化工进展 ›› 2025, Vol. 44 ›› Issue (1): 398-406.DOI: 10.16085/j.issn.1000-6613.2023-2285

• 材料科学与技术 • 上一篇    下一篇

聚酰胺酸-聚氨酯嵌段共聚物及其热亚胺化弹性体的制备与性能

万立祥1(), 崔锦峰1,2(), 郭军红1, 包雪梅1, 杨保平1   

  1. 1.兰州理工大学石油化工学院,甘肃 兰州 730050
    2.兰州石化职业技术大学,甘肃 兰州 730060
  • 收稿日期:2023-12-28 修回日期:2024-03-09 出版日期:2025-01-15 发布日期:2025-02-13
  • 通讯作者: 崔锦峰
  • 作者简介:万立祥(1992—),男,硕士研究生,研究方向为功能高分子材料。E-mail:1953560673@qq.com
  • 基金资助:
    甘肃省教育厅产业支撑项目(CYZC2023-31)

Preparation and properties of polyamic acid-polyurethane block copolymers and thermoimide elastomers

WAN Lixiang1(), CUI Jinfeng1,2(), GUO Junhong1, BAO Xuemei1, YANG Baoping1   

  1. 1.College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
    2.Lanzhou Petrochemical University of Vocational Technology, Lanzhou 730060, Gansu, China
  • Received:2023-12-28 Revised:2024-03-09 Online:2025-01-15 Published:2025-02-13
  • Contact: CUI Jinfeng

摘要:

以均苯四甲酸酐(PMDA)、4,4'-二氨基二苯醚(ODA)为原料,合成聚酰胺酸齐聚物(PAA),后与异佛尔酮二异氰酸酯(IPDI)、聚四氢呋喃醚二醇(PTMG)和1,4'-丁二醇(BDO)合成的聚氨酯预聚体进行嵌段,合成聚酰胺酸聚氨酯嵌段共聚物(PAA-PU),通过平板硫化仪热亚胺化,制备聚酰亚胺-聚氨酯嵌段共聚物(PI-PU)弹性体。采用红外光谱(FTIR)、核磁共振波谱(NMR)、热重分析(TGA)、X射线光电子能谱(XPS)、力学性能测试、动态热机械分析(DMA)、差示扫描量热分析(DSC)、凝胶渗透色谱(GPC)对齐聚物PAA、嵌段聚合物PAA-PU、PI-PU及PU进行结构表征和性能测试。结果表明,相较于拉伸强度23.8MPa的PU,引入PAA的嵌段聚合物拉伸强度提高到63.7MPa,亚胺化后的聚合物拉伸强度进一步提高到86.4MPa,聚合物最大热分解温度提高到352.6℃,残留质量上升。DMA测试结果表明,随着PI的嵌段引入,嵌段聚合物Tg由37.2℃提升至91.6℃,随着PI含量增加,Tg进一步提升至128.5℃。此外,嵌段聚合物的储能模量增大,损耗模量降低,橡胶平台变宽。

关键词: 聚氨酯, 聚酰亚胺, 嵌段共聚, 弹性体, 力学性能

Abstract:

The polyamic acid (PAA) was synthesized by pyromellitic dianhydride (PMDA) and 4,4'-diaminodiphenyl ether (ODA), followed by polymerization with a polyurethane prepolymer constructed by isophorone diisocyanate (IPDI), polytetramethylene tetramethylene ether glycol (PTMG) and 1,4'-butanediol (BDO) to prepare a block copolymer poly(amide-urethane) (PAA-PU). Subsequently, the PAA-PU evolved to final poly(imide-urethane) (PI-PU) by thermal imidization by a plate vulcanizer. The chemical structure and performance of aforementioned copolymers were characterized by infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), mechanical property testing, dynamic thermomechanical analysis (DMA), differential scanning calorimetry (DSC) and gel permeation chromatography (GPC). As a result, the tensile strength was enhanced to 63.7MPa for PAA-PU and 86.4MPa for PI-PU, compared to 28.3MPa for polyurethane (PU). Besides, the temperature of maximum degradation rate of copolymer reached to 352.6℃ and the residual retention was increased. In addition, the glass transformation temperature of copolymer was improved from 37.2℃ to 91.6℃ as polyimide segments incorporated and further elevated to 128.5℃ due to additional content of polyimide segments. Meanwhile, the increases of storage modulus, reduction of loss modulus and widened rubber platform of PI-PU copolymer were also displayed in respect to PU.

Key words: polyurethane, polyimide, block copolymerization, elastomer, mechanical properties

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn