 10.06 |
| 5 | 7 | 50 | 7.35 | 1.38 | 17.39 |
表2 不同浓度SPS、HEC及钼酸钠复配时铜箔的性能
| ρ(SPS)/mg·L-1 | ρ(HEC)/mg·L-1 | ρ(钼酸钠)/mg·L-1 | 毛面粗糙度/μm | 剥离强度/N·mm-1 | 劣化率/% |
|---|---|---|---|---|---|
| 1 | 3 | 30 | 7.53 | 1.50 | 7.33 |
| 1 | 5 | 50 | 7.40 | 1.41 | 0.71 |
| 1 | 7 | 70 | 7.50 | 1.47 | 4.08 |
| 3 | 3 | 50 | 7.57 | 1.53 | 0 |
| 3 | 5 | 70 | 7.38 | 1.39 | 4.31 |
| 3 | 7 | 30 | 7.44 | 1.42 | 2.11 |
| 5 | 3 | 70 | 7.53 | 1.49 | 3.73 |
| 5 | 5 | 30 | 7.26 | 1.34 | 10.06 |
| 5 | 7 | 50 | 7.35 | 1.38 | 17.39 |
| [1] | BRAFF William A, MUELLER Joshua M, TRANCIK Jessika E. Value of storage technologies for wind and solar energy[J]. Nature Climate Change, 2016, 6: 964-969. |
| [2] | JIN Liming, GONG Ruiqi, ZHENG Junsheng, et al. Fabrication of dual-modified carbon network enabling improved electronic and ionic conductivities for fast and durable Li2TiSiO5 anodes[J]. ChemElectroChem, 2019, 6(12): 3020-3029. |
| [3] | CHU Hsun-Chen, TUAN Hsing-Yu. High-performance lithium-ion batteries with 1.5μm thin copper nanowire foil as a current collector[J]. Journal of Power Sources, 2017, 346: 40-48. |
| [4] | 金荣涛. 电解铜箔生产[M]. 长沙: 中南大学出版社, 2010: 208-209. |
| JIN Rongtao. Electrolytic copper foil production[M]. Changsha: Central South University Press, 2010: 208-209. | |
| [5] | 师慧娟, 陆冰沪, 樊小伟, 等. 电解铜箔表面处理技术及添加剂研究进展[J]. 中国有色金属学报, 2021, 31(5): 1270-1284. |
| SHI Huijuan, LU Binghu, FAN Xiaowei, et al. Research progress of electrolytic copper foil surface treatment technology and additives[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(5): 1270-1284. | |
| [6] | 柏大伟. 锂离子电池中石墨烯基复合负极材料制备与表征[D]. 上海: 上海交通大学, 2010. |
| BAI Dawei. Preparation and characterization of graphene-based composite anode materials for lithium ion batteries[D]. Shanghai: Shanghai Jiao Tong University, 2010. | |
| [7] | 杨蕾, 朱茂兰, 翁威, 等. 锂电池用电解铜箔性能调控研究进展[J]. 材料导报, 2024, 38(10): 113-121. |
| YANG Lei, ZHU Maolan, WENG Wei, et al. Research progress on performance regulation of electrolytic copper foil for lithium batteries[J]. Materials Reports, 2024, 38(10): 113-121. | |
| [8] | LIN Chuncheng, YEN Chih-Han, LIN Shengchi, et al. Interactive effects of additives and electrolyte flow rate on the microstructure of electrodeposited copper foils[J]. Journal of the Electrochemical Society, 2017, 164(13): D810-D817. |
| [9] | 李文康. 电解铜箔制造技术探讨[J]. 上海有色金属, 2005, 26(1): 16-20. |
| LI Wenkang. Study of technology for producing copper foils by electrolytic process[J]. Shanghai Nonferrous Metals, 2005, 26(1): 16-20. | |
| [10] | 黄友明, 王平, 黄永发. 电解铜箔表面结构及性能影响因素[J]. 中南大学学报(自然科学版), 2010, 41(6): 2162-2166. |
| HUANG Youming, WANG Ping, HUANG Yongfa. Surface structure and performance of electrolytic copper foils[J]. Journal of Central South University (Science and Technology), 2010, 41(6): 2162-2166. | |
| [11] | 樊小伟. 超薄电解铜箔组织结构与力学性能调控及其表面处理技术研究[D]. 赣州: 江西理工大学, 2021. |
| FAN Xiaowei. Study on microstructure and mechanical properties regulation of ultra-thin electrolytic copper foil and its surface treatment technology[D]. Ganzhou: Jiangxi University of Science and Technology, 2021. | |
| [12] | 易光斌, 杨湘杰, 彭文屹, 等. 铜离子浓度对电解铜箔组织性能的影响[J]. 电镀与涂饰, 2015, 34(7): 371-374. |
| YI Guangbin, YANG Xiangjie, PENG Wenyi, et al. Influence of copper ion concentration on microstructure and performance of electrolytic copper foil[J]. Electroplating & Finishing, 2015, 34(7): 371-374. | |
| [13] | LI Yanfeng, HUANG Guojie, YIN Xiangqian, et al. Effect of copper ion concentration on microstructure and mechanical properties of electrolytic copper foil[J]. IOP Conference Series: Materials Science and Engineering, 2018, 381: 012166. |
| [14] | HUNG Yu-Wen, TRAN Dinh-Phuc, CHEN Chih. Effect of Cu ion concentration on microstructures and mechanical properties of nanotwinned Cu foils fabricated by rotary electroplating[J]. Nanomaterials, 2021, 11(8): 2135. |
| [15] | MALLIK Archana. An analysis on the effect of temperature on electrocrystallization mechanism during deposition of Cu thin films[J]. Transactions of the Indian Institute of Metals, 2013, 66(1): 79-85. |
| [16] | LI Yujin, TU King-Ning, CHEN Chih. Tensile properties of-oriented nanotwinned Cu with different columnar grain structures[J]. Materials, 2020, 13(6): 1310. |
| [17] | SONG Jenn-Ming, WANG Ding-Siang, YEH Chung-Hsien, et al. Texture and temperature dependence on the mechanical characteristics of copper electrodeposits[J]. Materials Science and Engineering A, 2013, 559: 655-664. |
| [18] | Tae-Gyu WOO, PARK II-Song, JUNG Kwang-Hee, et al. Property and surface morphology of copper foil on the current density[J]. Korean Journal of Materials Research, 2010, 20(10): 555-558. |
| [19] | FANG Chuanyu, TRAN Dinh-Phuc, LIU Hung-Che, et al. Effect of electroplating current density on tensile properties of nanotwinned copper foils[J]. Journal of the Electrochemical Society, 2022, 169(4): 042503. |
| [20] | 徐建平. 电沉积参数对电解铜箔性能影响研究[J]. 世界有色金属, 2018(14): 201-202. |
| XU Jianping. Study on the influence of electrodeposition parameters on the performance of electrolytic copper foil[J]. World Nonferrous Metals, 2018(14): 201-202. | |
| [21] | CAO Quoc-Dinh, FANG Liang, Jiuming LYU, et al. Effects of pulse reverse electroforming parameters on the thickness uniformity of electroformed copper foil[J]. Transactions of the IMF, 2018, 96(2): 108-112. |
| [22] | 费翔昱, 宫本奎, 孙玉梅, 等. 电解铜箔变形的影响因素分析[J]. 材料科学, 2020, 10(3): 162-172. |
| FEI Xiangyi, GONG Benkui, SUN Yumei, et al. Analysis of influencing factors of electrolytic copper foil warpage[J]. Material Sciences, 2020, 10(3): 162-172. | |
| [23] | 樊斌锋, 李应恩. 电解铜箔的低翘曲工艺研究[J]. 科学家, 2016, 4(6): 157-158. |
| FAN Binfeng, LI Ying’en. Study on low warping process of electrolytic copper foil[J]. Scientist, 2016, 4(6): 157-158. | |
| [24] | 惠越, 杨光, 胡正晨, 等. 电解液组成及工艺参数对铜箔性能的影响[J]. 材料科学与工艺, 2023, 31(5): 66-75. |
| HUI Yue, YANG Guang, HU Zhengchen, et al. Influence of electrolyte composition and process parameters on Cu foil performance[J]. Materials Science and Technology, 2023, 31(5): 66-75. | |
| [25] | 易光斌. 电解铜箔组织性能及其翘曲产生机理研究[D]. 南昌: 南昌大学, 2014. |
| YI Guangbin. Study on microstructure and properties of electrolytic copper foil and its warping mechanism[D]. Nanchang: Nanchang University, 2014. | |
| [26] | ZHANG Yumei, HANG Tao, DONG Mengya, et al. Effects of 2-mercaptopyridine and Janus green B as levelers on electrical resistance of electrodeposited copper thin film for interconnects[J]. Thin Solid Films, 2019, 677: 39-44. |
| [27] | ZHENG Li, HE Wei, ZHU Kai, et al. Investigation of poly (1-vinyl imidazole co 1,4-butanediol diglycidyl ether) as a leveler for copper electroplating of through-hole[J]. Electrochimica Acta, 2018, 283: 560-567. |
| [28] | MANU R, JAYAKRISHNAN Sobha. Influence of additives and the effect of aging in modifying surface topography of electrodeposited copper[J]. Journal of the Electrochemical Society, 2009, 156(7): D215. |
| [29] | 王海振, 胡旭日. 酸性镀铜添加剂对生产锂离子电池用双面光电解铜箔的影响[J]. 电镀与涂饰, 2019, 38(8): 335-337. |
| WANG Haizhen, HU Xuri. Effects of additives for acid copper plating on electrolytic copper foils being bright on both sides for fabrication of lithium-ion batteries[J]. Electroplating & Finishing, 2019, 38(8): 335-337. | |
| [30] | 孙玥, 刘玲玲, 李鑫泉, 等. 添加剂对电解铜箔作用机理及作用效果的研究进展[J]. 化工进展, 2021, 40(11): 5861-5874. |
| SUN Yue, LIU Lingling, LI Xinquan, et al. Research progress in mechanisms and effects of various additives used for preparing electrolytic copper foils[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 5861-5874. | |
| [31] | 王庆福, 韩田莉, 樊斌锋, 等. 羟乙基纤维素对4μm高抗拉电解铜箔组织及性能的影响[J]. 有色金属(冶炼部分), 2024(6): 104-108. |
| WANG Qingfu, HAN Tianli, FAN Binfeng, et al. Effect of hydroxyethyl cellulose on microstructure and properties of 4μm high-tensile electrolytic copper foil[J]. Nonferrous Metals (Extractive Metallurgy), 2024(6): 104-108. | |
| [32] | 张震, 黄金豆. 不同聚合度壬基酚聚氧乙烯醚在酸性光亮镀铜中的应用[J]. 中国有色金属学报, 2017, 27(3): 666-673. |
| ZHANG Zhen, HUANG Jindou. Application of NP(EO) n with different polymerization degrees in acid bright copper plating[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(3): 666-673. | |
| [33] | 朱若林, 宋言, 代泽宇, 等. 聚乙二醇对锂电铜箔组织性能的影响[J]. 铜业工程, 2022(4): 9-11, 20. |
| ZHU Ruolin, SONG Yan, DAI Zeyu, et al. Influence of polyethylene glycol on microstructure and properties of lithium battery copper foil[J]. Copper Engineering, 2022(4): 9-11, 20. | |
| [34] | 樊斌锋, 姬琳, 王庆福, 等. 有机添加剂对极薄锂电铜箔性能的影响[J]. 电镀与涂饰, 2023, 42(7): 43-46. |
| FAN Binfeng, JI Lin, WANG Qingfu, et al. Effects of organic additives on properties of ultrathin copper foil for lithium batteries[J]. Electroplating & Finishing, 2023, 42(7): 43-46. | |
| [35] | PENG Xuesong, LI Lanchen, JIANG Jie, et al. Mechanistic insight into the Janus green B on electrochemical roughening layer of copper foil[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 698: 134523. |
| [36] | Wei-Ping DOW, LI Chih-Chan, SU Yong-Chih, et al. Microvia filling by copper electroplating using diazine black as a leveler[J]. Electrochimica Acta, 2009, 54(24): 5894-5901. |
| [37] | LI Zhongguo, GAO Liyin, LI Zhe, et al. Regulating the orientation and distribution of nanotwins by trace of gelatin during direct current electroplating copper on titanium substrate[J]. Journal of Materials Science, 2022, 57(37): 17797-17811. |
| [38] | 高宁宁, 程瑾宁, 李宁. 硫脲在电镀和化学镀中的应用[J]. 材料保护, 2008, 41(12): 50-53, 90. |
| GAO Ningning, CHENG Jinning, LI Ning. Application of thiourea in electroplating and electroless plating[J]. Materials Protection, 2008, 41(12): 50-53, 90. | |
| [39] | 吴水清. 硫脲在电镀溶液中的化学效应[J]. 电镀与涂饰, 1991, 10(2): 45-51. |
| WU Shuiqing. Chemical effects of thiourea in electroplating solution[J]. Electroplating & Finishing, 1991, 10(2): 45-51. | |
| [40] | 刘燕, 陈志林, 孔令花, 等. 硫脲对电解高性能双面光锂电铜箔性能的影响[J]. 材料保护, 2024, 57(5): 172-177, 190. |
| LIU Yan, CHEN Zhilin, KONG Linghua, et al. Effects of thiourea on electrolytic high-performance dual-sided lithium copper foil properties[J]. Materials Protection, 2024, 57(5): 172-177, 190. | |
| [41] | 宋言, 朱若林, 林毅, 等. 光亮剂对锂电铜箔表面质量的影响研究[J]. 铜业工程, 2022(3): 6-9. |
| SONG Yan, ZHU Ruolin, LIN Yi, et al. Study on the effect of brightener on the surface quality of lithium copper foil[J]. Copper Engineering, 2022(3): 6-9. | |
| [42] | 廖娟, 王丽娟, 赵嫚, 等. 磺酸基团添加剂对铜箔形貌、组织结构及极化电沉积的影响研究[C]//中国电子材料行业协会覆铜板材料分会, 中国电子电路行业协会覆铜板分会. 第二十四届中国覆铜板技术研讨会论文集. 桐乡, 2023: 530-536. |
| LIAO Juan, WANG Lijuan, ZHAO Man, et al. Study on the effects of sulfonic acid additives on the morphology, microstructure, and polarization electroplating of copper foil[C]// China Electronic Materials Industry Association Copper Clad Laminate Materials Branch, China Electronic Circuit Industry Association Copper Clad Laminate Branch, Proceedings of the 24th China Copper Clad Laminate Technology Symposium. Tongxiang, 2023: 530-536. | |
| [43] | Yu-Jyun KAO, LI Yuju, SHEN Yuan, et al. Significant Hall-Petch effect in micro-nanocrystalline electroplated copper controlled by SPS concentration[J]. Scientific Reports, 2023, 13(1): 428. |
| [44] | 华天宇, 王世颖, 王文昌, 等. 巯基乙酸对电解铜箔抗氧化性的影响[J]. 电镀与涂饰, 2022, 41(23): 1668-1675. |
| HUA Tianyu, WANG Shiying, WANG Wenchang, et al. Effect of thioglycolic acid on antioxidation of electrolytic copper foil[J]. Electroplating & Finishing, 2022, 41(23): 1668-1675. | |
| [45] | 温丙台, 刘少华. Cl-在电解铜箔生产中的作用与危害[J]. 印制电路资讯, 2014(1): 109-110. |
| WEN Bingtai, LIU Shaohua. The role and hazards of Cl- in electrolytic copper foil production[J]. Printed Circuit Board Information, 2014(1): 109-110. | |
| [46] | 朱若林, 宋言, 代泽宇. 氯离子对锂电铜箔组织性能的影响[J]. 铜业工程, 2023(2):81-85. |
| ZHU Ruolin, SONG Yan, DAI Zeyu. Microstructure and properties of lithium copper foil with chloride ion[J]. Copper Engineering, 2023(2): 81-85. | |
| [47] | 马朝庆. 添加剂在铜电解精炼中的作用及应用[J]. 矿冶工程, 1999, 19(4): 46-48. |
| MA Chaoqing. Effect and application of aditive in copper electrolytical operation[J]. Mining and Metallurgical Engineering, 1999, 19(4): 46-48. | |
| [48] | SHAO W, PATTANAIK G, ZANGARI G. Influence of chloride anions on the mechanism of copper electrodeposition from acidic sulfate electrolytes[J]. Journal of the Electrochemical Society, 2007, 154(4): D201. |
| [49] | 朱明华, 李立青. 稀土添加剂在金属电沉积中的应用研究进展[J]. 电镀与涂饰, 2006, 25(6): 46-48, 53. |
| ZHU Minghua, LI Liqing. Process of application research of rare earth elements as additives in domestic electrodeposition[J]. Electroplating & Finishing, 2006, 25(6): 46-48, 53. | |
| [50] | 李照华, 乔知秋, 樊彬锋, 等. 硫酸高铈对电解铜箔性能的影响[J]. 有色金属(冶炼部分), 2024(6): 109-113. |
| LI Zhaohua, QIAO Zhiqiu, FAN Binfeng, et al. Effect of cerium sulfate on performance of electrolytic copper foil[J]. Nonferrous Metals (Extractive Metallurgy), 2024(6): 109-113. | |
| [51] | 胡增开. 极薄锂电铜箔添加剂效果研究[J]. 福建冶金, 2022, 51(5): 21-24. |
| HU Zengkai. Effect of additives on tensile properties of electrolytic copper foil[J]. Fujian Metallurgy, 2022, 51(5): 21-24. | |
| [52] | MAHARANA H S, BASU A. Surface-mechanical and oxidation behavior of electro-co-deposited Cu-Y2O3 composite coating[J]. Surface and Coatings Technology, 2016, 304: 348-358. |
| [53] | REN Penghui, AN Maozhong, YANG Peixia, et al. Unveiling the synergistic inhibition of Cl- copper plating: Pivotal roles of adsorption and desorption[J]. Journal of Electroanalytical Chemistry, 2021, 898: 115624. |
| [54] | 彭雪嵩, 由宏伟, 李兰晨, 等. 钼酸钠-HEC-SPS复合添加剂对电解铜箔粗化效果的影响[J]. 电镀与涂饰, 2023, 42(17): 56-67. |
| PENG Xuesong, YOU Hongwei, LI Lanchen, et al. Effect of a composite additive comprising sodium molybdate, HEC, and SPS on roughening of electrolytic copper foil[J]. Electroplating & Finishing, 2023, 42(17): 56-67. | |
| [55] | CHEN Haiyang, CHEN Kaibin, SHENG Yinying, et al. Properties and microstructure regulation of electrodeposited ultra-thin copper foil in a simple additive system[J]. Materials Research Express, 2024, 11(5): 056405. |
| [56] | XU Peng, LU Weiwei, SONG Kexing, et al. Preparation of electrodeposited copper foils with ultrahigh tensile strength and elongation: A functionalized ionic liquid as the unique additive[J]. Chemical Engineering Journal, 2024, 484: 149557. |
| [57] | SUN Yue, PAN Jianfeng, LIU Lingling, et al. Improvement of performance stability of electrolytic copper foils by bi-component additives[J]. Journal of Applied Electrochemistry, 2022, 52(8): 1219-1230. |
| [58] | TANG Mingxing, ZHANG Shengtao, QIANG Yujie, et al. 4,6-Dimethyl-2-mercaptopyrimidine as a potential leveler for microvia filling with electroplating copper[J]. RSC Advances, 2017, 7(64): 40342-40353. |
| [1] | 段五华, 孙涛祥, 郑强. 工业规模核用离心萃取器的水力学和传质性能[J]. 化工进展, 2025, 44(7): 3709-3717. |
| [2] | 杜静静, 蒋军, 徐信武, 邵鲁鹏, 徐朝阳, 梅长彤. 不同聚合度对聚乙烯醇成膜过程、膜结构和膜性能的影响[J]. 化工进展, 2025, 44(3): 1588-1598. |
| [3] | 雪冰峰, 张烨, 张世元, 付鹏, 崔喆, 张袁铖, 李鑫, 庞新厂, 赵蔚, 张晓朦, 刘民英. 直接固相聚合法制备聚酰胺PA12T及性能表征[J]. 化工进展, 2025, 44(3): 1559-1569. |
| [4] | 单雪影, 李玲玉, 张濛, 张家傅, 李锦春. 阻燃环氧树脂/低分子聚苯醚材料的制备及性能[J]. 化工进展, 2025, 44(3): 1533-1541. |
| [5] | 冯琬淇, 杨翠平, 郝俊尧, 倪红梅, 赵俭波. 棉浆黑液提取物基木塑复合材料的制备及性能[J]. 化工进展, 2025, 44(3): 1768-1775. |
| [6] | 万凯, 杨卫民, 丁奇胜, 殷荣政, 李好义, 谭晶. 激光辐照碳纤维石墨化均匀性及力学性能[J]. 化工进展, 2025, 44(2): 1025-1032. |
| [7] | 万立祥, 崔锦峰, 郭军红, 包雪梅, 杨保平. 聚酰胺酸-聚氨酯嵌段共聚物及其热亚胺化弹性体的制备与性能[J]. 化工进展, 2025, 44(1): 398-406. |
| [8] | 高觊兴, 丁玉梅, 张超, 谭晶, 丁熙, 李好义, 杨卫民. 熔体微分电纺PLA/PCL微纳米纤维膜的制备及其性能[J]. 化工进展, 2024, 43(S1): 457-468. |
| [9] | 楼高波, 姚潇翎, 倪静雯, 傅深渊, 刘丽娜. 离子络合物改性二维云母环氧树脂复合材料的制备及性能[J]. 化工进展, 2024, 43(9): 5142-5156. |
| [10] | 向浩寅, 陈良勇. Ni、Ce、Zn和Cu修饰Fe2O3/Al2O3载氧体的甲烷化学链制氢特性[J]. 化工进展, 2024, 43(8): 4320-4332. |
| [11] | 何瑞强, 方敏, 周健夺, 费华, 杨凯. 锂电池热管理用TPE基柔性复合相变材料的研究进展[J]. 化工进展, 2024, 43(6): 3159-3173. |
| [12] | 江安迪, 丁雪兴, 王世鹏, 丁俊华, 力宁. 超临界CO2干气密封热动力学性能研究进展[J]. 化工进展, 2024, 43(5): 2354-2369. |
| [13] | 苗诒贺, 王耀祖, 刘雨杭, 朱炫灿, 李佳, 于立军. 添加剂改性固态胺吸附剂用于碳捕集的研究进展[J]. 化工进展, 2024, 43(5): 2739-2759. |
| [14] | 李双喜, 党杰, 王子起, 高彤, 赵檀, 毕恩哲. 硅烷偶联剂改性氧化石墨烯/氢氧化镁复合材料在高温高载工况下的摩擦特征[J]. 化工进展, 2024, 43(12): 6862-6872. |
| [15] | 王玉周, 陈增, 曹东鑫, 周杰辉, 安旭, 马天琦. 纳米碳酸钙对nano-CaCO3/PES复合膜结构与性能的影响[J]. 化工进展, 2024, 43(11): 6310-6316. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |