化工进展 ›› 2024, Vol. 43 ›› Issue (5): 2396-2408.DOI: 10.16085/j.issn.1000-6613.2023-2062
• 化石能源的清洁高效转化利用 • 上一篇
邓耀(), 赵青鹏, 徐瑾, 刘大伟(), 马晓迅, 徐龙()
收稿日期:
2023-11-28
修回日期:
2024-01-11
出版日期:
2024-05-15
发布日期:
2024-06-15
通讯作者:
刘大伟,徐龙
作者简介:
邓耀(1997—),男,硕士研究生,研究方向为化学链重整。E-mail:dengyao1997yxj@163.com。
基金资助:
DENG Yao(), ZHAO Qingpeng, XU Jin, LIU Dawei(), MA Xiaoxun, XU Long()
Received:
2023-11-28
Revised:
2024-01-11
Online:
2024-05-15
Published:
2024-06-15
Contact:
LIU Dawei, XU Long
摘要:
通过球磨法制备一系列堇青石负载Fe/Ce的复合载氧体,并在固定床装置上评价复合载氧体的甲烷化学链重整的反应性能。系统考察了堇青石质量分数、Fe/Ce摩尔比、椰壳添加量以及球磨参数对复合载氧体的氧化还原性能的影响,并进行了一系列表征(XRD、H2-TPR、BET、SEM、XPS)。研究发现,在球料比10∶1、转速500r/min、时间1h的球磨参数下制备质量分数30%堇青石负载Fe/Ce摩尔比为1∶9的复合载氧体具有较优的氧化还原性能。质量分数15%椰壳炭的添加使复合载氧体的实际出氧量提升了38.7%,并且在还原氧化循环反应中表现出良好的稳定性和氧释放能力。
中图分类号:
邓耀, 赵青鹏, 徐瑾, 刘大伟, 马晓迅, 徐龙. 球磨法制备堇青石负载Fe/Ce载氧体的甲烷化学链重整性能[J]. 化工进展, 2024, 43(5): 2396-2408.
DENG Yao, ZHAO Qingpeng, XU Jin, LIU Dawei, MA Xiaoxun, XU Long. Methane chemical looping reforming over cordierite-loaded Fe/Ce oxygen carriers prepared by ball milling[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2396-2408.
载氧体 | 晶粒尺寸/nm | 晶格常数/nm |
---|---|---|
70CeO2/30Cord | 84.3 | 0.541 |
0.5Fe/9.5Ce(70CeO2/30Cord) | 75.9 | 0.5408 |
1Fe/9Ce(70CeO2/30Cord) | 74.3 | 0.5407 |
1.5Fe/8.5Ce(70CeO2/30Cord) | 73.9 | 0.5406 |
2Fe/8Ce(70CeO2/30Cord) | 70.3 | 0.5406 |
表1 不同Fe/Ce的载氧体微观参数
载氧体 | 晶粒尺寸/nm | 晶格常数/nm |
---|---|---|
70CeO2/30Cord | 84.3 | 0.541 |
0.5Fe/9.5Ce(70CeO2/30Cord) | 75.9 | 0.5408 |
1Fe/9Ce(70CeO2/30Cord) | 74.3 | 0.5407 |
1.5Fe/8.5Ce(70CeO2/30Cord) | 73.9 | 0.5406 |
2Fe/8Ce(70CeO2/30Cord) | 70.3 | 0.5406 |
载氧体 | 微孔比表面积/m2·g-1 | 介孔比表面积/m2·g-1 | 总比表面积/m2·g-1 | 介孔比例/% | 平均孔径/nm | 孔容/cm3·g-1 |
---|---|---|---|---|---|---|
70CeO2/30Cord | 0.3 | 5.3 | 5.6 | 94.3 | 31.6 | 0.049 |
1Fe/9Ce(70CeO2/30Cord) | 0.4 | 4.4 | 4.8 | 92.0 | 32.5 | 0.044 |
表2 不同载氧体的物理结构参数
载氧体 | 微孔比表面积/m2·g-1 | 介孔比表面积/m2·g-1 | 总比表面积/m2·g-1 | 介孔比例/% | 平均孔径/nm | 孔容/cm3·g-1 |
---|---|---|---|---|---|---|
70CeO2/30Cord | 0.3 | 5.3 | 5.6 | 94.3 | 31.6 | 0.049 |
1Fe/9Ce(70CeO2/30Cord) | 0.4 | 4.4 | 4.8 | 92.0 | 32.5 | 0.044 |
椰壳添加量(质量分数)/% | 晶粒尺寸/nm | 晶格常数/nm |
---|---|---|
0 | 74.3 | 0.5407 |
5 | 61.1 | 0.5411 |
10 | 59.7 | 0.5410 |
15 | 54.8 | 0.5407 |
表3 不同椰壳添加量下复合载氧体的晶体微观参数
椰壳添加量(质量分数)/% | 晶粒尺寸/nm | 晶格常数/nm |
---|---|---|
0 | 74.3 | 0.5407 |
5 | 61.1 | 0.5411 |
10 | 59.7 | 0.5410 |
15 | 54.8 | 0.5407 |
椰壳添加量(质量分数)/% | 微孔比表面积/m2·g-1 | 介孔比表面积/m2·g-1 | 比表面积/m2·g-1 | 介孔比例/% | 平均孔径/nm | 孔容/cm3·g-1 |
---|---|---|---|---|---|---|
5 | 0.3 | 4.0 | 4.2 | 93.18 | 29.1 | 0.030 |
10 | 0.3 | 4.7 | 5.0 | 94.22 | 27.5 | 0.035 |
15 | 0.3 | 4.2 | 4.5 | 92.80 | 22.9 | 0.035 |
表4 不同椰壳添加量下复合载氧体的平均孔径、孔容和比表面积
椰壳添加量(质量分数)/% | 微孔比表面积/m2·g-1 | 介孔比表面积/m2·g-1 | 比表面积/m2·g-1 | 介孔比例/% | 平均孔径/nm | 孔容/cm3·g-1 |
---|---|---|---|---|---|---|
5 | 0.3 | 4.0 | 4.2 | 93.18 | 29.1 | 0.030 |
10 | 0.3 | 4.7 | 5.0 | 94.22 | 27.5 | 0.035 |
15 | 0.3 | 4.2 | 4.5 | 92.80 | 22.9 | 0.035 |
复合载氧体 | Ce 3d | O 1s | Fe 2p | ||||
---|---|---|---|---|---|---|---|
Ce3+/% | Ce4+/% | Ce3+/Ce4+ | OⅡ/(OⅠ+OⅡ) | Fe2+/% | Fe3+/% | Fe2+/Fe3+ | |
70CeO2/30Cord | 17.30 | 82.70 | 0.21 | 0.439 | — | — | — |
1Fe/9Ce(70CeO2/30Cord) | 14.67 | 85.33 | 0.17 | 0.448 | 3.43 | 96.56 | 0.035 |
15%椰壳+1Fe/9Ce(70CeO2/30Cord) | 23.91 | 76.09 | 0.31 | 0.496 | 3.27 | 96.72 | 0.034 |
表5 复合载氧体XPS分析数据
复合载氧体 | Ce 3d | O 1s | Fe 2p | ||||
---|---|---|---|---|---|---|---|
Ce3+/% | Ce4+/% | Ce3+/Ce4+ | OⅡ/(OⅠ+OⅡ) | Fe2+/% | Fe3+/% | Fe2+/Fe3+ | |
70CeO2/30Cord | 17.30 | 82.70 | 0.21 | 0.439 | — | — | — |
1Fe/9Ce(70CeO2/30Cord) | 14.67 | 85.33 | 0.17 | 0.448 | 3.43 | 96.56 | 0.035 |
15%椰壳+1Fe/9Ce(70CeO2/30Cord) | 23.91 | 76.09 | 0.31 | 0.496 | 3.27 | 96.72 | 0.034 |
1 | 邹才能, 何东博, 贾成业. 世界能源转型内涵、路径及其对碳中和的意义[J]. 石油学报,2021,42(2):233-247. |
ZOU Caineng, HE Dongbo, JIA Chengye. The connotation, path of world energy transition and its significance for carbon neutrality[J]. Acta Petrolei Sinica, 2021, 42(2): 233-247. | |
2 | 张雨珂. 基于κ-CeZrO4载氧体甲烷化学链部分氧化制合成气反应特性研究[D]. 太原: 太原理工大学, 2020. |
ZHANG Yuke. Study on reaction characteristics of partial oxidation of methane chemical looping to syngas based on κ-CeZrO4 oxygen carrier[D]. Taiyuan: Taiyuan University of Technology, 2020. | |
3 | TANG Mingchen, XU Long, FAN Maohong. Progress in oxygen carrier development of methane-based chemical-looping reforming: A review[J]. Applied Energy, 2015, 151: 143-156. |
4 | KIMBALL Erin, LAMBERT Arnold, FOSSDAL Anita, et al. Reactor choices for chemical looping combustion (CLC)—Dependencies on materials characteristics[J]. Energy Procedia, 2013, 37: 567-574. |
5 | 吴坚. 铁基钙钛矿CH4-CO2化学链重整制合成气研究[D]. 西安: 西北大学, 2019. |
WU Jian. Study on chemical looping reforming of iron-based perovskite CH4-CO2 to syngas[D]. Xi’an: Northwest University, 2019. | |
6 | ZHU Xing, LI Kongzhai, NEAL Luke, et al. Perovskites as geo-inspired oxygen storage materials for chemical looping and three-way catalysis: A perspective[J]. ACS Catalysis, 2018, 8(9): 8213-8236. |
7 | ZHAO Xiao, ZHOU Hui, SIKARWAR Vineet Singh, et al. Biomass-based chemical looping technologies: The good, the bad and the future[J]. Energy & Environmental Science, 2017, 10(9): 1885-1910. |
8 | 安阳, 袁思杰, 高振东, 等. Mg修饰Fe/Al载氧体煤化学链制氢[J]. 化工进展, 2022, 41(2): 648-654. |
AN Yang, YUAN Sijie, GAO Zhendong, et al. Chemical looping hydrogen generation of coal with oxygen carrier of Mg-modified Fe/Al[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 648-654. | |
9 | GALVITA Vladimir V, POELMAN Hilde, BLIZNUK Vitaliy, et al. CeO2-modified Fe2O3 for CO2 utilization via chemical looping[J]. Industrial & Engineering Chemistry Research, 2013, 52(25): 8416-8426. |
10 | ZHU Xing, LI Kongzhai, WEI Yonggang, et al. Chemical-looping steam methane reforming over a CeO2-Fe2O3 oxygen carrier: Evolution of its structure and reducibility[J]. Energy & Fuels, 2014, 28(2): 754-760. |
11 | SUN Shangzhe, ZHAO Ming, CAI Liang, et al. Performance of CeO2-modified iron-based oxygen carrier in the chemical looping hydrogen generation process[J]. Energy & Fuels, 2015, 29(11): 7612-7621. |
12 | 朱新军, 姚建材. 陶瓷燃烧器用莫来石-堇青石组合砖的研制[J]. 耐火材料, 2006, 40(2): 117-119. |
ZHU Xinjun, YAO Jiancai. Production and application of cordierite-mullite assembled bricks for ceramic burner[J]. Refractories, 2006, 40(2): 117-119. | |
13 | 林小英, 张惠云, 刘亚敏, 等. 椰壳活性炭复合改性及其对模拟烟气中CO2的吸附性能[J]. 功能材料, 2015, 46(17): 17017-17021. |
LIN Xiaoying, ZHANG Huiyun, LIU Yamin, et al. Study of the multiple modification of cocoanut activated carbon and its adsorption properties of CO2 in simulated flue gas[J]. Journal of Functional Materials, 2015, 46(17): 17017-17021. | |
14 | 李鑫恺. 以椰壳炭为载体的镁促Ni基CO2甲烷化催化剂的制备和性能评价[D]. 西安: 西北大学, 2019. |
LI Xinkai. Preparation and performance evaluation of magnesium-promoted Ni-based CO2 methanation catalyst supported on coconut shell carbon[D]. Xi’an: Northwest University, 2019. | |
15 | ZHANG Weixiang, ZHANG Lina, PEI Sijia, et al. Rational design and reduction kinetics of efficient Ce-Co oxygen carriers for chemical looping reforming of methane[J]. Fuel, 2023, 345: 128208. |
16 | CAO Dingshan, DING Haoran, LUO Cong, et al. Development of a cordierite monolith reactor coated with CeO2-supported BaSrCo-based perovskite for chemical looping steam methane reforming[J]. Fuel Processing Technology, 2021, 220: 106889. |
17 | ZHU Xing, WEI Yonggang, WANG Hua, et al. Ce-Fe oxygen carriers for chemical-looping steam methane reforming[J]. International Journal of Hydrogen Energy, 2013, 38(11): 4492-4501. |
18 | HU Jun, CHEN Shiyi, XIANG Wenguo. Sintering and agglomeration of Fe2O3-MgAl2O4 oxygen carriers with different Fe2O3 loadings in chemical looping processes[J]. Fuel, 2020, 265: 116983. |
19 | LI Kongzhai, WANG Hua, WEI Yonggang, et al. Transformation of methane into synthesis gas using the redox property of Ce-Fe mixed oxides: Effect of calcination temperature[J]. International Journal of Hydrogen Energy, 2011, 36(5): 3471-3482. |
20 | LI Kongzhai, WANG Hua, WEI Yonggang, et al. Partial oxidation of methane to syngas with air by lattice oxygen transfer over ZrO2-modified Ce-Fe mixed oxides[J]. Chemical Engineering Journal, 2011, 173(2): 574-582. |
21 | LI Danyang, LI Kongzhai, XU Ruidong, et al. Enhanced CH4 and CO oxidation over Ce1– x Fe x O2– δ hybrid catalysts by tuning the lattice distortion and the state of surface iron species[J]. ACS Applied Materials & Interfaces, 2019, 11(21): 19227-19241. |
22 | LI Kongzhai, WANG Hua, WEI Yonggang, et al. Direct conversion of methane to synthesis gas using lattice oxygen of CeO2-Fe2O3 complex oxides[J]. Chemical Engineering Journal, 2010, 156(3): 512-518. |
23 | YUAN Jiangyong, ZHAO Yannan, XU Haiwen, et al. Layered Mg-Al spinel supported Ce-Fe-Zr-O oxygen carriers for chemical looping reforming[J]. Chinese Journal of Chemical Engineering, 2020, 28(10): 2668-2676. |
24 | 王保文, 张港, 刘同庆, 等. CeO2/CuFe2O4氧载体CH4化学链重整耦合CO2热催化还原研究[J]. 化工学报, 2022, 73(12): 5414-5426. |
WANG Baowen, ZHANG Gang, LIU Tongqing, et al. Research on chemical looping reforming of CH4 by CeO2 doped CuFe2O4 oxygen carrier coupled with CO2 thermocatalytic reduction[J]. CIESC Journal, 2022, 73(12): 5414-5426. | |
25 | WEI Guoqiang, ZHOU Huan, HUANG Zhen, et al. Reaction performance of Ce-enhanced hematite oxygen carrier in chemical looping reforming of biomass pyrolyzed gas coupled with CO2 splitting[J]. Energy, 2021, 215: 119044. |
26 | LIU Lichen, FAN Qi, SUN Chuanzhi, et al. Synthesis of sandwich-like TiO2@C composite hollow spheres with high rate capability and stability for lithium-ion batteries[J]. Journal of Power Sources, 2013, 221: 141-148. |
27 | ROWNAGHI Ali A, REZAEI Fateme, HEDLUND Jonas. Uniform mesoporous ZSM-5 single crystals catalyst with high resistance to coke formation for methanol deoxygenation[J]. Microporous and Mesoporous Materials, 2012, 151: 26-33. |
28 | THOMMES Matthias, KANEKO Katsumi, NEIMARK Alexander V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069. |
29 | XING Lingli, YANG Yuexi, REN Wei, et al. Highly efficient catalytic soot combustion performance of hierarchically meso-macroporous Co3O4/CeO2 nanosheet monolithic catalysts[J]. Catalysis Today, 2020, 351: 83-93. |
30 | ZHANG Zhaoliang, HAN Dong, WEI Shaojie, et al. Determination of active site densities and mechanisms for soot combustion with O2 on Fe-doped CeO2 mixed oxides[J]. Journal of Catalysis, 2010, 276(1): 16-23. |
31 | XING Lingli, YANG Yuexi, CAO Chunmei, et al. Decorating CeO2 nanoparticles on Mn2O3 nanosheets to improve catalytic soot combustion[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 16544-16554. |
32 | LI Hongcheng, LI Kongzhai, WANG Hua, et al. Soot combustion over Ce1- x Fe x O2- δ and CeO2/Fe2O3 catalysts: Roles of solid solution and interfacial interactions in the mixed oxides[J]. Applied Surface Science, 2016, 390: 513-525. |
33 | HOLGADO J P, MUNUERA G, ESPINÓS J P, et al. XPS study of oxidation processes of CeO x defective layers[J]. Applied Surface Science, 2000, 158(1/2): 164-171. |
34 | 于鹤, 李法社, 祝星, 等. Ce-Fe-Zr-O/MgO 整体型氧载体用于化学链部分氧化甲烷制合成气[J]. 燃料化学学报, 2015, 43(4): 499-506. |
YU He, LI Fashe, ZHU Xing, et al. Monolithic Ce-Fe-Zr-O/MgO oxygen carrier for the chemical-looping partial oxidation of methane to syngas[J]. Journal of Fuel Chemistry and Technology, 2015, 43(4): 499-506. | |
35 | HAFIZI Ali, RAHIMPOUR Mohammad. Inhibiting Fe-Al spinel formation on a narrowed mesopore-sized MgAl2O4 support as a novel catalyst for H2 production in chemical looping technology[J]. Catalysts, 2018, 8(1): 27. |
36 | DE VOS Yoran, JACOBS Marijke, VAN DER VOORT Pascal, et al. Development of stable oxygen carrier materials for chemical looping processes—A review[J]. Catalysts, 2020, 10(8): 926. |
37 | WANG Shuzhong, WANG Guoxian, JIANG Feng, et al. Chemical looping combustion of coke oven gas by using Fe2O3/CuO with MgAl2O4 as oxygen carrier[J]. Energy & Environmental Science, 2010, 3(9): 1353-1360. |
38 | DE VOS Yoran, JACOBS Marijke, VAN DRIESSCHE Isabel, et al. Processing and characterization of Fe-based oxygen carriers for chemical looping for hydrogen production[J]. International Journal of Greenhouse Gas Control, 2018, 70: 12-21. |
[1] | 王嘉锐, 刘大伟, 邓耀, 徐瑾, 马晓迅, 徐龙. 载氧体在甲烷化学链重整反应中的研究进展[J]. 化工进展, 2024, 43(5): 2235-2253. |
[2] | 张鹏飞, 陈伟鹏, 肖卓楠, 吕青岗, 张顺风, 张子峰. 红砖掺杂改性白云鄂博铁精矿载氧体性能[J]. 化工进展, 2024, 43(4): 2226-2234. |
[3] | 王旭栋, 刘敦禹, 许开龙, 刘秋祺, 范昀培, 金晶. CeO2载氧体对煤化学链燃烧中汞迁移影响机制[J]. 化工进展, 2024, 43(4): 2191-2200. |
[4] | 朱杰, 金晶, 丁正浩, 杨会盼, 侯封校. 化学链气化中准东煤灰对CaSO4载氧体改性及其作用机理[J]. 化工进展, 2023, 42(9): 4628-4635. |
[5] | 龚陈俊, 梅道锋. 钨修饰对镍载氧体的沼气化学链重整制氢性能影响[J]. 化工进展, 2023, 42(4): 2130-2141. |
[6] | 范昀培, 金晶, 刘敦禹, 王静杰, 刘秋祺, 许开龙. CaSO4载氧体在煤气化化学链燃烧中的脱汞[J]. 化工进展, 2023, 42(3): 1638-1648. |
[7] | 安阳, 袁思杰, 高振东, 吴曼, 王凌云, 郭庆杰. Mg修饰Fe/Al载氧体煤化学链制氢[J]. 化工进展, 2022, 41(2): 648-654. |
[8] | 刘洋, 黄亚继, 董新新, 丁雪宇, 杨晓域, 王新宇, 张臻荣, 曹歌瀚, 李志远, 田新启. 可燃生活垃圾气化Ca-Fe复合金属氧化物的原位固硫性能[J]. 化工进展, 2022, 41(10): 5677-5684. |
[9] | 韩丹华, 郭雪岩, 王志远. 化学链重整制氢NiO-CeO2/γ-Al2O3复合载氧体的性能[J]. 化工进展, 2022, 41(1): 192-200. |
[10] | 李桂娟,夏伟,罗海希,程桂茹. 纳米纤维素晶须-壳聚糖/聚乙烯醇复合膜性能与细胞相容性[J]. 化工进展, 2020, 39(1): 356-364. |
[11] | 高明刚, 刘永卓, 张欣涛, 宋鸣航, 郭庆杰. 铁基载氧体对煤中汞释放行为的影响[J]. 化工进展, 2019, 38(s1): 240-246. |
[12] | 张帆,段钰锋,柳帅,卢锦程,任少君,韦红旗,王军. 溴元素改性椰壳活性炭对实际燃煤烟气的脱汞性能[J]. 化工进展, 2019, 38(08): 3881-3888. |
[13] | 李彦坤,马晶晶,常国璋,胡修德,郭庆杰. 基于铁基载氧体的煤化学链气化还原过程中氮元素迁移行为[J]. 化工进展, 2019, 38(08): 3631-3639. |
[14] | 王博, 郭庆杰. CuO修饰的赤泥载氧体废弃活性炭化学链燃烧[J]. 化工进展, 2018, 37(07): 2837-2845. |
[15] | 张志越, 毛琳, 孙佳兴, 周长松, 姜小祥, 杨宏旻. 温度对载氧体还原过程中汞的析出特性及形态分布的影响[J]. 化工进展, 2018, 37(03): 1187-1193. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |