化工进展 ›› 2024, Vol. 43 ›› Issue (8): 4320-4332.DOI: 10.16085/j.issn.1000-6613.2023-1258
• 能源加工与技术 • 上一篇
收稿日期:
2023-07-21
修回日期:
2023-11-17
出版日期:
2024-08-15
发布日期:
2024-09-02
通讯作者:
陈良勇
作者简介:
向浩寅(1998—),男,硕士研究生,研究方向为化学链制氢。E-mail:220200400@seu.edu.cn。
基金资助:
XIANG Haoyin(), CHEN Liangyong()
Received:
2023-07-21
Revised:
2023-11-17
Online:
2024-08-15
Published:
2024-09-02
Contact:
CHEN Liangyong
摘要:
以甲烷为燃料的化学链制氢是一种耦合CO2捕集的高效制氢技术。在Fe2O3/Al2O3载氧体的基础上,通过浸渍法分别添加Ni、Ce、Zn和Cu形成双金属载氧体,以提高其晶格氧传递性能、制氢性能和抗积炭性能。本文通过热力学计算、材料表征和实验研究,研究了不同双金属载氧体还原阶段和制氢阶段的反应性能,获得了不同双金属载氧体晶相结构与反应活性、制氢性能间的构效关系;并针对筛选出的最佳载氧体,进一步研究了其循环反应稳定性。研究表明,Cu是最合适的金属添加剂。Cu在Fe2O3/Al2O3双金属载氧体中形成了结构稳定的尖晶石相CuFe2O4,提高了晶格氧活性,促进了载氧体中Fe2O3的深度还原,同时有效抑制积炭的生成,显著提高氢气产量和纯度,其中氢气产量由245mmol/100g载氧体提高到288mmol/100g载氧体,氢气纯度由88.3%提高到95.7%。Cu修饰Fe2O3/Al2O3载氧体在循环中表现出良好的稳定性,Fe3+和Cu2+的迁移使其微观结构得到改善,循环反应性能得到提高。研究验证了双金属载氧体在甲烷化学链制氢反应中的可行性,研究结果为铁基载氧体的设计和筛选提供了理论和实验依据。
中图分类号:
向浩寅, 陈良勇. Ni、Ce、Zn和Cu修饰Fe2O3/Al2O3载氧体的甲烷化学链制氢特性[J]. 化工进展, 2024, 43(8): 4320-4332.
XIANG Haoyin, CHEN Liangyong. Evaluation of Ni, Ce, Zn and Cu modified Fe2O3/Al2O3 oxygen carriers for methane-fueled chemical looping hydrogen generation process[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4320-4332.
载氧体 | Fe2O3质量分数/% | NiO质量分数/% | CeO2质量分数/% | ZnO质量分数/% | CuO质量分数/% | Al2O3质量分数/% | 其他(质量分数)/% |
---|---|---|---|---|---|---|---|
Fe15Al | 16.44 | — | — | — | — | 82.71 | 0.85 |
Fe15Ni5Al | 16.39 | 5.53 | — | — | — | 77.35 | 0.73 |
Fe15Ce5Al | 16.00 | — | 5.18 | — | — | 78.07 | 0.75 |
Fe15Zn5Al | 16.67 | — | — | 5.32 | — | 77.32 | 0.69 |
Fe15Cu5Al | 15.90 | — | — | — | 5.89 | 77.48 | 0.73 |
表1 载氧体化学组分分析
载氧体 | Fe2O3质量分数/% | NiO质量分数/% | CeO2质量分数/% | ZnO质量分数/% | CuO质量分数/% | Al2O3质量分数/% | 其他(质量分数)/% |
---|---|---|---|---|---|---|---|
Fe15Al | 16.44 | — | — | — | — | 82.71 | 0.85 |
Fe15Ni5Al | 16.39 | 5.53 | — | — | — | 77.35 | 0.73 |
Fe15Ce5Al | 16.00 | — | 5.18 | — | — | 78.07 | 0.75 |
Fe15Zn5Al | 16.67 | — | — | 5.32 | — | 77.32 | 0.69 |
Fe15Cu5Al | 15.90 | — | — | — | 5.89 | 77.48 | 0.73 |
载氧体 | Fe质量分数/% | Cu质量分数/% |
---|---|---|
新鲜Fe15Al | 21.8 | — |
新鲜Fe15Cu5Al | 17.0 | 6.4 |
10次循环后Fe15Al | 27.8 | — |
10次循环后Fe15Cu5Al | 24.6 | 14.9 |
表2 循环前后载氧体表面的元素质量分数
载氧体 | Fe质量分数/% | Cu质量分数/% |
---|---|---|
新鲜Fe15Al | 21.8 | — |
新鲜Fe15Cu5Al | 17.0 | 6.4 |
10次循环后Fe15Al | 27.8 | — |
10次循环后Fe15Cu5Al | 24.6 | 14.9 |
1 | ZHOU Lu, ENAKONDA Linga Reddy, HARB Moussab, et al. Fe catalysts for methane decomposition to produce hydrogen and carbon nano materials[J]. Applied Catalysis B: Environmental, 2017, 208: 44-59. |
2 | 刘刀. 加快氢能产业发展 保障国家能源安全[J]. 新能源科技, 2021(3): 26. |
LIU Dao. Accelerating the development of hydrogen energy industry to ensure national energy security[J]. New Energy Science and Technology, 2021(3): 26. | |
3 | KOTHARI Richa, BUDDHI D, SAWHNEY R L. Comparison of environmental and economic aspects of various hydrogen production methods[J]. Renewable and Sustainable Energy Reviews, 2008, 12(2): 553-563. |
4 | FAN Liang-Shih. Chemical looping systems for fossil energy conversions[M]. Hoboken: Wiley-AIChE, 2010. |
5 | HUA Xiuning, ZHU Jie, WU Xiaoshuang, et al. Packed bed chemical looping platform: Design and operation of 30kWth pilot unit[J]. Procedia Environmental Sciences, 2016, 31: 81-90. |
6 | GUPTA Puneet, VELAZQUEZ-VARGAS Luis G, FAN Liang-Shih. Syngas redox (SGR) process to produce hydrogen from coal derived syngas[J]. Energy & Fuels, 2007, 21(5): 2900-2908. |
7 | KATHE Mandar V, EMPFIELD Abbey, NA Jing, et al. Hydrogen production from natural gas using an iron-based chemical looping technology: Thermodynamic simulations and process system analysis[J]. Applied Energy, 2016, 165: 183-201. |
8 | ZENG Liang, CHENG Zhuo, FAN Jonathan A, et al. Metal oxide redox chemistry for chemical looping processes[J]. Nature Reviews Chemistry, 2018, 2(11): 349-364. |
9 | 罗明, 王树众, 王龙飞, 等. 基于化学链技术制氢的研究进展[J]. 化工进展, 2014, 33(5): 1123-1133. |
LUO Ming, WANG Shuzhong, WANG Longfei, et al. Advances in hydrogen production using chemical-looping technology[J]. Chemical Industry and Engineering Progress, 2014, 33(5): 1123-1133. | |
10 | 安阳, 袁思杰, 高振东, 等. Mg修饰Fe/Al载氧体煤化学链制氢[J]. 化工进展, 2022, 41(2): 648-654. |
AN Yang, YUAN Sijie, GAO Zhendong, et al. Chemical looping hydrogen generation of coal with oxygen carrier of Mg modified Fe/Al[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 648-654. | |
11 | KANG Kyoung-Soo, KIM Chang-Hee, Ki-Kwang BAE, et al. Oxygen-carrier selection and thermal analysis of the chemical-looping process for hydrogen production[J]. International Journal of Hydrogen Energy, 2010, 35(22): 12246-12254. |
12 | LI Fanxing, KIM Hyung Ray, SRIDHAR Deepak, et al. Syngas chemical looping gasification process: Oxygen carrier particle selection and performance[J]. Energy & Fuels, 2009, 23(8): 4182-4189. |
13 | MAYER Florian, BIDWE Ajay R, SCHOPF Alexander, et al. Comparison of a new micaceous iron oxide and ilmenite as oxygen carrier for chemical looping combustion with respect to syngas conversion[J]. Applied Energy, 2014, 113: 1863-1868. |
14 | MEI Daofeng, ABAD Alberto, ZHAO Haibo, et al. On a highly reactive Fe2O3/Al2O3 oxygen carrier for in situ gasification chemical looping combustion[J]. Energy & Fuels, 2014, 28(11): 7043-7052. |
15 | QIN Wu, CHEN Qiuluan, WANG Yang, et al. Theoretical study of oxidation-reduction reaction of Fe2O3 supported on MgO during chemical looping combustion[J]. Applied Surface Science, 2013, 266: 350-354. |
16 | KARIMI E, FORUTAN H R, SAIDI M, et al. Experimental study of chemical-looping reforming in a fixed-bed reactor: Performance investigation of different oxygen carriers on Al2O3 and TiO2 support[J]. Energy & Fuels, 2014, 28(4): 2811-2820. |
17 | SONG Hui, DOROODCHI Elham, MOGHTADERI Behdad. Redox characteristics of Fe-Ni/SiO2 bimetallic oxygen carriers in CO under conditions pertinent to chemical looping combustion[J]. Energy & Fuels, 2012, 26(1): 75-84. |
18 | HAFIZI Ali, RAHIMPOUR Mohammad Reza. Inhibiting Fe-Al spinel formation on a narrowed mesopore-sized MgAl2O4 support as a novel catalyst for H2 production in chemical looping technology[J]. Catalysts, 2018, 8(1): 27. |
19 | ABAD A, MATTISSON T, LYNGFELT A, et al. The use of iron oxide as oxygen carrier in a chemical-looping reactor[J]. Fuel, 2007, 86(7/8): 1021-1035. |
20 | MIAO Zhenwu, SHEN Laihong, ZHAO Haibo. Cycling performance of composite hematite and copper ore oxygen carrier in chemical looping combustion[J]. Chemical Engineering Journal, 2023, 452: 139224. |
21 | 韩丹华, 郭雪岩, 王志远. 化学链重整制氢NiO-CeO2/γ-Al2O3复合载氧体的性能[J]. 化工进展, 2022, 41(1): 192-200. |
HAN Danhua, GUO Xueyan, WANG Zhiyuan. Performance of NiO-CeO2/γ-Al2O3 composite oxygen carriers for hydrogen generation with chemical looping reforming[J]. Chemical Industry and Engineering Progress, 2022, 41(1):192-200. | |
22 | SIRIWARDANE Ranjani, TIAN Hanjing, SIMONYI Thomas, et al. Synergetic effects of mixed copper-iron oxides oxygen carriers in chemical looping combustion[J]. Fuel, 2013, 108: 319-333. |
23 | THEOFANIDIS Stavros Alexandros, GALVITA Vladimir V, POELMAN Hilde, et al. Enhanced carbon-resistant dry reforming Fe-Ni catalyst: Role of Fe[J]. ACS Catalysis, 2015, 5(5): 3028-3039. |
24 | MA Shiwei, CHENG Fang, LU Ping, et al. Enhanced performance of hematite oxygen carrier by CeO2 for chemical looping hydrogen generation[J]. International Journal of Hydrogen Energy, 2022, 47(8): 5130-5141. |
25 | CUI Dongxu, LI Min, QIU Yu, et al. Improved hydrogen production with 100% fuel conversion through the redox cycle of ZnFeAlO x oxygen carrier in chemical looping scheme[J]. Chemical Engineering Journal, 2020, 400: 125769. |
26 | YÜZBASI Nur Sena, ABDALA Paula M, IMTIAZ Qasim, et al. The effect of copper on the redox behaviour of iron oxide for chemical-looping hydrogen production probed by in situ X-ray absorption spectroscopy[J]. Physical Chemistry Chemical Physics, 2018, 20(18): 12736-12745. |
27 | BHAVSAR Saurabh, Götz VESER. Bimetallic Fe-Ni oxygen carriers for chemical looping combustion[J]. Industrial & Engineering Chemistry Research, 2013, 52(44): 15342-15352. |
28 | ZHU Xing, ZHANG Mingyue, LI Kongzhai, et al. Chemical-looping water splitting over ceria-modified iron oxide: Performance evolution and element migration during redox cycling[J]. Chemical Engineering Science, 2018, 179: 92-103. |
29 | SADYKOV Vladislav, MEZENTSEVA Natalia, ALIKINA Galina, et al. Nanocomposite catalysts for internal steam reforming of methane and biofuels in solid oxide fuel cells: Design and performance[J]. Catalysis Today, 2009, 146(1/2): 132-140. |
30 | WANG Lulu, SHEN Laihong, LIU Weidong, et al. Chemical looping hydrogen generation using synthesized hematite-based oxygen carrier comodified by potassium and copper[J]. Energy & Fuels, 2017, 31(8): 8423-8433. |
31 | 朱珉, 陈时熠, 马士伟, 等. Fe2O3/Al2O3氧载体化学链制氢联合甲烷干重整制备氢气和合成气[J]. 工程热物理学报, 2019, 40(10): 2447-2453. |
ZHU Min, CHEN Shiyi, MA Shiwei, et al. Syngas and hydrogen co-production on Fe2O3/Al2O3 oxygen carrier via chemical-looping hydrogen generation process with methane dry reforming[J]. Journal of Engineering Thermophysics, 2019, 40(10): 2447-2453. | |
32 | ZHOU Zhihao, DENG Guoshu, LI Lin, et al. Chemical looping co-conversion of CH4 and CO2 using Fe2O3/Al2O3 pellets as both oxygen carrier and catalyst in a fluidized bed reactor[J]. Chemical Engineering Journal, 2022, 428: 132133. |
33 | HUANG Liang, TANG Mingchen, FAN Maohong, et al. Density functional theory study on the reaction between hematite and methane during chemical looping process[J]. Applied Energy, 2015, 159: 132-144. |
34 | WU Liqing, XIE Xiangjuan, REN Hailian, et al. A short review on nickel-based catalysts in dry reforming of methane: Influences of oxygen defects on anti-coking property[J]. Materials Today: Proceedings, 2021, 42: 153-160. |
35 | CHIRON François-Xavier, PATIENCE Gregory S. Kinetics of mixed copper-iron based oxygen carriers for hydrogen production by chemical looping water splitting[J]. International Journal of Hydrogen Energy, 2012, 37(14): 10526-10538. |
36 | SIRIWARDANE Ranjani, TIAN Hanjing, FISHER James. Production of pure hydrogen and synthesis gas with Cu-Fe oxygen carriers using combined processes of chemical looping combustion and methane decomposition/reforming[J]. International Journal of Hydrogen Energy, 2015, 40(4): 1698-1708. |
37 | YU Bo, ZHANG Ping, ZHANG Lei, et al. Studies on the preparation of active oxygen-deficient copper ferrite and its application for hydrogen production through thermal chemical water splitting[J]. Science in China Series B: Chemistry, 2008, 51(9): 878-886. |
38 | ZHU Min, CHEN Shiyi, MA Shiwei, et al. Carbon formation on iron-based oxygen carriers during CH4 reduction period in chemical looping hydrogen generation process[J]. Chemical Engineering Journal, 2017, 325: 322-331. |
39 | LI Yu, ZHANG Changsen, LIU Yonggang, et al. Coke formation on the surface of Ni/HZSM-5 and Ni-Cu/HZSM-5 catalysts during bio-oil hydrodeoxygenation[J]. Fuel, 2017, 189: 23-31. |
40 | GUISNET M, MAGNOUX P. Organic chemistry of coke formation[J]. Applied Catalysis A: General, 2001, 212(1/2): 83-96. |
41 | HUANG Jijiang, VEKSHA Andrei, JIN JUN Thaddeus FOO, et al. Upgrading waste plastic derived pyrolysis gas via chemical looping cracking-gasification using Ni-Fe-Al redox catalysts[J]. Chemical Engineering Journal, 2022, 438: 135580. |
42 | CHEN Liangyong, LI Haixu, WANG Haifeng, et al. Performance of red mud oxygen carriers in chemical-looping hydrogen production using different components of plastic waste pyrolytic gas[J]. Journal of Cleaner Production, 2023, 409: 137213. |
43 | 郭明山, 金晶, 胡强, 等. 小型流化床铁基载氧体的积炭特性[J]. 煤炭转化, 2016, 39(1): 40-43. |
GUO Mingshan, JIN Jing, HU Qiang, et al. Carbon deposition characteristics of Fe-based oxygen carriers in bench fluidized bed[J]. Coal Conversion, 2016, 39(1): 40-43. | |
44 | 王璐璐, 沈来宏. 铜修饰铁矿石的化学链制氢特性实验研究[J]. 工程热物理学报, 2017, 38(12): 2731-2737. |
WANG Lulu, SHEN Laihong. Evaluation of copper modified hematite for chemical-looping hydrogen generation[J]. Journal of Engineering Thermophysics, 2017, 38(12): 2731-2737. | |
45 | CHEN Liangyong, BAO Jinhua, KONG Liang, et al. Activation of ilmenite as an oxygen carrier for solid-fueled chemical looping combustion[J]. Applied Energy, 2017, 197: 40-51. |
46 | YAMAGUCHI Doki, TANG Liangguang, Chiang KEN. Pre-oxidation of natural ilmenite for use as an oxygen carrier in the cyclic methane-steam redox process for hydrogen production[J]. Chemical Engineering Journal, 2017, 322: 632-645. |
47 | MOLDENHAUER Patrick, Magnus RYDÉN, MATTISSON Tobias, et al. The use of ilmenite as oxygen carrier with kerosene in a 300W CLC laboratory reactor with continuous circulation[J]. Applied Energy, 2014, 113: 1846-1854. |
48 | SUN Yugang, ZUO Xiaobing, SANKARANARAYANAN Subramanian K R S,et al. Quantitative 3D evolution of colloidal nanoparticle oxidation in solution[J]. Science, 2017, 356(6335): 303-307. |
49 | KHEDR M H, FARGHALI A A, ABDEL-KHALEK A A. Microstructure, kinetics and mechanisms of nano-crystalline CuFe2O4 reduction in flowing hydrogen at 300—600℃ for the production of metallic nano-wires[J]. Journal of Analytical and Applied Pyrolysis, 2007, 78(1): 1-6. |
50 | TILLAND A, PRIETO J, PETITJEAN D, et al. Study and analyses of a CLC oxygen carrier degradation mechanism in a fixed bed reactor[J]. Chemical Engineering Journal, 2016, 302: 619-632. |
[1] | 梁国威, 金晶, 董波, 侯封校. 化学链燃烧中煤灰原位改性对钙基载氧体炭沉积的影响[J]. 化工进展, 2024, 43(8): 4253-4261. |
[2] | 陈良, 罗冬梅, 王正豪, 钟山, 唐思扬, 梁斌. 工业副产气化学链回收氢气技术研究进展[J]. 化工进展, 2024, 43(7): 3729-3746. |
[3] | 邓耀, 赵青鹏, 徐瑾, 刘大伟, 马晓迅, 徐龙. 球磨法制备堇青石负载Fe/Ce载氧体的甲烷化学链重整性能[J]. 化工进展, 2024, 43(5): 2396-2408. |
[4] | 王嘉锐, 刘大伟, 邓耀, 徐瑾, 马晓迅, 徐龙. 载氧体在甲烷化学链重整反应中的研究进展[J]. 化工进展, 2024, 43(5): 2235-2253. |
[5] | 张鹏飞, 陈伟鹏, 肖卓楠, 吕青岗, 张顺风, 张子峰. 红砖掺杂改性白云鄂博铁精矿载氧体性能[J]. 化工进展, 2024, 43(4): 2226-2234. |
[6] | 王旭栋, 刘敦禹, 许开龙, 刘秋祺, 范昀培, 金晶. CeO2载氧体对煤化学链燃烧中汞迁移影响机制[J]. 化工进展, 2024, 43(4): 2191-2200. |
[7] | 朱杰, 金晶, 丁正浩, 杨会盼, 侯封校. 化学链气化中准东煤灰对CaSO4载氧体改性及其作用机理[J]. 化工进展, 2023, 42(9): 4628-4635. |
[8] | 龚陈俊, 梅道锋. 钨修饰对镍载氧体的沼气化学链重整制氢性能影响[J]. 化工进展, 2023, 42(4): 2130-2141. |
[9] | 范昀培, 金晶, 刘敦禹, 王静杰, 刘秋祺, 许开龙. CaSO4载氧体在煤气化化学链燃烧中的脱汞[J]. 化工进展, 2023, 42(3): 1638-1648. |
[10] | 李乃珍, 孙瑞洁, 秦志峰, 苗茂谦, 吴琼笑, 常丽萍, 孙鹏程, 曾剑, 刘毅. 焦炉煤气常量含碳气氛对加氢脱硫催化剂活性、选择性和积炭的影响[J]. 化工进展, 2023, 42(2): 783-793. |
[11] | 李攀, 王彪, 徐骏浩, 王贤华, 胡俊豪, 宋建德, 白净, 常春. 生物质热解催化剂积炭问题的研究进展[J]. 化工进展, 2023, 42(1): 236-246. |
[12] | 安阳, 袁思杰, 高振东, 吴曼, 王凌云, 郭庆杰. Mg修饰Fe/Al载氧体煤化学链制氢[J]. 化工进展, 2022, 41(2): 648-654. |
[13] | 周怀荣, 马迎文, 王可, 李红伟, 孟文亮, 谢江鹏, 李贵贤, 张栋强, 王东亮, 赵永臣. 化学链空分联合化学链制氢的煤制甲醇过程参数优化与分析[J]. 化工进展, 2022, 41(10): 5332-5341. |
[14] | 林俊明, 岑洁, 李正甲, 杨林颜, 姚楠. Ni基重整催化剂失活机理研究进展[J]. 化工进展, 2022, 41(1): 201-209. |
[15] | 韩丹华, 郭雪岩, 王志远. 化学链重整制氢NiO-CeO2/γ-Al2O3复合载氧体的性能[J]. 化工进展, 2022, 41(1): 192-200. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |