化工进展 ›› 2024, Vol. 43 ›› Issue (12): 6913-6924.DOI: 10.16085/j.issn.1000-6613.2023-2049
• 精细化工 • 上一篇
收稿日期:
2023-11-24
修回日期:
2024-01-19
出版日期:
2024-12-15
发布日期:
2025-01-11
通讯作者:
黄雪
作者简介:
黄雪(1982—),女,博士,副教授,研究方向为绿色功能材料。E-mail:huangxue0206@126.com。
基金资助:
HUANG Xue1(), FAN Yanxiang1, ZHOU Hongjun1, ZHOU Xinhua1, DOU Yao2
Received:
2023-11-24
Revised:
2024-01-19
Online:
2024-12-15
Published:
2025-01-11
Contact:
HUANG Xue
摘要:
为减少农药在使用过程中对环境造成的污染,提高疏水性农药阿维菌素(AVM)在作物中的有效应用,通过自乳化法合成了蓖麻油基水性聚氨酯乳液(CP)用于包覆AVM得到载药乳液(CPA),研究了不同蓖麻油(CO)含量载药乳液的化学结构、微观结构、热稳定性、接触角、叶面滞留量、抗紫外性能、缓释性能、杀虫活性和储存稳定性。结果表明,相比AVM分散液,CPA在黄瓜叶面上的接触角降低了20%以上,滞留量提高了50%以上,说明其在叶面上有较好的亲和力和润湿性;相同紫外强度照射下,CPA的半衰期相较AVM分散液延长了近一半,说明CPA具有良好的抗紫外性能;CPA的载药率在5.61%~6.62%之间,包封率可达70%以上,并具有良好的缓释性能,释药行为符合First-order动力学模型,药物释放受Fickian扩散控制,且CPA与AVM分散液对小菜蛾的杀虫活性无显著差异。
中图分类号:
黄雪, 范燕香, 周红军, 周新华, 窦瑶. 蓖麻油基水性聚氨酯载药乳液的制备及性能[J]. 化工进展, 2024, 43(12): 6913-6924.
HUANG Xue, FAN Yanxiang, ZHOU Hongjun, ZHOU Xinhua, DOU Yao. Preparation and properties of castor oil-based waterborne polyurethane drug-loaded emulsion[J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6913-6924.
样品 | 配比 | |
---|---|---|
CO | mPEG | |
CP-0 | 0 | 3.0g(3.0mmol) |
CP-20 | 0.6g(0.64mmol) | 2.4g(2.4mmol) |
CP-40 | 1.2g(1.29mmol) | 1.8g(1.8mmol) |
CP-60 | 1.8g(1.93mmol) | 1.2g(1.2mmol) |
CP-80 | 2.4g(2.57mmol) | 0.6g(0.6mmol) |
表1 不同蓖麻油含量的水性聚氨酯乳液配比
样品 | 配比 | |
---|---|---|
CO | mPEG | |
CP-0 | 0 | 3.0g(3.0mmol) |
CP-20 | 0.6g(0.64mmol) | 2.4g(2.4mmol) |
CP-40 | 1.2g(1.29mmol) | 1.8g(1.8mmol) |
CP-60 | 1.8g(1.93mmol) | 1.2g(1.2mmol) |
CP-80 | 2.4g(2.57mmol) | 0.6g(0.6mmol) |
CP样品 | 粒径/nm | CPA样品 | 粒径/nm |
---|---|---|---|
CP-0 | 60.05±2.89 | CPA-0 | 55.86±0.71 |
CP-20 | 76.92±1.92 | CPA-20 | 66.34±10.24 |
CP-40 | 135.5±0.99 | CPA-40 | 125.97±6.67 |
CP-60 | 176.40±5.30 | CPA-60 | 175.20±4.75 |
CP-80 | 226.83±1.17 | CPA-80 | 178.33±3.88 |
表2 不同CO含量的CP和CPA的DLS粒径
CP样品 | 粒径/nm | CPA样品 | 粒径/nm |
---|---|---|---|
CP-0 | 60.05±2.89 | CPA-0 | 55.86±0.71 |
CP-20 | 76.92±1.92 | CPA-20 | 66.34±10.24 |
CP-40 | 135.5±0.99 | CPA-40 | 125.97±6.67 |
CP-60 | 176.40±5.30 | CPA-60 | 175.20±4.75 |
CP-80 | 226.83±1.17 | CPA-80 | 178.33±3.88 |
样品名称 | 包封率/% | 载药率/% |
---|---|---|
CPA-0 | 73.76±0.06 | 5.56±0.005 |
CPA-20 | 75.50±0.11 | 5.61±0.008 |
CPA-40 | 77.89±0.16 | 5.72±0.012 |
CPA-60 | 88.66±0.44 | 6.47±0.032 |
CPA-80 | 92.00±0.26 | 6.62±0.019 |
表3 CP对AVM的包封率和载药率
样品名称 | 包封率/% | 载药率/% |
---|---|---|
CPA-0 | 73.76±0.06 | 5.56±0.005 |
CPA-20 | 75.50±0.11 | 5.61±0.008 |
CPA-40 | 77.89±0.16 | 5.72±0.012 |
CPA-60 | 88.66±0.44 | 6.47±0.032 |
CPA-80 | 92.00±0.26 | 6.62±0.019 |
拟合模型 | 样品 | 拟合公式 | a | b | R2 |
---|---|---|---|---|---|
Zero-order | CPA-0 | y=ax | 1.0407 | — | 0.8363 |
CPA-20 | 0.9525 | — | 0.8640 | ||
CPA-40 | 0.9204 | — | 0.8742 | ||
CPA-60 | 0.9007 | — | 0.8720 | ||
CPA-80 | 0.8705 | — | 0.8869 | ||
First-order | CPA-0 | y=a(1-e-bx ) | 94.62 | 0.0528 | 0.9886 |
CPA-20 | 89.75 | 0.0405 | 0.9888 | ||
CPA-40 | 87.98 | 0.0369 | 0.9408 | ||
CPA-60 | 85.28 | 0.0385 | 0.9144 | ||
CPA-80 | 85.52 | 0.0324 | 0.9569 | ||
Higuchi | CPA-0 | y=ax0.5 | 10.42 | — | 0.4469 |
CPA-20 | 9.44 | — | 0.7402 | ||
CPA-40 | 9.08 | — | 0.7924 | ||
CPA-60 | 8.90 | — | 0.7657 | ||
CPA-80 | 8.54 | — | 0.8680 | ||
Korsmeyer Peppas | CPA-0 | y=axb | 27.66 | 0.2722 | 0.8824 |
CPA-20 | 19.83 | 0.3271 | 0.9242 | ||
CPA-40 | 18.23 | 0.3378 | 0.9481 | ||
CPA-60 | 18.77 | 0.3261 | 0.9593 | ||
CPA-80 | 15.00 | 0.3692 | 0.9540 | ||
Hixson Crowell | CPA-0 | y=(a-bx)3 | 3.93 | -0.0061 | 0.5927 |
CPA-20 | 3.70 | -0.0071 | 0.6691 | ||
CPA-40 | 3.63 | -0.0074 | 0.7362 | ||
CPA-60 | 3.62 | -0.0072 | 0.7634 | ||
CPA-80 | 3.51 | -0.0079 | 0.7526 |
表4 不同CPA中AVM释放曲线拟合结果
拟合模型 | 样品 | 拟合公式 | a | b | R2 |
---|---|---|---|---|---|
Zero-order | CPA-0 | y=ax | 1.0407 | — | 0.8363 |
CPA-20 | 0.9525 | — | 0.8640 | ||
CPA-40 | 0.9204 | — | 0.8742 | ||
CPA-60 | 0.9007 | — | 0.8720 | ||
CPA-80 | 0.8705 | — | 0.8869 | ||
First-order | CPA-0 | y=a(1-e-bx ) | 94.62 | 0.0528 | 0.9886 |
CPA-20 | 89.75 | 0.0405 | 0.9888 | ||
CPA-40 | 87.98 | 0.0369 | 0.9408 | ||
CPA-60 | 85.28 | 0.0385 | 0.9144 | ||
CPA-80 | 85.52 | 0.0324 | 0.9569 | ||
Higuchi | CPA-0 | y=ax0.5 | 10.42 | — | 0.4469 |
CPA-20 | 9.44 | — | 0.7402 | ||
CPA-40 | 9.08 | — | 0.7924 | ||
CPA-60 | 8.90 | — | 0.7657 | ||
CPA-80 | 8.54 | — | 0.8680 | ||
Korsmeyer Peppas | CPA-0 | y=axb | 27.66 | 0.2722 | 0.8824 |
CPA-20 | 19.83 | 0.3271 | 0.9242 | ||
CPA-40 | 18.23 | 0.3378 | 0.9481 | ||
CPA-60 | 18.77 | 0.3261 | 0.9593 | ||
CPA-80 | 15.00 | 0.3692 | 0.9540 | ||
Hixson Crowell | CPA-0 | y=(a-bx)3 | 3.93 | -0.0061 | 0.5927 |
CPA-20 | 3.70 | -0.0071 | 0.6691 | ||
CPA-40 | 3.63 | -0.0074 | 0.7362 | ||
CPA-60 | 3.62 | -0.0072 | 0.7634 | ||
CPA-80 | 3.51 | -0.0079 | 0.7526 |
样品 | 毒力回归方程 | LC50/mg·L-1 | 95%置信区间 | R2 |
---|---|---|---|---|
AVM分散液 | y=0.9838x+4.3863 | 4.20 | 2.62~6.76 | 0.9867 |
AVM乳油分散液 | y=1.9227x+3.8827 | 3.81 | 2.90~5.01 | 0.9313 |
CPA-40 | y=1.1071x+4.2110 | 5.16 | 3.34~7.98 | 0.9981 |
表5 各AVM样品对小菜蛾的毒性实验结果
样品 | 毒力回归方程 | LC50/mg·L-1 | 95%置信区间 | R2 |
---|---|---|---|---|
AVM分散液 | y=0.9838x+4.3863 | 4.20 | 2.62~6.76 | 0.9867 |
AVM乳油分散液 | y=1.9227x+3.8827 | 3.81 | 2.90~5.01 | 0.9313 |
CPA-40 | y=1.1071x+4.2110 | 5.16 | 3.34~7.98 | 0.9981 |
1 | FANG Xinzi, ZHANG Qian, YU Beibei, et al. Plant-oil based polymeric emulsions as adhesive nanocarriers for enhancing the efficacy of nanopesticides[J]. Industrial Crops and Products, 2023, 192: 116020. |
2 | 郝丽, 黄丹丹, 关梅, 等. 氨基-酰胺类智能超分子水凝胶农药载体制备[J]. 化工学报, 2020, 71(8): 3819-3829. |
HAO Li, HUANG Dandan, GUAN Mei, et al. Preparation of supramolecular-assemble hydrogels as pesticide carriers based on amphiphilic amino-amide compounds[J]. CIESC Journal, 2020, 71(8): 3819-3829. | |
3 | FENG Jianguo, CHEN Wang, LIU Qi, et al. Development of abamectin-loaded nanoemulsion and its insecticidal activity and cytotoxicity[J]. Pest Management Science, 2020, 76(12): 4192-4201. |
4 | TAO Ruping, YOU Chaoqun, QU Qingli, et al. Recent advances in the design of controlled- and sustained-release micro/nanocarriers of pesticide[J]. Environmental Science: Nano, 2023, 10(2): 351-371. |
5 | LUO Jian, GAO Yue, LIU Yukun, et al. Self-assembled degradable nanogels provide foliar affinity and pinning for pesticide delivery by flexibility and adhesiveness adjustment[J]. ACS Nano, 2021, 15(9): 14598-14609. |
6 | GUAN Wenxun, ZHANG Wenxiang, TANG Liming, et al. Fabrication of novel avermectin nanoemulsion using a polyurethane emulsifier with cleavable disulfide bonds[J]. Journal of Agricultural and Food Chemistry, 2018, 66(26): 6569-6577. |
7 | LUO Jian, HUANG Xueping, JING Tongfang, et al. Analysis of particle size regulating the insecticidal efficacy of phoxim polyurethane microcapsules on leaves[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 17194-17203. |
8 | KONOVALOV Dmitry S, SAPRYKINA Natalia N, ZUEV Vjacheslav V. High-performance castor oil-based polyurethane composites reinforced by birch wood fibers[J]. Applied Sciences, 2023, 13(14): 8258. |
9 | HOWELL Bob A, OSTRANDER Eric A. Thermal degradation of flame-retardant compounds derived from castor oil[J]. Journal of Thermal Analysis and Calorimetry, 2019, 138(6): 3961-3975. |
10 | ZHONG Yuye, ZHANG Tao, ZHANG Wenshuo, et al. Antibacterial castor oil-based waterborne polyurethane/gelatin films for packaging of strawberries[J]. Food Packaging and Shelf Life, 2023, 36: 101055. |
11 | QIN He, ZHANG Hong, ZHOU Xiaoteng, et al. Preparation and reducing-responsive property of a novel functional polyurethane nanoemulsion[J]. Chinese Chemical Letters, 2020, 31(1): 292-294. |
12 | WANG Shiying, ZHANG Yi, YANG Liupeng, et al. Indoxacarb-loaded anionic polyurethane blend with sodium alginate improves pH sensitivity and ecological security for potential application in agriculture[J]. Polymers, 2020, 12(5): 1135. |
13 | 单久航. 蓖麻油改性水性聚氨酯的制备及性能研究[D]. 长春: 长春工业大学, 2019. |
SHAN Jiuhang. Preparation and properties of castor oil modified waterborne polyurethane[D]. Changchun: Changchun University of Technology, 2019. | |
14 | SHI Mengqing, YANG Jin, WANG Xiwen. Preparation castor oil-modified high bio-based waterborne polyurethane and its application[J]. Journal of Polymer Research, 2021, 28(9): 351. |
15 | 陈锓, 王成强, 宋季轩, 等. 蓖麻油基异氰酸酯乳液胶黏剂的制备及应用[J]. 中国胶黏剂, 2020, 29(3): 11-16. |
CHEN Qin, WANG Chengqiang, SONG Jixuan, et al. Preparation and application of castor oil based isocyanate emulsion adhesive[J]. China Adhesives, 2020, 29(3): 11-16. | |
16 | 解雅洁, 王海花. 水基羧酸型含锆盐聚氨酯乳液的制备及性能研究[J]. 涂料工业, 2017, 47(7): 51-57, 70. |
XIE Yajie, WANG Haihua. Synthesis and properties of waterborne carboxylic polyurethane emulsion containing zirconium salt[J]. Paint & Coatings Industry, 2017, 47(7): 51-57, 70. | |
17 | OURIQUE Pedro Antonio, ORNAGHI Felipe Gustavo, ORNAGHI Heitor Luiz, et al. Thermo-oxidative degradation kinetics of renewable hybrid polyurethane-urea obtained from air-oxidized soybean oil[J]. Journal of Thermal Analysis and Calorimetry, 2019, 137(6): 1969-1979. |
18 | FORTES Amanda C, BEZZON Vinicius D N, DE ARAÚJO Gabriel L B, et al. Preparation and physicochemical characterization of drug loaded in castor oil-based polyurethane[J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(3): 1949-1957. |
19 | JIA Runping, WANG Dayang, HUANG Zhixiong, et al. Synthesis of castor oil-based waterborne polyurethane with improved properties via adjusting PBA/CO soft segment ratio[J]. ChemistrySelect, 2020, 5(41): 12690-12696. |
20 | WANG Shihai, ZHOU Yu, ZHUANG Bo, et al. Star-shaped amphiphilic block polyurethane with pentaerythritol core for a hydrophobic drug delivery carrier[J]. Polymer International, 2016, 65(5): 551-558. |
21 | MA Jianzhong, ZHOU Jianhua, LIU Geng, et al. Synthesis and properties of waterborne polyurethane modified with guar gum polysaccharide[J]. ChemistrySelect, 2020, 5(7): 2348-2353. |
22 | JIANG Qinhong, XIE Yonghui, PENG Min, et al. A nanocarrier pesticide delivery system with promising benefits in the case of dinotefuran: Strikingly enhanced bioactivity and reduced pesticide residue[J]. Environmental Science: Nano, 2022, 9(3): 988-999. |
23 | YU Manli, YAO Junwei, LIANG Jie, et al. Development of functionalized abamectin poly(lactic acid) nanoparticles with regulatable adhesion to enhance foliar retention[J]. RSC Advances, 2017, 7(19): 11271-11280. |
24 | SU Yi, MA Songqi, WANG Binbo, et al. High-performance castor oil-based polyurethane thermosets: Facile synthesis and properties[J]. Reactive and Functional Polymers, 2023, 183: 105496. |
25 | Sonalee DAS, PANDEY Priyanka, MOHANTY Smita, et al. Study of UV aging on the performance characteristics of vegetable oil and palm oil derived isocyanate based polyurethane[J]. Korean Journal of Chemical Engineering, 2017, 34(2): 523-538. |
26 | FU Heqing, WANG Yin, LI Xiaoya, et al. Synthesis of vegetable oil-based waterborne polyurethane/silver-halloysite antibacterial nanocomposites[J]. Composites Science and Technology, 2016, 126: 86-93. |
27 | AKBARI Ali, WU Jianping. Ovomucin nanoparticles: Promising carriers for mucosal delivery of drugs and bioactive compounds[J]. Drug Delivery and Translational Research, 2017, 7(4): 598-607. |
28 | KHAN Muhammad Umar Aslam, RAZAQ Saiful Izwan Abd, MEHBOOB Hassan, et al. Antibacterial and hemocompatible pH-responsive hydrogel for skin wound healing application: In vitro drug release[J]. Polymers, 2021, 13(21): 3703. |
29 | LI Yinghui, WANG Yusheng, ZHAO Jingsong, et al. A pH-sensitive curcumin loaded microemulsion-filled alginate and porous starch composite gels: Characterization, in vitro release kinetics and biological activity[J]. International Journal of Biological Macromolecules, 2021, 182: 1863-1873. |
30 | KAMPA Jansuda, FRAZIER Richard, Julia RODRIGUEZ-GARCIA. Physical and chemical characterisation of conventional and nano/emulsions: Influence of vegetable oils from different origins[J]. Foods, 2022, 11(5): 681. |
31 | GAO Guangchun, LU Zhongxian, TAO Shuhong, et al. Triterpenoid saponins with antifeedant activities from stem bark of Catunaregam spinosa (Rubiaceae) against Plutella xylostella (Plutellidae)[J]. Carbohydrate Research, 2011, 346(14): 2200-2205. |
32 | KIM Hyun Kyung, CHO Sun-Ran, KIM Gil-Hah. Insecticidal and antifeeding activity of Perilla frutescens-derived material against the diamondback moth, Plutella xylostella L[J]. Entomological Research, 2019, 49(1): 55-62. |
33 | CHERIF Asma, MANSOUR Ramzi, SUN Changjiao, et al. Lethal effects of nano and commercial formulations of abamectin on Tuta absoluta (Meyrick) and its mirid predators Macrolophus pygmaeus and Nesidiocoris tenuis[J]. International Journal of Tropical Insect Science, 2022, 42(3): 2183-2193. |
34 | CHEN Long, ZHOU Xinhua, LIN Guanquan, et al. Synthesis of pH-responsive isolated soy protein/carboxymethyl chitosan microspheres for sustained pesticide release[J]. Journal of Applied Polymer Science, 2020, 137(6): 48358. |
35 | 李梓泳, 马憬希, 赵明, 等. 羧甲基纤维素-大豆分离蛋白农药缓释颗粒的制备及性能[J]. 化工进展, 2021, 40(5): 2739-2746. |
LI Ziyong, MA Jingxi, ZHAO Ming, et al. Preparation and performance of carboxymethyl cellulose-soybean protein isolate pesticides sustained-release particles[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2739-2746. |
[1] | 王波, 王斌, 龚翔, 杨福胜, 方涛. 基于反应器设计的有机液态储氢载体脱氢反应强化研究进展[J]. 化工进展, 2024, 43(S1): 189-208. |
[2] | 熊磊, 丁飞燕, 李聪, 王群乐, 吕起, 翟晓娜, 刘峰. 金属Pt负载型非均相催化剂研究进展[J]. 化工进展, 2024, 43(S1): 295-304. |
[3] | 宋财城, 陈晓贞, 刘丽, 杨成敏, 郑步梅, 尹晓莹, 孙进, 姚运海, 段为宇. 碳基载体负载加氢脱硫催化剂的研究进展[J]. 化工进展, 2024, 43(S1): 305-314. |
[4] | 张日东, 吕建华, 刘继东, 郭豹, 李文松. Ru-K-NaY催化草酸二甲酯脱羰基制备碳酸二甲酯[J]. 化工进展, 2024, 43(S1): 382-390. |
[5] | 谢钰麟, 饶瑞晔, 黄建, 蒿佳怡, 王友益, 黄琦. 连续ZIF-8膜制备及在氢气分离中的研究进展[J]. 化工进展, 2024, 43(S1): 403-418. |
[6] | 李琳, 黄国勇, 徐盛明, 郁丰善, 翁雅青, 曹才放, 温嘉玮, 王春霞, 王俊莲, 顾斌涛, 张袁华, 刘斌, 王才平, 潘剑明, 徐泽良, 王翀, 王珂. 铝基废催化剂载体的回收与再生制备[J]. 化工进展, 2024, 43(S1): 640-649. |
[7] | 耿秀梅, 张逢, 张翔, 单美霞, 张亚涛. 用于CO2分离的Pebax基混合基质膜稳定性研究进展[J]. 化工进展, 2024, 43(9): 4996-5012. |
[8] | 李浩然, 王岩, 张涛, 吕莉, 唐文翔, 唐盛伟. 以Cu(Ac)2-Zn(Ac)2溶液为水相的W/O微液滴尺度的有效调控[J]. 化工进展, 2024, 43(9): 5168-5176. |
[9] | 王雨菲, 贾宇, 张议升, 薛伟, 李芳, 王延吉. 甲酸为氢源硝基苯转移加氢合成对氨基苯酚[J]. 化工进展, 2024, 43(8): 4421-4431. |
[10] | 黄军, 张应娟, 林茵童, 韦雪纯, 吴雨桐, 毋高博, 莫钧麟, 赵祯霞, 赵钟兴. 蚕沙基生物多孔炭的制备及对杀虫单/呋虫胺的协同吸附与缓释性能[J]. 化工进展, 2024, 43(7): 3964-3971. |
[11] | 王娟, 卞春林, 陈翔宇, 王莹, 王新东, 左彦鑫, 肖本益. 微好氧厌氧消化研究进展[J]. 化工进展, 2024, 43(7): 4005-4014. |
[12] | 张世蕊, 范朕连, 宋慧平, 张丽娜, 高宏宇, 程淑艳, 程芳琴. 粉煤灰负载光催化材料的研究进展[J]. 化工进展, 2024, 43(7): 4043-4058. |
[13] | 郭鹏, 李红伟, 李贵贤, 季东, 王东亮, 赵新红. 直接甲醇燃料电池阳极催化剂的失活机制及应对策略[J]. 化工进展, 2024, 43(7): 3812-3823. |
[14] | 冼学权, 杜芳黎, 刘忠林, 刘婉玉, 黎演明, 龙思宇, 黄华林. 利用PEG/Na2CO3双水相乳液法制备碳酸钙微球及其形成机理[J]. 化工进展, 2024, 43(6): 3221-3231. |
[15] | 万成凤, 李志达, 张春月, 路璐. MXene负载CoP纳米棒高效电催化分解水制氢[J]. 化工进展, 2024, 43(6): 3232-3239. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |